Currently, the random attribute node doesn't work well for most
workflows because for any change in the input data it outputs
completely different results.
This patch adds an implicit seed attribute input to the node, referred
to by "id". The attribute is hashed for each element using the CPPType
system's hash method, meaning the attribute can have any data type.
Supporting any data type is also important so any attribute can be
copied into the "id" attribute and used as a seed.
The "id" attribute is an example of a "reserved name" attribute,
meaning attributes with this name can be used implicitly by nodes like
the random attribute node. Although it makes it a bit more difficult
to dig deeper, using the name implicitly rather than exposing it as an
input should make the system more accessible and predictable.
Differential Revision: https://developer.blender.org/D9832
This adds a boolean attribute and custom data type, to be used in the
point separate node. It also adds it as supported data types in the
random attribute and attribute fill nodes.
There are more clever ways of storing a boolean attribute that make
more sense in certain situations-- sets, bitfields, and others, this
commit keeps it simple, saving those changes for when there is a proper
use case for them. In any case, we will still probably always want the
idea of a boolean attribute.
Differential Revision: https://developer.blender.org/D9818
This commit adds a simple utility function for getting the data type of an
attribute or its "constant" socket counterparts. No functional changes.
Differential Revision: https://developer.blender.org/D9819
This is a non-functional change. The functionality introduced in this commit
is not used in master yet. It is used by nodes that are being developed in
other branches though.
This is the initial merge from the geometry-nodes branch.
Nodes:
* Attribute Math
* Boolean
* Edge Split
* Float Compare
* Object Info
* Point Distribute
* Point Instance
* Random Attribute
* Random Float
* Subdivision Surface
* Transform
* Triangulate
It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier.
Notes on the Generic attribute access API
The API adds an indirection for attribute access. That has the following benefits:
* Most code does not have to care about how an attribute is stored internally.
This is mainly necessary, because we have to deal with "legacy" attributes
such as vertex weights and attributes that are embedded into other structs
such as vertex positions.
* When reading from an attribute, we generally don't care what domain the
attribute is stored on. So we want to abstract away the interpolation that
that adapts attributes from one domain to another domain (this is not
actually implemented yet).
Other possible improvements for later iterations include:
* Actually implement interpolation between domains.
* Don't use inheritance for the different attribute types. A single class for read
access and one for write access might be enough, because we know all the ways
in which attributes are stored internally. We don't want more different internal
structures in the future. On the contrary, ideally we can consolidate the different
storage formats in the future to reduce the need for this indirection.
* Remove the need for heap allocations when creating attribute accessors.
It includes commits from:
* Dalai Felinto
* Hans Goudey
* Jacques Lucke
* Léo Depoix