Volumes can now have textured colors and density. There is a Volume Sampling
panel in the Render properties with these settings:
* Step size: distance between volume shader samples when rendering the volume.
Lower values give more accurate and detailed results but also increased render
time.
* Max steps: maximum number of steps through the volume before giving up, to
protect from extremely long render times with big objects or small step sizes.
This is much more compute intensive than homogeneous volume, so when you are not
using a texture you should enable the Homogeneous Volume option in the material
or world for faster rendering.
One important missing feature is that Generated texture coordinates are not yet
working in volumes, and they are the default coordinates for nearly all texture
nodes. So until that works you need to plug in object texture coordinates or a
world space position.
This is work by "storm", Stuart Broadfoot, Thomas Dinges and myself.
* 32 bit GCC builds now have the SSE BVH optimizations turned off, but still
compile with SSE flags for better performance.
* White color when rendering on Windows seems to have been unrelated to SSE,
rather it was a graphics driver not supporting half float textures, added a
check for that now.
except for curves, that's still missing from the OpenColorIO GLSL shader.
The pixels are stored in a half float texture, converterd from full float with
native GPU instructions and SIMD on the CPU, so it should be pretty quick.
Using a GLSL shader is useful for GPU render because it avoids a copy through
CPU memory.
and "Branched Path Tracing", to try to make it more clear that this is not
related to progressive refinement, non-progressive was always a bad name anyway.
* Add a "Total Samples" info at the bottom of the panel.
This makes understanding the Non-Progressive integrator easier, as it displays how many samples are used for the different ray types.
* Rename Squared Samples to Square samples, to indicate that the action is not already done. The new Total Samples info should make this easier to understand now as well. Also added back for Progressive integrator, for consistency.
Screenshot:
http://www.pasteall.org/pic/show.php?id=57980
* Non-Progressive integrator is now available on the GPU (CUDA, sm_20 and above).
Implementation details:
* kernel_path_trace() has been split up into two functions:
kernel_path_trace_non_progressive() and kernel_path_trace_progressive().
* We compile two CUDA kernel entry functions (in kernel.cu) for the two integrators, they are still inside one .cubin file but due to the kernel separation there should be no performance problem. I tested with the BMW file on my Geforce 540M and the render times were the same for 100 samples (1.57 min in my case).
This is part of my GSoC project, SVN merge of r59032 + manual merge of UI changes for this from my branch.
* After some feedback decided to remove this option from the Progressive integrator, it only makes sense for Non-Progressive where we have different values for the sample types.
* Add a "Squared Samples" option to the UI, to use squared values for ease of use. This can make it easier from an artist point of view, to weak settings.
With this enabled, all Sample values will be squared. So 10 Samples become 100 Samples.
For the Non-Progressive integrator: 4 AA Samples * 5 Diffuse Samples would become 16 AA Samples * 25 Diffuse = 400 in total.
Patch by Matt Heimlich, with some minor edits by myself. Thanks!
* If Preview Samples are set to 0 (unlimited) it now assumes 65536 instead of INT_MAX.
This doesn't affect regular sampling, you can still enter fixed values of 100k or whatever.
instead of sobol. So far one doesn't seem to be consistently better or worse than
the other for the same number of samples but more testing is needed.
The random number generator itself is slower than sobol for most number of samples,
except 16, 64, 256, .. because they can be computed faster. This can probably be
optimized, but we can do that when/if this actually turns out to be useful.
Paper this implementation is based on:
http://graphics.pixar.com/library/MultiJitteredSampling/
Also includes some refactoring of RNG code, fixing a Sobol correlation issue with
the first BSDF and < 16 samples, skipping some unneeded RNG calls and using a
simpler unit square to unit disk function.
panel now has an option to specify how to use them. There's three options:
* Use: render layer samples override scene samples
* Bounded: bound render layer samples by scene samples
* Ignore: ignore render layer sample settings
well as I would like, but it works, just add a subsurface scattering node and
you can use it like any other BSDF.
It is using fully raytraced sampling compatible with progressive rendering
and other more advanced rendering algorithms we might used in the future, and
it uses no extra memory so it's suitable for complex scenes.
Disadvantage is that it can be quite noisy and slow. Two limitations that will
be solved are that it does not work with bump mapping yet, and that the falloff
function used is a simple cubic function, it's not using the real BSSRDF
falloff function yet.
The node has a color input, along with a scattering radius for each RGB color
channel along with an overall scale factor for the radii.
There is also no GPU support yet, will test if I can get that working later.
Node Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#BSSRDF
Implementation notes:
http://wiki.blender.org/index.php/Dev:2.6/Source/Render/Cycles/Subsurface_Scattering
* Added new option to chose the tile order.
In addition to the "Center" method, 4 new methods are available now, like Top -> Bottom and Right -> Left.
Thanks to Sergey for code review and some tweaks!
Patch [#33445] - Experimental Cycles Hair Rendering (CPU only)
This patch allows hair data to be exported to cycles and introduces a new line segment primitive to render with.
The UI appears under the particle tab and there is a new hair info node available.
It is only available under the experimental feature set and for cpu rendering.
was added for cycles.
This fixes the case where the option is disabled. I moved the option now to
Blender itself and made it keep the engine around only when it's enabled. Also
fixes case where there could be issues when switching to another renderer.
This option enables keeping loaded images in the memory in-between
of rendering.
Implemented by keeping render engine alive for until Render structure
is being freed.
Cycles will free all data when render finishes, optionally keeping
image manager untouched. All shaders, meshes, objects will be
re-allocated next time rendering happens.
Cycles cession and scene will be re-created from scratch if render/
scene parameters were changed.
This will also allow to keep compiled OSL shaders in memory without
need to re-compile them again.
P.S. Performance panel could be cleaned up a bit, not so much happy
with it's vertical alignment currently but not sure how to make
it look better.
P.P.S. Currently the only way to free images from the device is to
disable Persistent Images option and start rendering.
Just makes progressive refine :)
This means the whole image would be refined gradually using as much
threads as it's set in performance settings. Having enough tiles is
required to have this option working as it's expected.
Technically it's implemented by repeatedly computing next sample for
all the tiles before switching to next sample.
This works around 7-12% slower than regular tile-based rendering, so
use this option only if you really need it.
This commit also fixes progressive update of image when Save Buffers
option is enabled.
And one more thing this commit fixes is handling display buffer with
Save Buffers option enabled. If this option is enabled image buffer
wouldn't have neither byte nor float buffer until image is fully
rendered which could backfire in missing image while rendering in
cases color management cache became full.
This issue solved by allocating byte buffer for image buffer from
tile update callback.
Patch was reviewed by Brecht. He also made some minor edits to
original version to patch. Thanks, man!
resolutions to render, to a "start resolution" which gives the resolution
to start at.
This avoids unnecessary rendering of small resolutions in small viewports,
and avoids long waiting on big viewports.
Regular rendering now works tiled, and supports save buffers to save memory
during render and cache render results.
Brick texture node by Thomas.
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Textures#Brick_Texture
Image texture Blended Box Mapping.
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Textures#Image_Texturehttp://mango.blender.org/production/blended_box/
Various bug fixes by Sergey and Campbell.
* Fix for reading freed memory in some node setups.
* Fix incorrect memory read when synchronizing mesh motion.
* Fix crash appearing when direct light usage is different on different layers.
* Fix for vector pass gives wrong result in some circumstances.
* Fix for wrong resolution used for rendering Render Layer node.
* Option to cancel rendering when doing initial synchronization.
* No more texture limit when using CPU render.
* Many fixes for new tiled rendering.
The particle data used by the Particle Info node was stored in cycles as a list in each object. This is a problem when the particle emitter mesh is hidden: Objects in cycles are only intended as instances of renderable meshes, so when hiding the emitter mesh the particle data doesn't get stored either. Also the particle data can potentially be copied to multiple instances of the same object, which is a waste of texture space.
The solution in this patch is to make a completely separate list of particle systems in the Cycles scene data. This way the particle data can be generated even when the emitter object itself is not visible.
direct and indirect lighting differently. Rather than picking one light for each
point on the path, it now loops over all lights for direct lighting. For indirect
lighting it still picks a random light each time.
It gives control over the number of AA samples, and the number of Diffuse, Glossy,
Transmission, AO, Mesh Light, Background and Lamp samples for each AA sample.
This helps tuning render performance/noise and tends to give less noise for renders
dominated by direct lighting.
This sampling mode only works on the CPU, and still needs proper tile rendering
to show progress (will follow tommorrow or so), because each AA sample can be quite
slow now and so the delay between each update wil be too long.
other places, was mainly due to instancing not working, but also found
issues in procedural textures.
The problem was with --use_fast_math, this seems to now have way lower
precision for some operations. Disabled this flag and selectively use
fast math functions. Did not find performance regression on GTX 460 after
doing this.