This separate probe rendering from viewport rendering, making possible to
run the baking in another thread (non blocking and faster).
The baked lighting is saved in the blend file. Nothing needs to be
recomputed on load.
There is a few missing bits / bugs:
- Cache cannot be saved to disk as a separate file, it is saved in the DNA
for now making file larger and memory usage higher.
- Auto update only cubemaps does update the grids (bug).
- Probes cannot be updated individually (considered as dynamic).
- Light Cache cannot be (re)generated during render.
The implementation is pretty straightforward.
In Cycles, sampling the shapes is currently done w.r.t. area instead of solid angle.
There is a paper on solid angle sampling for disks [1], but the described algorithm is based on
simply sampling the enclosing square and rejecting samples outside of the disk, which is not exactly
great for Cycles' RNG (we'd need to setup a LCG for the repeated sampling) and for GPU divergence.
Even worse, the algorithm is only defined for disks. For ellipses, the basic idea still works, but a
way to analytically calculate the solid angle is required. This is technically possible [2], but the
calculation is extremely complex and still requires a lookup table for the Heuman Lambda function.
Therefore, I've decided to not implement that for now, we could still look into it later on.
In Eevee, the code uses the existing ltc_evaluate_disk to implement the lighting calculations.
[1]: "Solid Angle Sampling of Disk and Cylinder Lights"
[2]: "Analytical solution for the solid angle subtended at any point by an ellipse via a point source radiation vector potential"
Reviewers: sergey, brecht, fclem
Differential Revision: https://developer.blender.org/D3171
We handle doversion for the scene properties, but not for the
view layer overrides.
Overrides will be implemented in a different way via dynamic overrides.
For now this data is completely lost.
For some we may add per object overrides, but for most we plan to keep them
strictly per viewport settings. Display settings from the mesh still need to
be moved here, only collections were done to remove that code.
This was the otherway around before. But since we can have a different size*
for cube texture now, we can compute the correct-ish texture size.
This will give us on average the same texture appearance when we will add
support for real cubemap shadows.
As much as I want to give freedom to the user, 1.5G of vram for a
single shadow is a big of a stability issue.
So limiting to 4096 for now, we may remove this limit in the future.
This mean we can now have different shadow resolutions for both.
However each shadow type keep the same size accross all lamps because of
future "real" Cube Shadowmaps limitation and to save texture sampler slots.
That said the cascade shadow resolution could (in the future) still be
changed to be adjustable per sun lamp.
It's usefull in some scenario to tweak the specular intensity of a light
without modifying the diffuse contribution.
Cycles allows it via lamps material which we currently not support in Eevee.
This is a good workaround for now.
Because:
- Less redundancy.
- Better suffixes.
Also a few modification to GPU_texture_create_* to simplify the API:
- make the format explicit to the texture creation process.
- remove the component count as it's specified in the GPUTextureFormat.
This gets rid of the need of a geom shader and instancing.
Both are pretty slow compared to the new method.
The only moment the old method could be better is when scene is filled
with lots of objects and most of the objects in the shadow map appear
on every layer.
But even then, we could optimize the culling and minimize the overhead.
This refactor modernise the use of framebuffers.
It also touches a lot of files so breaking down changes we have:
- GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer.
This allows to create and configure more FBO without the need to attach
and detach texture at drawing time.
- GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This
allows to configure the framebuffer inside a context other than the one
that will be rendering the framebuffer. We do the actual configuration
when binding the FBO. We also Keep track of config validity and save
drawbuffers state in the FBO. We remove the different bind/unbind
functions. These make little sense now that we have separate contexts.
- DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer
ones to avoid another layer of abstraction. We move the DRW convenience
functions to GPUFramebuffer instead and even add new ones. The MACRO
GPU_framebuffer_ensure_config is pretty much all you need to create and
config a GPUFramebuffer.
- DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create
functions to create textures for thoses framebuffers. Pool textures are
now using default texture parameters for the texture type asked.
- DRWManager: Make sure no framebuffer object is bound when doing cache
filling.
- GPUViewport: Add new color_only_fb and depth_only_fb along with FB API
usage update. This let draw engines render to color/depth only target
and without the need to attach/detach textures.
- WM_window: Assert when a framebuffer is bound when changing context.
This balance the fact we are not track ogl context inside GPUFramebuffer.
- Eevee, Clay, Mode engines: Update to new API. This comes with a lot of
code simplification.
This also come with some cleanups in some engine codes.
Instead of creating a new instancing shading group without attrib, we now have instancing calls. The benefits is that they can be culled.
They can be used in conjuction with the standard and generate calls but shader must support it (which is generally not the case).
We store a pointer to the actual count so that the number can be tweaked between redraw.
This will makes multi layer rendering more efficient.
This removes the need of custom attribs for instancing.
Instancing works fully with dynamic batches & Gwn_VertFormat now.
This is in prevision of the VAO manager patch.
This is an optimization / cleanup commit.
The use of a global ubo remove lots of uniform lookups and only transfert data when needed.
Lots of renaming for more consistent codestyle.
Sun is treated as a unit distant disk like in cycles.
Opti: Since computing the diffuse contribution via LTC is the same as not using the Linear Transformation, we can bypass most of the LTC code.
This replaces the sphere analytical diffuse computation as it gives a more pleasing result very close to cycles' AND cheaper.
Lights power have been retweaked to be coherent with cycles (except sun lamp with large radius where cycles has a non-uniform light distribution).
Tests on my system with ~1200 objects with 128 shadow casting lamps (current max) show a significant perf improvment (cache timing : 22ms -> 9ms)
With a baseline with no shadow casting light at 6ms this give a reduction of the overhead from 16ms to 3ms.
This remove pretty much all allocations during the cache phase. Leading to a big improvement for scene with a large number of lights & shadowcasters.
The lamps storage has been replace by a union to remove the need to free/allocate everyframe (also reducing memory fragmentation).
We replaced the linked list system used to track shadow casters by a huge bitflag.
We gather the lights shadows bounds as well as the shadow casters AABB during the cache populate phase and put them in big arrays cache friendly.
Then in the cache finish phase, it's easier to iterate over the lamps shadow SphereBounds and test for intersection.
We use a double buffer system for the shadow casters arrays to detect deleted shadow casters.
Unfortunatly, it seems that deleting an object trigger an update for all other objects (thus tagging most shadow casting lamps to update), defeating the purpose of this tracking.
This needs further investigation.
For functions which will allocate requested data if it does not exist yet
"_ensure" is to be used instead of "_get". "_get" functions should return
NULL in cases when requested data does not exist yet.
This replaces dedicated flag which wasn't clean who sets it and who clears it,
and which was also trying to re-implement existing functionality in a way.
Flushing is not currently very efficient but there are ways to speed this up
a lot, but needs more investigation.
The RenderResult struct still has a listbase of RenderLayer, but that's ok
since this is strictly for rendering.
* Subversion bump (to 2.80.2)
* DNA low level doversion (renames) - only for .blend created since 2.80 started
Note: We can't use DNA_struct_elem_find or get file version in init_structDNA,
so we are manually iterating over the array of the SDNA elements instead.
Note 2: This doversion change with renames can be reverted in a few months. But
so far it's required for 2.8 files created between October 2016 and now.
Reviewers: campbellbarton, sergey
Differential Revision: https://developer.blender.org/D2927
This adds the possibility to simulate things like red ears with strong backlight or material with high scattering distances.
To enable it you need to turn on the "Subsurface Translucency" option in the "Options" tab of the Material Panel (and of course to have "regular" SSS enabled in both render settings and material options).
Since the effect is adding another overhead I prefer to make it optional. But this is open to discussion.
Be aware that the effect only works for direct lights (so no indirect/world lighting) that have shadowmaps, and is affected by the "softness" of the shadowmap and resolution.
Technical notes:
This is inspired by http://www.iryoku.com/translucency/ but goes a bit beyond that.
We do not use a sum of gaussian to apply in regards to the object thickness but we precompute a 1D kernel texture.
This texture stores the light transmited to a point at the back of an infinite slab of material of variying thickness.
We make the assumption that the slab is perpendicular to the light so that no fresnel or diffusion term is taken into account.
The light is considered constant.
If the setup is similar to the one assume during the profile baking, the realtime render matches cycles reference.
Due to these assumptions the computed transmitted light is in most cases too bright for curvy objects.
Finally we jitter the shadow map sample per pixel so we can simulate dispersion inside the medium.
Radius of the dispersion is in world space and derived by from the "soft" shadowmap parameter.
Idea for this come from this presentation http://www.iryoku.com/stare-into-the-future (slide 164).