Previously, all implicit inputs where stored in a centralized place.
Now the information which nodes have which implicit inputs is
stored in the nodes directly.
In large node setup the threading overhead was sometimes very significant.
That's especially true when most nodes do very little work.
This commit improves the scheduling by not using multi-threading in many
cases unless it's likely that it will be worth it. For more details see the comments
in `BLI_lazy_threading.hh`.
Differential Revision: https://developer.blender.org/D15976
This reduces logging overhead. The performance difference is only
significant when there are many fast nodes. In my test file with many
math nodes, the performance improved from 720ms to 630ms.
The new evaluator crashes for multi-input sockets coming from undefined
nodes. The multi-input socket lazy node tries to retrieve the default
value since the undefined node never created output values. But there
is no default value stored because the socket is linked.
Differential Revision: https://developer.blender.org/D15980
This refactors the geometry nodes evaluation system. No changes for the
user are expected. At a high level the goals are:
* Support using geometry nodes outside of the geometry nodes modifier.
* Support using the evaluator infrastructure for other purposes like field evaluation.
* Support more nodes, especially when many of them are disabled behind switch nodes.
* Support doing preprocessing on node groups.
For more details see T98492.
There are fairly detailed comments in the code, but here is a high level overview
for how it works now:
* There is a new "lazy-function" system. It is similar in spirit to the multi-function
system but with different goals. Instead of optimizing throughput for highly
parallelizable work, this system is designed to compute only the data that is actually
necessary. What data is necessary can be determined dynamically during evaluation.
Many lazy-functions can be composed in a graph to form a new lazy-function, which can
again be used in a graph etc.
* Each geometry node group is converted into a lazy-function graph prior to evaluation.
To evaluate geometry nodes, one then just has to evaluate that graph. Node groups are
no longer inlined into their parents.
Next steps for the evaluation system is to reduce the use of threads in some situations
to avoid overhead. Many small node groups don't benefit from multi-threading at all.
This is much easier to do now because not everything has to be inlined in one huge
node tree anymore.
Differential Revision: https://developer.blender.org/D15914