This commit adds a new model to the Sky Texture node, which is based on a
method by Nishita et al. and works by basically simulating volumetric
scattering in the atmosphere.
By making some approximations (such as only considering single scattering),
we get a fairly simple and fast simulation code that takes into account
Rayleigh and Mie scattering as well as Ozone absorption.
This code is used to precompute a 512x128 texture which is then looked up
during render time, and is fast enough to allow real-time tweaking in the
viewport.
Due to the nature of the simulation, it exposes several parameters that
allow for lots of flexibility in choosing the look and matching real-world
conditions (such as Air/Dust/Ozone density and altitude).
Additionally, the same volumetric approach can be used to compute absorption
of the direct sunlight, so the model also supports adding direct sunlight.
This makes it significantly easier to set up Sun+Sky illumination where
the direction, intensity and color of the sun actually matches the sky.
In order to support properly sampling the direct sun component, the commit
also adds logic for sampling a specific area to the kernel light sampling
code. This is combined with portal and background map sampling using MIS.
This sampling logic works for the common case of having one Sky texture
going into the Background shader, but if a custom input to the Vector
node is used or if there are multiple Sky textures, it falls back to using
only background map sampling (while automatically setting the resolution to
4096x2048 if auto resolution is used).
More infos and preview can be found here:
https://docs.google.com/document/d/1gQta0ygFWXTrl5Pmvl_nZRgUw0mWg0FJeRuNKS36m08/view
Underlying model, implementation and documentation by Marco (@nacioss).
Improvements, cleanup and sun sampling by @lukasstockner.
Differential Revision: https://developer.blender.org/D7896
This patch makes the infamous "Cancel" error in the viewport a thing of the past. Instead it
now shows a more useful error message and streamlines the error handling process in CUDA.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D8008
With this patch Cycles recognizing when a logical OptiX and CUDA device represent the same
physical GPU and attempts to eliminate unnecessary tile copies for viewport rendering if that
is the case for all active devices. In addition, denoising is now no longer performed on the first
available OptiX device only, but instead it will try to match CUDA and OptiX
rendering/denoising devices exactly to maximize utilization.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D7975
This code is currently only used for the Glossy Toon BSDF, but it's a generic
building block that might be used for other things in the future.
To see why the current code does not give a uniform distribution, consider that
it chooses both angles uniformly, but the smaller the angle from the center of
the cone is, the smaller the differential solid angle is (similar to how
sampling disks by choosing radius and phi uniformly does not work).
Differential Revision: https://developer.blender.org/D7948
This change modifies the multi-device implementation to support memory distribution
across devices, to reduce the overall memory footprint of large scenes and allow scenes to
fit entirely into combined GPU memory that previously had to fall back to host memory.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D7426
This reverts commit 33ce0cb5a1.
Fix T77273: crash enabling portal lights. The optimization for background
updates can be added back later for 2.90 and 2.83.1.
A new user parameter can be used to shift the shadow terminator
towards the light source. With it, one can hide some of the
artifacts that appear on coarse meshes with smooth shading.
Note that this technique is not engery conserving.
This is based on the work by the Appleseed renderer team.
Differential Revision: https://developer.blender.org/D7634
The input data to the OptiX denoiser was clamped to 0..10000 as required, but it could easily
exceed that range with a high number of samples (since the data contains the overall sum). To
fix that, divide by the number of samples first and multiply it back in after the denoiser ran.
The problem was that Cycles would store a pointer to an object in
`DEGObjectIterData->templ_dupli_object`. This pointer was then accessed
when the iterator was already freed.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D7797
The previous naming scheme for the "selected to active" baking options
lead to confusion and they were not describing what they actually did.
To remedy this, I've added a new settings that does what the older setting implied it did.
Reviewed By: Brecht, Dalai, Andy Davies
Differential Revision: http://developer.blender.org/D7733
There should be no user visible change from this, except that tile size
now affects performance. The goal here is to simplify bake denoising in
D3099, letting it reuse more denoising tiles and pass code.
A lot of code is now shared with regular rendering, with the two main
differences being that we read some render result passes from the bake API
when starting to render a tile, and call the bake kernel instead of the
path trace kernel.
With this kind of design where Cycles asks for tiles from the bake API,
it should eventually be easier to reduce memory usage, show tiles as
they are baked, or bake multiple passes at once, though there's still
quite some work needed for that.
Reviewers: #cycles
Subscribers: monio, wmatyjewicz, lukasstockner97, michaelknubben
Differential Revision: https://developer.blender.org/D3108
Since the sampling and evaluation functions handle both cases anyways,
there's not really a point for keeping the distinction in the kernel,
so we might as well cut down the number of CLOSURE_BSDF_MICROFACETs a bit.
Differential Revision: https://developer.blender.org/D7736
Remove old code that added extra updates for shaders that have a dependency on
objects. The dependency graph can now tell Cycles when a material is affected by
an object transform.