* Use common TextureInfo struct for all devices, except CUDA fermi.
* Move image sampling code to kernels/*/kernel_*_image.h files.
* Use arrays for data textures on Fermi too, so device_vector<Struct> works.
Note that volume rendering is not supported yet, this is a step towards that.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D2299
Adds a descriptor for attributes that can easily be passed around and extended
to contain more data. Will be used for attributes on subdivision meshes.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D2110
All the changes are mainly giving explicit tips on inlining functions,
so they match how inlining worked with previous toolkit.
This make kernel compiled by CUDA 8 render in average with same speed
as previous kernels. Some scenes are somewhat faster, some of them are
somewhat slower. But slowdown is within 1% so far.
On a positive side it allows us to enable newer generation cards on
buildbots (so GTX 10x0 will be officially supported soon).
This adds support for CUDA Texture objects (also known as Bindless textures) for Kepler GPUs (Geforce 6xx and above).
This is used for all 2D/3D textures, data still uses arrays as before.
User benefits:
* No more limits of image textures on Kepler.
We had 5 float4 and 145 byte4 slots there before, now we have 1024 float4 and 1024 byte4.
This can be extended further if we need to (just change the define).
* Single channel textures slots (byte and float) are now supported on Kepler as well (1024 slots for each type).
ToDo / Issues:
* 3D textures don't work yet, at least don't show up during render. I have no idea whats wrong yet.
* Dynamically allocate bindless_mapping array?
I hope Fermi still works fine, but that should be tested on a Fermi card before pushing to master.
Part of my GSoC 2016.
Reviewers: sergey, #cycles, brecht
Subscribers: swerner, jtheninja, brecht, sergey
Differential Revision: https://developer.blender.org/D1999
Supports both smoke/fire and point density textures now.
Reduces number of textures available for sm_20 and sm_21, but you have
to compromise somewhere on such a limited hardware.
Currently limited to linear interpolation only, and decoupled ray
marching is not supported yet. Think those could be considered just a
further improvement.
Some quick example:
https://developer.blender.org/F282934
Code is minimal and we can fully consider it a fix for missing
support of 3D textures with CUDA.
Reviewers: lukasstockner97, brecht, juicyfruit, dingto
Reviewed By: brecht, juicyfruit, dingto
Subscribers: mib2berlin
Differential Revision: https://developer.blender.org/D1806
It is per-material setting which could be found under the Volume settings
in the material and world context buttons.
There could still be some code-wise improvements, like using variable-size
macro for interp3d instead of having interp3d_ex to which you can pass the
interpolation method.
* CUDA can be compiled with Volume support again, change line 78 kernel_types.h for that.
Volumes are still fragile on GPU though, got some Memory/Address CUDA errors in tests.. needs to be investigated more deeply.
These are internally stored as a 3D image textures, but accessible like e.g.
UV coordinates though the attribute node and getattribute().
This is convenient for rendering e.g. smoke objects where data like density is
really a property of the mesh, and it avoids having to specify the smoke object
in a texture node, instead the material will work with any smoke domain.