This adds support for cursor snapping for the new curves object.
It implements a function `transverts_from_curves_positions_create` (to separate the logic from the `Curves` object type). That function is then C wrapped by `ED_curves_transverts_create` and finally used in `ED_transverts_create_from_obedit`.
Pull Request #104967
This reverts commit 19222627c6.
Something went wrong here, seems like this commit merged the main branch
into the release branch, which should never be done.
This reverts commit 68181c2560.
I merged 3.6 into 3.5 by mistake. Basically I had a PR against main,
then changed it in the last minute to be against 3.5 via the
web-interface unaware that I shouldn't do it without updating the
patch.
Original Pull Request: #104889
Note that the node group has its sockets names
translated, while the built-in nodes don't.
So we need to use data_ for the built-in nodes names,
and the sockets of the created node groups.
Pull Request #104889
This implements the delete operator in curves edit mode. The behavior
is similar to the delete operator in the edit mode of legacy curves,
i.e. it's actually dissolving and doesn't split curves. This is also
the behavior that we generally want for the hair use case.
The operator is added to the `Curves` menu and can be accessed via
the keyboard using `X` or `Del`.
Pull Request #104765
Send a notification and tag for an update even if the selection doesn't
exist, which is still necessary for drawing that depends on the
selection domain.
This adds a `select_lasso` and a `select_circle` function for the Curves object. It is used in the `view3d_lasso_select` and `view3d_circle_select` operator.
Co-authored-by: Falk David <falkdavid@gmx.de>
Pull Request #104560
This adds a new `select_linked` function that selects all the points
on a curve if there is at least one point already selected.
This also adds a keymap for the operator.
Co-authored-by: Falk David <falkdavid@gmx.de>
Pull Request #104569
This adds a `select_box` function for the `Curves` object. It is used in the `view3d_box_select` operator.
It also adds the basic selection tools in the toolbar of Edit Mode.
Authored-by: Falk David <falkdavid@gmx.de>
Pull Request #104411
Straightforward port. I took the oportunity to remove some C vector
functions (ex: copy_v2_v2).
This makes some changes to DRWView to accomodate the alignement
requirements of the float4x4 type.
Straightforward port. I took the oportunity to remove some C vector
functions (ex: `copy_v2_v2`).
This makes some changes to DRWView to accomodate the alignement
requirements of the float4x4 type.
This adds the following operators to edit mode:
- `select_all`
- `select_random`
- `select_end`
Differential Revision: https://developer.blender.org/D17047
This adds an `UndoType` for the `Curves` object, for edit mode.
For now, this will only store the `CurvesGeometry` at every step.
Other properties such as the `selection_domain` or the `surface` object
will have to be dealt with in subsequent commits.
Differential Revision: https://developer.blender.org/D16979
Add an RNA API function that gives an array of the normals for every control point.
The normals depend on the `normal_mode` attribute, which can currently be
minumum twist or Z-up, though more options are planned. Normals are currently
evaluated on the evaluated points and then sampled back to the control points.
Because that can be expensive, a normal mode that only does a first evaluation
on control points may be important
The function is intended to be used by Cycles, so it doesn't have to implement
the calculation of normals itself. They can be interpolated between control points
and normalized.
For best performance, the function should only be called once, since it does the
full calculation for every control point every time it is called.
Differential Revision: https://developer.blender.org/D17024
This changes how we access the points that correspond to each curve in a `CurvesGeometry`.
Previously, `CurvesGeometry::points_for_curve(int curve_index) -> IndexRange`
was called for every curve in many loops. Now one has to call
`CurvesGeometry::points_by_curve() -> OffsetIndices` before the
loop and use the returned value inside the loop.
While this is a little bit more verbose in general, it has some benefits:
* Better standardization of how "offset indices" are used. The new data
structure can be used independent of curves.
* Allows for better data oriented design. Generally, we want to retrieve
all the arrays we need for a loop first and then do the processing.
Accessing the old `CurvesGeometry::points_for_curve(...)` did not follow
that design because it hid the underlying offset array.
* Makes it easier to pass the offsets to a function without having to
pass the entire `CurvesGeometry`.
* Can improve performance in theory due to one less memory access
because `this` does not have to be dereferenced every time.
This likely doesn't have a noticable impact in practice.
Differential Revision: https://developer.blender.org/D17025
Currently the `MLoopUV` struct stores UV coordinates and flags related
to editing UV maps in the UV editor. This patch changes the coordinates
to use the generic 2D vector type, and moves the flags into three
separate boolean attributes. This follows the design in T95965, with
the ultimate intention of simplifying code and improving performance.
Importantly, the change allows exporters and renderers to use UVs
"touched" by geometry nodes, which only creates generic attributes.
It also allows geometry nodes to create "proper" UV maps from scratch,
though only with the Store Named Attribute node for now.
The new design considers any 2D vector attribute on the corner domain
to be a UV map. In the future, they might be distinguished from regular
2D vectors with attribute metadata, which may be helpful because they
are often interpolated differently.
Most of the code changes deal with passing around UV BMesh custom data
offsets and tracking the boolean "sublayers". The boolean layers are
use the following prefixes for attribute names: vert selection: `.vs.`,
edge selection: `.es.`, pinning: `.pn.`. Currently these are short to
avoid using up the maximum length of attribute names. To accommodate
for these 4 extra characters, the name length limit is enlarged to 68
bytes, while the maximum user settable name length is still 64 bytes.
Unfortunately Python/RNA API access to the UV flag data becomes slower.
Accessing the boolean layers directly is be better for performance in
general.
Like the other mesh SoA refactors, backward and forward compatibility
aren't affected, and won't be changed until 4.0. We pay for that by
making mesh reading and writing more expensive with conversions.
Resolves T85962
Differential Revision: https://developer.blender.org/D14365
**Changes**
As described in T93602, this patch removes all use of the `MVert`
struct, replacing it with a generic named attribute with the name
`"position"`, consistent with other geometry types.
Variable names have been changed from `verts` to `positions`, to align
with the attribute name and the more generic design (positions are not
vertices, they are just an attribute stored on the point domain).
This change is made possible by previous commits that moved all other
data out of `MVert` to runtime data or other generic attributes. What
remains is mostly a simple type change. Though, the type still shows up
859 times, so the patch is quite large.
One compromise is that now `CD_MASK_BAREMESH` now contains
`CD_PROP_FLOAT3`. With the general move towards generic attributes
over custom data types, we are removing use of these type masks anyway.
**Benefits**
The most obvious benefit is reduced memory usage and the benefits
that brings in memory-bound situations. `float3` is only 3 bytes, in
comparison to `MVert` which was 4. When there are millions of vertices
this starts to matter more.
The other benefits come from using a more generic type. Instead of
writing algorithms specifically for `MVert`, code can just use arrays
of vectors. This will allow eliminating many temporary arrays or
wrappers used to extract positions.
Many possible improvements aren't implemented in this patch, though
I did switch simplify or remove the process of creating temporary
position arrays in a few places.
The design clarity that "positions are just another attribute" brings
allows removing explicit copying of vertices in some procedural
operations-- they are just processed like most other attributes.
**Performance**
This touches so many areas that it's hard to benchmark exhaustively,
but I observed some areas as examples.
* The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster.
* The Spring splash screen went from ~4.3 to ~4.5 fps.
* The subdivision surface modifier/node was slightly faster
RNA access through Python may be slightly slower, since now we need
a name lookup instead of just a custom data type lookup for each index.
**Future Improvements**
* Remove uses of "vert_coords" functions:
* `BKE_mesh_vert_coords_alloc`
* `BKE_mesh_vert_coords_get`
* `BKE_mesh_vert_coords_apply{_with_mat4}`
* Remove more hidden copying of positions
* General simplification now possible in many areas
* Convert more code to C++ to use `float3` instead of `float[3]`
* Currently `reinterpret_cast` is used for those C-API functions
Differential Revision: https://developer.blender.org/D15982
This refactors how devirtualization is done in general and how
multi-functions use it.
* The old `Devirtualizer` class has been removed in favor of a simpler
solution. It is also more general in the sense that it is not coupled
with `IndexMask` and `VArray`. Instead there is a function that has
inputs which control how different types are devirtualized. The
new implementation is currently less general with regard to the number
of parameters it supports. This can be changed in the future, but
does not seem necessary now and would make the code less obvious.
* Devirtualizers for different types are now defined in their respective
headers.
* The multi-function builder works with the `GVArray` stored in `MFParams`
directly now, instead of first converting it to a `VArray<T>`. This reduces
some constant overhead, which makes the multi-function slightly
faster. This is only noticable when very few elements are processed though.
No functional changes or performance regressions are expected.
Use the same `".selection"` attribute for both curve and point domains,
instead of a different name for each. The attribute can now have
either boolean or float type. Some tools create boolean selections.
Other tools create float selections. Some tools "upgrade" the attribute
from boolean to float.
Edit mode tools that create selections from scratch can create boolean
selections, but edit mode should generally be able to handle both
selection types. Sculpt mode should be able to read boolean selections,
but can also and write float values between zero and one.
Theoretically we could just always use floats to store selections,
but the type-agnosticism doesn't cost too much complexity given the
existing APIs for dealing with it, and being able to use booleans is
clearer in edit mode, and may allow future optimizations like more
efficient ways to store boolean attributes.
The attribute API is usually used directly for accessing the selection
attribute. We rely on implicit type conversion and domain interpolation
to simplify the rest of the code.
Differential Revision: https://developer.blender.org/D16057
Remove the redundant option to disable selection in order to simplify
the tools and UI, both conceptually and internally.
It was possible to disable curves selection completely by clicking on
the active selection domain. However, that was redundant compared to
just selecting everything by pressing "A". The remaining potential use
could have been saving a selection for later, but that can be done with
more complete attribute editing tools in the future.
This separates the UV reverse sampling and the barycentric mixing of
the mesh attribute into separate multi-functions. This separates
concerns and allows for future de-duplication of the UV sampling
function if that is implemented as an optimization pass. That would
be helpful since it's the much more expensive operation.
This was simplified by returning the triangle index in the reverse
UV sampler rather than a pointer to the triangle, which required
passing a span of triangles separately in a few places.
Motivation is to disambiguate on the naming level what the matrix
actually means. It is very easy to understand the meaning backwards,
especially since in Python the name goes the opposite way (it is
called `world_matrix` in the Python API).
It is important to disambiguate the naming without making developers
to look into the comment in the header file (which is also not super
clear either). Additionally, more clear naming facilitates the unit
verification (or, in this case, space validation) when reading an
expression.
This patch calls the matrix `object_to_world` which makes it clear
from the local code what is it exactly going on. This is only done
on DNA level, and a lot of local variables still follow the old
naming.
A DNA rename is setup in a way that there is no change on the file
level, so there should be no regressions at all.
The possibility is to add `_matrix` or `_mat` suffix to the name
to make it explicit that it is a matrix. Although, not sure if it
really helps the readability, or is it something redundant.
Differential Revision: https://developer.blender.org/D16328
This is the conventional way of dealing with unused arguments in C++,
since it works on all compilers.
Regex find and replace: `UNUSED\((\w+)\)` -> `/*$1*/`
When e.g. grouping nodes into nodegroups, these would not show up
immediately in the Outliner (Blender File / Data API view).
Now send (unique combination, not used elsewhere) notifiers (and listen
for these in the Outliner).
Differential Revision: https://developer.blender.org/D16093
Related to {D15885} that requires scene parameter
to be added in many places. To speed up the review process
the adding of the scene parameter was added in a separate
patch.
Reviewed By: mont29
Maniphest Tasks: T73411
Differential Revision: https://developer.blender.org/D15930
Replace `mesh_attributes`, `mesh_attributes_for_write` and the point
cloud versions with methods on the `Mesh` and `PointCloud` types.
This makes them friendlier to use and improves readability.
Differential Revision: https://developer.blender.org/D15907
Use `verts` instead of `vertices` and `polys` instead of `polygons`
in the API added in 05952aa94d. This aligns better with
existing naming where the shorter names are much more common.
For copy-on-write, we want to share attribute arrays between meshes
where possible. Mutable pointers like `Mesh.mvert` make that difficult
by making ownership vague. They also make code more complex by adding
redundancy.
The simplest solution is just removing them and retrieving layers from
`CustomData` as needed. Similar changes have already been applied to
curves and point clouds (e9f82d3dc7, 410a6efb74). Removing use of
the pointers generally makes code more obvious and more reusable.
Mesh data is now accessed with a C++ API (`Mesh::edges()` or
`Mesh::edges_for_write()`), and a C API (`BKE_mesh_edges(mesh)`).
The CoW changes this commit makes possible are described in T95845
and T95842, and started in D14139 and D14140. The change also simplifies
the ongoing mesh struct-of-array refactors from T95965.
**RNA/Python Access Performance**
Theoretically, accessing mesh elements with the RNA API may become
slower, since the layer needs to be found on every random access.
However, overhead is already high enough that this doesn't make a
noticible differenc, and performance is actually improved in some
cases. Random access can be up to 10% faster, but other situations
might be a bit slower. Generally using `foreach_get/set` are the best
way to improve performance. See the differential revision for more
discussion about Python performance.
Cycles has been updated to use raw pointers and the internal Blender
mesh types, mostly because there is no sense in having this overhead
when it's already compiled with Blender. In my tests this roughly
halves the Cycles mesh creation time (0.19s to 0.10s for a 1 million
face grid).
Differential Revision: https://developer.blender.org/D15488