This adds a new option "Sample All Lights" to the Sampling panel in Cycles (Branched Path). When enabled, Cycles will sample all the lights in the scene for the indirect samples, instead of randomly picking one. This is already happening for direct samples, now you can optionally enable it for indirect.
Example file and renders:
Blend file: http://www.pasteall.org/blend/27411
Random: http://www.pasteall.org/pic/show.php?id=68033
All: http://www.pasteall.org/pic/show.php?id=68034
Sampling all lights is a bit slower, but there is less variance, so it should help in situations with many lights.
Patch by myself with some tweaks by Brecht.
Differential Revision: https://developer.blender.org/D391
All textures are sampled bi-linear currently with the exception of OSL there texture sampling is fixed and set to smart bi-cubic.
This patch adds user control to this setting.
Added:
- bits to DNA / RNA in the form of an enum for supporting multiple interpolations types
- changes to the image texture node drawing code ( add enum)
- to ImageManager (this needs to know to allocate second texture when interpolation type is different)
- to node compiler (pass on interpolation type)
- to device tex_alloc this also needs to get the concept of multiple interpolation types
- implementation for doing non interpolated lookup for cuda and cpu
- implementation where we pass this along to osl ( this makes OSL also do linear untill I add smartcubic to the interface / DNA/ RNA)
Reviewers: brecht, dingto
Reviewed By: brecht
CC: dingto, venomgfx
Differential Revision: https://developer.blender.org/D317
Problem is that the particle systems in the cycles database are not
stored in a well-defined order. This means the particle_id for dupli
objects can not simply be assigned using a global running index during
sync.
Now the particle index is assigned locally for each particle system.
When transferring particle data to the device as a single texture, the
particle indices are offset based on the final order of particle systems
in the database.
Reviewers: brecht
Reviewed By: brecht
CC: Andreas80
Differential Revision: https://developer.blender.org/D352
This adds an option in the Volume Sampling panel, which helps rendering lamps
inside or near volumes with less noise. It can also increase noise though and
needs improvements to support MIS and heterogeneous volumes, but since it's
useful in some cases already (especially world volumes) it's there now.
Based on the code in the old branch by Stuart, with modifications by Thomas
and Brecht.
Differential Revision: https://developer.blender.org/D291
Indirect and Direct samples can now be clamped individually. This way we can clamp the indirect samples (fireflies), while keeping the direct highlights.
Example render: http://www.pasteall.org/pic/show.php?id=66586
WARNING: This breaks backwards compatibility. If you had Clamping enabled in an old file, you must re-enable either Direct/Indirect clamping or both again.
Reviewed by: brecht
Differential Revision: https://developer.blender.org/D303
Z, Index, normal, UV and vector passes are only affected by surfaces with alpha
transparency equal to or higher than this threshold. With value 0.0 the first
surface hit will always write to these passes, regardless of transparency. With
higher values surfaces that are mostly transparent can be skipped until an opaque
surface is encountered.
This should be pretty rare, the shader in question had many parallel node links
because of copying the nodes many times, which is inefficient to run anyway.
This is done by adding a Volume Scatter node. In many cases you will want to
add together a Volume Absorption and Volume Scatter node with the same color
and density to get the expected results.
This should work with branched path tracing, mixing closures, overlapping
volumes, etc. However there's still various optimizations needed for sampling.
The main missing thing from the volume branch is the equiangular sampling for
homogeneous volumes.
The heterogeneous scattering code was arranged such that we can use a single
stratified random number for distance sampling, which gives less noise than
pseudo random numbers for each step. For volumes where the color is textured
there still seems to be something off, needs to be investigated.
This does not support staying fixed while the surface deforms, but for static
meshes it should match up with the surface texture coordinates. Implemented
as a matrix transform from objects space to mesh texture space.
Making this work for deforming surfaces would be quite complicated, you might
need something like harmonic coordinates as used in the mesh deform modifier,
probably will not be possible anytime soon.
Volumes can now have textured colors and density. There is a Volume Sampling
panel in the Render properties with these settings:
* Step size: distance between volume shader samples when rendering the volume.
Lower values give more accurate and detailed results but also increased render
time.
* Max steps: maximum number of steps through the volume before giving up, to
protect from extremely long render times with big objects or small step sizes.
This is much more compute intensive than homogeneous volume, so when you are not
using a texture you should enable the Homogeneous Volume option in the material
or world for faster rendering.
One important missing feature is that Generated texture coordinates are not yet
working in volumes, and they are the default coordinates for nearly all texture
nodes. So until that works you need to plug in object texture coordinates or a
world space position.
This is work by "storm", Stuart Broadfoot, Thomas Dinges and myself.
This is the simplest possible volume rendering case, constant density inside
the volume and no scattering or emission. My plan is to tweak, verify and commit
more volume rendering effects one by one, doing it all at once makes it
difficult to verify correctness and track down bugs.
Documentation is here:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Materials/Volume
Currently this hooks into path tracing in 3 ways, which should get us pretty
far until we add more advanced light sampling. These 3 hooks are repeated in
the path tracing, branched path tracing and transparent shadow code:
* Determine active volume shader at start of the path
* Change active volume shader on transmission through a surface
* Light attenuation over line segments between camera, surfaces and background
This is work by "storm", Stuart Broadfoot, Thomas Dinges and myself.
* Henyey-Greenstein scattering closure implementation.
* Rename transparent to absorption node and isotropic to scatter node.
* Volume density is folded into the closure weights.
* OSL support for volume closures and nodes.
* This commit has no user visible changes, there is no volume render code yet.
This is work by "storm", Stuart Broadfoot, Thomas Dinges and myself.
* UI: Remove deprecated condition (CURVE_RIBBONS) and hide backface property, when it's hardcoded in C (Curve/Line segments && Ribbons).
* Remove "use_tangent_normal" and "CURVE_KN_TANGENTGNORMAL" as its unused (follow up for last commit).
This actually works somewhat now, although viewport rendering is broken and any
kind of network error or connection failure will kill Blender.
* Experimental WITH_CYCLES_NETWORK cmake option
* Networked Device is shown as an option next to CPU and GPU Compute
* Various updates to work with the latest Cycles code
* Locks and thread safety for RPC calls and tiles
* Refactored pointer mapping code
* Fix error in CPU brand string retrieval code
This includes work by Doug Gale, Martijn Berger and Brecht Van Lommel.
Reviewers: brecht
Differential Revision: http://developer.blender.org/D36
This code can't actually be enabled for building and is incomplete, but it's
here because we know we want to support this at some point and there's not much
reason to have it in a separate branch if a simple #ifdef can disable it.
Not the most memory efficient way to store these things but it's simple and
implementing it better requires some work to natively support subd grids as
a primitive in some way.
* Add a "Normal" Input to the Fresnel node.
* Fix for the Fresnel GLSL code (normalize the Incoming vector).
Patch #37384 by Philipp Oeser (lichtwerk) , thanks!
to standard nodes where the Blender socket names can differ from associated Cycles names and may require additional indices to make them unique. Script node sockets are already unique and exact due to
being generated from the script function parameters.
this range due to sampling noise.
Side note: I looked into the mist pass because it was apparently not calculating
mist correctly on characters with transparent hair. Turns out this is just
sampling noise that goes away with more samples.
This noise is because the ray will randomly go to the next transparency layer or
get reflected, the path tracing integrator will not branch the path and only pick
one of the two directions each time.
Branched path tracing however will shade all transparent layers for each AA
sample, which means this source of noise is eliminated.