In order to experiment with different storage types for `DRW_Attributes`
and for general cleanup (see #103343). Also move a curves header to C++.
Pull Request #104716
This patch adds support for compilation and execution of GLSL compute shaders. This, along with a few systematic changes and fixes, enable realtime compositor functionality with the Metal backend on macOS. A number of GLSL source modifications have been made to add the required level of type explicitness, allowing all compilations to succeed.
GLSL Compute shader compilation follows a similar path to Vertex/Fragment translation, with added support for shader atomics, shared memory blocks and barriers.
Texture flags have also been updated to ensure correct read/write specification for textures used within the compositor pipeline. GPU command submission changes have also been made in the high level path, when Metal is used, to address command buffer time-outs caused by certain expensive compute shaders.
Authored by Apple: Michael Parkin-White
Ref T96261
Ref T99210
Reviewed By: fclem
Maniphest Tasks: T99210, T96261
Differential Revision: https://developer.blender.org/D16990
This changes how we access the points that correspond to each curve in a `CurvesGeometry`.
Previously, `CurvesGeometry::points_for_curve(int curve_index) -> IndexRange`
was called for every curve in many loops. Now one has to call
`CurvesGeometry::points_by_curve() -> OffsetIndices` before the
loop and use the returned value inside the loop.
While this is a little bit more verbose in general, it has some benefits:
* Better standardization of how "offset indices" are used. The new data
structure can be used independent of curves.
* Allows for better data oriented design. Generally, we want to retrieve
all the arrays we need for a loop first and then do the processing.
Accessing the old `CurvesGeometry::points_for_curve(...)` did not follow
that design because it hid the underlying offset array.
* Makes it easier to pass the offsets to a function without having to
pass the entire `CurvesGeometry`.
* Can improve performance in theory due to one less memory access
because `this` does not have to be dereferenced every time.
This likely doesn't have a noticable impact in practice.
Differential Revision: https://developer.blender.org/D17025
Texture usage flags can now be provided during texture creation specifying
the ways in which a texture can be used. This allows the GPU backends to
perform contextual optimizations which were not previously possible. This
includes enablement of hardware lossless compression which can result in
a 15%+ performance uplift for bandwidth-limited scenes on hardware such
as Apple-Silicon using Metal.
GPU_TEXTURE_USAGE_GENERAL can be used by default if usage is not known
ahead of time. Patch will also be relevant for the Vulkan backend.
Authored by Apple: Michael Parkin-White
Ref T96261
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D15967
Motivation is to disambiguate on the naming level what the matrix
actually means. It is very easy to understand the meaning backwards,
especially since in Python the name goes the opposite way (it is
called `world_matrix` in the Python API).
It is important to disambiguate the naming without making developers
to look into the comment in the header file (which is also not super
clear either). Additionally, more clear naming facilitates the unit
verification (or, in this case, space validation) when reading an
expression.
This patch calls the matrix `object_to_world` which makes it clear
from the local code what is it exactly going on. This is only done
on DNA level, and a lot of local variables still follow the old
naming.
A DNA rename is setup in a way that there is no change on the file
level, so there should be no regressions at all.
The possibility is to add `_matrix` or `_mat` suffix to the name
to make it explicit that it is a matrix. Although, not sure if it
really helps the readability, or is it something redundant.
Differential Revision: https://developer.blender.org/D16328
- Adding in compatibility paths to support minimum per-vertex strides for vertex formats. OpenGL supports a minimum stride of 1 byte, in Metal, this minimum stride is 4 bytes. Meaing a vertex format must be atleast 4-bytes in size.
- Replacing transform feedback compile-time check to conditional look-up, given TF is supported on macOS with Metal.
- 3D texture size safety check added as a general capability, rather than being in the gl backend only. Also required for Metal.
Authored by Apple: Michael Parkin-White
Ref T96261
Reviewed By: fclem
Maniphest Tasks: T96261
Differential Revision: https://developer.blender.org/D14510
Currently, there are two attribute API. The first, defined in `BKE_attribute.h` is
accessible from RNA and C code. The second is implemented with `GeometryComponent`
and is only accessible in C++ code. The second is widely used, but only being
accessible through the `GeometrySet` API makes it awkward to use, and even impossible
for types that don't correspond directly to a geometry component like `CurvesGeometry`.
This patch adds a new attribute API, designed to replace the `GeometryComponent`
attribute API now, and to eventually replace or be the basis of the other one.
The basic idea is that there is an `AttributeAccessor` class that allows code to
interact with a set of attributes owned by some geometry. The accessor itself has
no ownership. `AttributeAccessor` is a simple type that can be passed around by
value. That makes it easy to return it from functions and to store it in containers.
For const-correctness, there is also a `MutableAttributeAccessor` that allows
changing individual and can add or remove attributes.
Currently, `AttributeAccessor` is composed of two pointers. The first is a pointer
to the owner of the attribute data. The second is a pointer to a struct with
function pointers, that is similar to a virtual function table. The functions
know how to access attributes on the owner.
The actual attribute access for geometries is still implemented with the `AttributeProvider`
pattern, which makes it easy to support different sources of attributes on a
geometry and simplifies dealing with built-in attributes.
There are different ways to get an attribute accessor for a geometry:
* `GeometryComponent.attributes()`
* `CurvesGeometry.attributes()`
* `bke::mesh_attributes(const Mesh &)`
* `bke::pointcloud_attributes(const PointCloud &)`
All of these also have a `_for_write` variant that returns a `MutabelAttributeAccessor`.
Differential Revision: https://developer.blender.org/D15280
This was preventing correct attribute rendering with multiple attributes.
Since the `CurveInfos` struct is used for data sharing between C++ and
GLSL and inside a UBO it needs to obey the `std140` alignment rules which
states that arrays of scalars are padded to the size of `vec4` for each
array entry.
Viewport drawing does not support a per point radius attribute yet.
Instead, it has a fixed set of radius parameters that are used for all
curves in the same object. Now those radii are retrieved from the
radius attribute of the points on the first curve. This allows users
to control the radius of curves to some degree until proper per-point
radius is supported.
This adds support to render Curves attributes in EEVEE.
Each attribute is stored in a texture derived from a VBO. As the
shading group needs the textures to be valid upon creation, the
attributes are created and setup during its very creation, instead
of doing it lazily via create_requested which we cannot rely on
anyway as contrary to the mesh batch, we do cannot really tell if
attributes need to be updated or else via some `DRW_batch_requested`.
Since point attributes need refinement, and since attributes are all
cast to vec4/float4 to account for differences in type conversions
between Blender and OpenGL, the refinement shader for points is
used as is. The point attributes are stored for each subdivision level
in CurvesEvalFinalCache. Each subdivision level also keeps track of the
attributes already in use so they are properly updated when needed.
Some basic garbage collection was added similar to what is done
for meshes: if the attributes used over time have been different
from the currently used attributes for too long, then the buffers
are freed, ensuring that stale attributesare removed.
This adds `CurvesInfos` to the shader creation info, which stores
the scope in which the attributes are defined. Scopes are stored
as booleans, in an array indexed by attribute loading order which
is also the order in which the attributes were added to the material.
A mapping is necessary between the indices used for the scoping, and
the ones used in the Curves cache, as this may contain stale
attributes which have not been garbage collected yet.
Common utilities with the mesh code for handling requested
attributes were moved to a separate file.
Differential Revision: https://developer.blender.org/D14916
Extends the changes started in f31c3f8114 to completely separate
much of the DRW curves code from the particle hair drawing. In the short
term this increases duplication, but the idea is to simplify development
by making it easier to do larger changes to the new code, and the new
system will replace the particle hair at some point.
After this, only the shaders themselves are shared.
Differential Revision: https://developer.blender.org/D14699