This implements the node tree update function, which is needed so that the
reroutes get updated to the correct type. It is based on the same code in
the shader and compositor node trees.
Differential Revision: https://developer.blender.org/D10123
This commit adds functions to set and get the object's active
modifier, which is stored as a flag in the ModifierData struct,
similar to constraints. This will be used to set the context in
the node editor. There are no visible changes in this commit.
Similar to how the node editor context works for materials, this commit
makes the node group displayed in the node editor depend on the active
object and its active modifier. To keep the node group from changing,
just pin the node group in the header.
* Shortcuts performed while there is an active modifier will affect
only that modifier (the exception is the A to expand the modifiers).
* Clicking anywhere on the empty space in a modifier's panel will make it active.
These changes require some refactoring of object modifier code. First
is splitting up the modifier property invoke callback, which now needs
to be able to get the active modifier separately from the hovered
modifier for the different operators.
Second is a change to removing modifiers, where there is now a separate
function to remove a modifier from an object's list, in order to handle
changing the active.
Finally, the panel handler needs a small tweak so that this "click in panel"
event can be handled afterwards.
This is the initial merge from the geometry-nodes branch.
Nodes:
* Attribute Math
* Boolean
* Edge Split
* Float Compare
* Object Info
* Point Distribute
* Point Instance
* Random Attribute
* Random Float
* Subdivision Surface
* Transform
* Triangulate
It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier.
Notes on the Generic attribute access API
The API adds an indirection for attribute access. That has the following benefits:
* Most code does not have to care about how an attribute is stored internally.
This is mainly necessary, because we have to deal with "legacy" attributes
such as vertex weights and attributes that are embedded into other structs
such as vertex positions.
* When reading from an attribute, we generally don't care what domain the
attribute is stored on. So we want to abstract away the interpolation that
that adapts attributes from one domain to another domain (this is not
actually implemented yet).
Other possible improvements for later iterations include:
* Actually implement interpolation between domains.
* Don't use inheritance for the different attribute types. A single class for read
access and one for write access might be enough, because we know all the ways
in which attributes are stored internally. We don't want more different internal
structures in the future. On the contrary, ideally we can consolidate the different
storage formats in the future to reduce the need for this indirection.
* Remove the need for heap allocations when creating attribute accessors.
It includes commits from:
* Dalai Felinto
* Hans Goudey
* Jacques Lucke
* Léo Depoix