- use 'const float *' and array size in some function declarations.
- replace macros for BLI_math functions INPF, VECCOPY, VECADD etc.
- remove unused VertRen.clip struct member.
- remove static squared_dist() from 2 files, replace with BLI_math function len_squared_v3v3().
- use vertex arrays for drawing clipping background in the 3D viewport.
- use NULL rather then 0 where possible (makes code & function calls more readable IMHO).
- set static variables and functions (exposed some unused vars/funcs).
- use func(void) rather then func() for definitions.
* Particle collision with size was broken since raytrace optimizations by jaguarandi, now the collision code falls back to old slower method when the collision ray has a radius.
* Single goal/avoid object now works for boids.
* Some tiny improvements on collision avoidance for boids.
* Convert all code to use new functions.
* Branch maintainers may want to skip this commit, and run this
conversion script instead, if they use a lot of math functions
in new code:
http://www.pasteall.org/9052/python
Integration is still very rough around the edges and WIP, but it works, and can render smoke (using new Smoke format in Voxel Data texture) --> http://vimeo.com/6030983
More to come, but this makes things much easier to work on for me :)
Not working:
a) rendering (since volumterics branch is not merged yet)
b) moving collision objects of any kind
c) saving of collision objects (because that's what I am working on)
d) pointcache
e) A bunch of other things I already know of
So please do not report any bugs on this one yet :-)
Replaced the previous KD-tree (for caching points) with a
BVH-tree (thanks to Andre 'jaguarandi' Pinto for help here!).
The bvh is quite a bit faster and doesn't suffer some of the
artifacts that were apparent with the kd-tree.
I've also added a choice of falloff types: Standard, Smooth, and
Sharp. Standard gives a harder edge, easier to see individual
particles, and when used with a larger radius, Smooth and Sharp
falloffs make a much cloudier appearance possible. See the image
below (note the settings and render times too)
http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_bvh.jpg
- Particle now use the deflector objects collision modifier data to collide with deflectors and as a result can now use the velocity of the colliding object for more realistic collisions.
- Dynamic rotations are also quite a bit more realistic and are related to the friction setting of the deflector (to get any dynamic rotations there has to be some friction). This is largely due to the separate handling of rolling friction (approximated to be 1% of normal sliding friction).
- Collisions should be a bit faster on complex deflectors due to the tree structure used by the collision modifier.
- Collision should also generally be a bit more accurate.
To be noted: Only the average velocity of individual deflector faces is used, so collisions with rotating or deforming objects can't be handled accurately - this would require much more complex calculations. Subdividing the deflector object surface to smaller faces can help with this as the individual face velocities become more linear.