ImBuf types were getting stored as bitflags in a 32bit integer which had
already run out of space. Solved the problem by separating file type to
an ftype enum, and file specific options to foptions.
Reviewed by Campbell, thanks a lot!
This assumptions are now made:
- Internally float buffers are always linear alpha-premul colors
- Readers should worry about delivering float buffers with that
assumptions.
- There's an input image setting to say whether it's stored with
straight/premul alpha on the disk.
- Byte buffers are now assumed have straight alpha, readers should
deliver straight alpha.
Some implementation details:
- Removed scene's color unpremultiply setting, which was very
much confusing and was wrong for default settings.
Now all renderers assumes to deliver premultiplied alpha.
- IMB_buffer_byte_from_float will now linearize alpha when
converting from buffer.
- Sequencer's effects were changed to assume bytes have got
straight alpha. Most of effects will work with bytes still,
however for glow it was more tricky to avoid data loss, so
there's a commented out glow implementation which converts
byte buffer to floats first, operates on floats and returns
bytes back. It's slower and not sure if it should actually
be used -- who're using glow on alpha anyway?
- Sequencer modifiers should also be working nice with straight
bytes now.
- GLSL preview will predivide float textures to make nice shading,
shading with byte textures worked nice (GLSL was assuming straight
alpha).
- Blender Internal will set alpha=1 to the whole sky. The same
happens in Cycles and there's no way to avoid this -- sky is
neither straight nor premul and doesn't fit color pipeline well.
- Straight alpha mode for render result was also eliminated.
- Conversion to correct alpha need to be done before linearizing
float buffer.
- TIFF will now load and save files with proper alpha mode setting
in file meta data header.
- Remove Use Alpha from texture mapping and replaced with image
datablock setting.
Behaves much more predictable and clear from code point of view
and solves possible regressions when non-premultiplied images were
used as textures with ignoring alpha channel.
Color management would be applied on both of float and byte buffers on image
save in cases if file format doesn't require linear float buffer and if image
is saving as render result.
This solves both initial report issue and TODO marked in previous fix.
Also de-duplicated image buffer color managing code and gave some more
meaningful names for few functions. Also wrote documentation around this
function, so current assumptions about spaces should be clear enough.
Made regression tests by saving EXR/PNG images to all supported format and
rendering OpenGL/Normal animation, in all cases seems everything is fine,
but more tests for sure would be welcome.
this is a regression with color management, TIFF's were always being written as 8bit
however the float buffer is assumed to be linear when converting from float to 16bit pixels per channel, so support for color management might need to be added here.
Replace old color pipeline which was supporting linear/sRGB color spaces
only with OpenColorIO-based pipeline.
This introduces two configurable color spaces:
- Input color space for images and movie clips. This space is used to convert
images/movies from color space in which file is saved to Blender's linear
space (for float images, byte images are not internally converted, only input
space is stored for such images and used later).
This setting could be found in image/clip data block settings.
- Display color space which defines space in which particular display is working.
This settings could be found in scene's Color Management panel.
When render result is being displayed on the screen, apart from converting image
to display space, some additional conversions could happen.
This conversions are:
- View, which defines tone curve applying before display transformation.
These are different ways to view the image on the same display device.
For example it could be used to emulate film view on sRGB display.
- Exposure affects on image exposure before tone map is applied.
- Gamma is post-display gamma correction, could be used to match particular
display gamma.
- RGB curves are user-defined curves which are applying before display
transformation, could be used for different purposes.
All this settings by default are only applying on render result and does not
affect on other images. If some particular image needs to be affected by this
transformation, "View as Render" setting of image data block should be set to
truth. Movie clips are always affected by all display transformations.
This commit also introduces configurable color space in which sequencer is
working. This setting could be found in scene's Color Management panel and
it should be used if such stuff as grading needs to be done in color space
different from sRGB (i.e. when Film view on sRGB display is use, using VD16
space as sequencer's internal space would make grading working in space
which is close to the space using for display).
Some technical notes:
- Image buffer's float buffer is now always in linear space, even if it was
created from 16bit byte images.
- Space of byte buffer is stored in image buffer's rect_colorspace property.
- Profile of image buffer was removed since it's not longer meaningful.
- OpenGL and GLSL is supposed to always work in sRGB space. It is possible
to support other spaces, but it's quite large project which isn't so
much important.
- Legacy Color Management option disabled is emulated by using None display.
It could have some regressions, but there's no clear way to avoid them.
- If OpenColorIO is disabled on build time, it should make blender behaving
in the same way as previous release with color management enabled.
More details could be found at this page (more details would be added soon):
http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management
--
Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO
integration and to Brecht van Lommel for some further development and code/
usecase review!
- memset(..., 1.0); // isnt valid
- memset(pointer, sizeof(pointer)) // was using the sizeof the pointer, not the size of the array, since this was to fill in alpha values it was obviously wrong.
--debug
--debug-ffmpeg
--debug-python
--debug-events
--debug-wm
This makes debug output easier to read - event debug prints would flood output too much before.
For convenience:
--debug-all turns all debug flags on (works as --debug did before).
also removed some redundant whitespace in debug prints and prefix some prints with __func__ to give some context.
- spelling - turns out we had tessellation spelt wrong all over.
- use \directive for doxy (not @directive)
- remove BLI_sparsemap.h - was from bmesh merge IIRC but entire file commented and not used.
Very nasty UI code issue: since every button is re-defined on a
redraw, having UI redraws while using a button was not possible.
This was solved long ago by copying over data from previous button.
However, this fails when buttons have callbacks with its own (or
a parent button) pointer.
This bug reporter found crashes in draw-overlap UI mode, this
draws entire UI over for every menu redraws, making previous button
pointers invalid. (for triple buffer, the UI is not redrawn, only
the menus).
In general: all systems falling back to old swapbuffers would have
suffered some instability because of this.
Fix is that now the old button gets lifted out from the previous
list and inserted in the new list. Works fine, but needs some tests!
Also in this commit: TIFF endian switching not needed for 16 bits tiff.
- removed deprecated bitmap arg from IMB_allocImBuf (plugins will need updating).
- mostly tagged UNUSED() since some of these functions look like they may need to have the arguments used later.