- GLSL shader wasn't aware of alpha predivide option,
always assuming alpha is straight. Gave wrong results
when displaying transparent float buffers.
- GLSL display wasn't aware of float buffers with number
of channels different from 4, crashing when trying to
display image with different number of channels.
This required a bit larger changes, namely now it's
possible to pass format (GL_RGB, GL_RGBAm GL_LUMINANCE)
to glaDrawPixelsTex, This also implied adding format to
glaDrawPixelsAuto and modifying all places where this
functions are called.
Now GLSL will handle both 3 and 4 channels buffers,
single channel images are handled by CPU.
- Replaced hack for render result displaying with a bit
different hack.
Namely CPU conversion will happen only during render,
once render is done GLSL would be used for displaying
render result on a screen.
This is so because of the way renderer updates parts
of the image -- it happens without respect to active
render layer in image user. This is harmless because
only display buffer is modifying, but this is tricky
because we don't have original buffer opened during
rendering.
One more related fix here was about when rendering
multiple layers, wrong image would be displaying when
rendering is done. Added a signal to invalidate
display buffer once rendering is done (only happens
when using multiple layers). This solves issue with
wrong buffer stuck on the display when using regular
CPU display space transform and if GLSL is available
it'll make image displayed with a GLSL shader.
- As an additional change, byte buffers now also uses
GLSL display transform.
So now only dutehr and RGB curves are stoppers for
using GLSL for all kind of display transforms.
Was caused by recent change in image_buffer_rect_update which
was writing data to ibuf-rect_float. Apparently, this buffer
could point to different render layer than came from RenderResult.
Made quick fix for this, which ends up in skipping float buffer
update in image_buffer_rect_update and skipping GLSL when image
has both byte and float buffers.
This will bring speed down a bit, but slower blender is better
than broken blender.
Proper fix will arrive later this week.
Uses GLSL for drawing image in Image Editor space.
This requires change in image_buffer_rect_update, so
original float buffer is being updated as well. This
is unlikely be something bad, but will keep an eye
on this change.
Also no byte buffer allocation happens there, this
is so because byte buffer used for display only
and in case of GLSL display such allocation and
partial update is just waste of time.
Also switched OpenGL render from using CPU color
space linearization to GLSL color space transform.
Makes OpenGL rendering pretty much faster (but
still slower than in 2.60).
internal changes:
- Added functions to setup GLSL shader for color
space conversion in colormanagement.c. Currently
conversion form a colorspace defined by a role to
linear space is implemented. Easy to extend to
other cases.
- Added helper functions to glutil.c which does
smarter image buffer draw (calling all needed OCIO
stuff, editors now could draw image buffer with a
single function call -- all the checks are done in
glutil.c).
- Also added helper function for buffer linearization
from a given role to glutil.c. Everyone now able to
linearize buffer with a single call.
This function will do nothing is GLSL routines fails
or not supported.
And one last this: this function uses offscreen
drawing, could potentially give issues on some
cards, also will keep an eye on this.
- pass string size to BLI_timestr() to avoid possible buffer overrun.
- quiet warning for mingw.
- include guards for windows utf conversion funcs.
- fix for mistage in edge-angle-selection check.
- some style cleanup.
This commit makes BKE_image_acquire_ibuf referencing result, which means once
some area requested for image buffer, it'll be guaranteed this buffer wouldn't
be freed by image signal.
To de-reference buffer BKE_image_release_ibuf should now always be used.
To make referencing working correct we can not rely on result of
image_get_ibuf_threadsafe called outside from thread lock. This is so because
we need to guarantee getting image buffer from list of loaded buffers and it's
referencing happens atomic. Without lock here it is possible that between call
of image_get_ibuf_threadsafe and referencing the buffer IMA_SIGNAL_FREE would
be called. Image signal handling too is blocking now to prevent such a
situation.
Threads are locking by spinlock, which are faster than mutexes. There were some
slowdown reports in the past about render slowdown when using OSX on Xeon CPU.
It shouldn't happen with spin locks, but more tests on different hardware would
be really welcome. So far can not see speed regressions on own computers.
This commit also removes BKE_image_get_ibuf, because it was not so intuitive
when get_ibuf and acquire_ibuf should be used.
Thanks to Ton and Brecht for discussion/review :)
This commit adds memory usage information while rendering.
It reports memory used by device, meaning:
- For CPU it'll report real memory consumption
- For GPU rendering it'll report GPU memory consumption, but it'll
also mean the same memory is used from host side.
This information displays information about memory requested by Cycles,
not memory really allocated on a device. Real memory usage might be
higher because of memory fragmentation or optimistic memory allocator.
There's really nothing we can do against this.
Also in contrast with blender internal's render cycles memory usage
does not include memory used by scene, only memory needed by cycles
itself will be displayed. So don't freak out if memory usage reported
by cycles would be much lower than blender internal's.
This commit also adds RenderEngine.update_memory_stats callback which
is used to tell memory consumption from external engine to blender.
This information is used to generate information line after rendering
is finished.
Screencast recording stopped on a undo/redo. This was because all thread jobs
were killed then. Now it leaves screen jobs (screen cast) running, that's
data that doesn't change on undos.
Also renamed jobs_stop_all() to jobs_kill_all() - it terminates threads.
Just makes progressive refine :)
This means the whole image would be refined gradually using as much
threads as it's set in performance settings. Having enough tiles is
required to have this option working as it's expected.
Technically it's implemented by repeatedly computing next sample for
all the tiles before switching to next sample.
This works around 7-12% slower than regular tile-based rendering, so
use this option only if you really need it.
This commit also fixes progressive update of image when Save Buffers
option is enabled.
And one more thing this commit fixes is handling display buffer with
Save Buffers option enabled. If this option is enabled image buffer
wouldn't have neither byte nor float buffer until image is fully
rendered which could backfire in missing image while rendering in
cases color management cache became full.
This issue solved by allocating byte buffer for image buffer from
tile update callback.
Patch was reviewed by Brecht. He also made some minor edits to
original version to patch. Thanks, man!
Replace old color pipeline which was supporting linear/sRGB color spaces
only with OpenColorIO-based pipeline.
This introduces two configurable color spaces:
- Input color space for images and movie clips. This space is used to convert
images/movies from color space in which file is saved to Blender's linear
space (for float images, byte images are not internally converted, only input
space is stored for such images and used later).
This setting could be found in image/clip data block settings.
- Display color space which defines space in which particular display is working.
This settings could be found in scene's Color Management panel.
When render result is being displayed on the screen, apart from converting image
to display space, some additional conversions could happen.
This conversions are:
- View, which defines tone curve applying before display transformation.
These are different ways to view the image on the same display device.
For example it could be used to emulate film view on sRGB display.
- Exposure affects on image exposure before tone map is applied.
- Gamma is post-display gamma correction, could be used to match particular
display gamma.
- RGB curves are user-defined curves which are applying before display
transformation, could be used for different purposes.
All this settings by default are only applying on render result and does not
affect on other images. If some particular image needs to be affected by this
transformation, "View as Render" setting of image data block should be set to
truth. Movie clips are always affected by all display transformations.
This commit also introduces configurable color space in which sequencer is
working. This setting could be found in scene's Color Management panel and
it should be used if such stuff as grading needs to be done in color space
different from sRGB (i.e. when Film view on sRGB display is use, using VD16
space as sequencer's internal space would make grading working in space
which is close to the space using for display).
Some technical notes:
- Image buffer's float buffer is now always in linear space, even if it was
created from 16bit byte images.
- Space of byte buffer is stored in image buffer's rect_colorspace property.
- Profile of image buffer was removed since it's not longer meaningful.
- OpenGL and GLSL is supposed to always work in sRGB space. It is possible
to support other spaces, but it's quite large project which isn't so
much important.
- Legacy Color Management option disabled is emulated by using None display.
It could have some regressions, but there's no clear way to avoid them.
- If OpenColorIO is disabled on build time, it should make blender behaving
in the same way as previous release with color management enabled.
More details could be found at this page (more details would be added soon):
http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management
--
Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO
integration and to Brecht van Lommel for some further development and code/
usecase review!
Seems the issue was caused by render layer node overwritng active scene
when render button is clicked. It lead t situations when job was adding
with owner of rendering scene, but modal callback was checking for render
jobs existing for current active scene. There was no such jobs so operator
used to finish at this point and free report list used by render pipeline.
Solved by storing operator owner in operator's custom data. Probably
there's nicer way to do fix this issue but currently can't think of it.
--debug
--debug-ffmpeg
--debug-python
--debug-events
--debug-wm
This makes debug output easier to read - event debug prints would flood output too much before.
For convenience:
--debug-all turns all debug flags on (works as --debug did before).
also removed some redundant whitespace in debug prints and prefix some prints with __func__ to give some context.
For premultiplied alpha images, this makes any color space conversion for the image
or render output work on color without alpha multiplied in.
This is typically useful to avoid fringing when the image was or will be composited
over a light background. If the image will be composited over a black background on
the other hand, leaving this option off will give correct results.
In an ideal world, there should never be any color space conversion on images with
alpha, since it's undefined what to do then, but in practice it's useful to have
this option.
Patch by Troy Sobotka, with changes by me.
byte => float, float => float, byte => byte conversions with profile, dither
and predivide. Previously code for this was spread out too much.
There should be no functional changes, this is so the predivide/table/dither
patches can work correctly.