This moves all multi-function related code in the `functions` module
into a new `multi_function` namespace. This is similar to how there
is a `lazy_function` namespace.
The main benefit of this is that many types names that were prefixed
with `MF` (for "multi function") can be simplified.
There is also a common shorthand for the `multi_function` namespace: `mf`.
This is also similar to lazy-functions where the shortened namespace
is called `lf`.
* New `build_mf` namespace for the multi-function builders.
* The type name of the created multi-functions is now "private",
i.e. the caller has to use `auto`. This has the benefit that the
implementation can change more freely without affecting
the caller.
* `CustomMF` does not use `std::function` internally anymore.
This reduces some overhead during code generation and at
run-time.
* `CustomMF` now supports single-mutable parameters.
Use a shorter/simpler license convention, stops the header taking so
much space.
Follow the SPDX license specification: https://spdx.org/licenses
- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile
While most of the source tree has been included
- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
use different header conventions.
doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.
See P2788 for the script that automated these edits.
Reviewed By: brecht, mont29, sergey
Ref D14069
Previously, the function names were stored in `std::string` and were often
created dynamically (especially when the function just output a constant).
This resulted in a lot of overhead.
Now the function name is just a `const char *` that should be statically
allocated. This is good enough for the majority of cases. If a multi-function
needs a more dynamic name, it can override the `MultiFunction::debug_name`
method.
In my test file with >400,000 simple math nodes, the execution time improves from
3s to 1s.
Goals of this refactor:
* Simplify creating virtual arrays.
* Simplify passing virtual arrays around.
* Simplify converting between typed and generic virtual arrays.
* Reduce memory allocations.
As a quick reminder, a virtual arrays is a data structure that behaves like an
array (i.e. it can be accessed using an index). However, it may not actually
be stored as array internally. The two most important implementations
of virtual arrays are those that correspond to an actual plain array and those
that have the same value for every index. However, many more
implementations exist for various reasons (interfacing with legacy attributes,
unified iterator over all points in multiple splines, ...).
With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and
`GVMutableArray`) can be used like "normal values". They typically live
on the stack. Before, they were usually inside a `std::unique_ptr`. This makes
passing them around much easier. Creation of new virtual arrays is also
much simpler now due to some constructors. Memory allocations are
reduced by making use of small object optimization inside the core types.
Previously, `VArray` was a class with virtual methods that had to be overridden
to change the behavior of a the virtual array. Now,`VArray` has a fixed size
and has no virtual methods. Instead it contains a `VArrayImpl` that is
similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly,
unless a new virtual array implementation is added.
To support the small object optimization for many `VArrayImpl` classes,
a new `blender::Any` type is added. It is similar to `std::any` with two
additional features. It has an adjustable inline buffer size and alignment.
The inline buffer size of `std::any` can't be relied on and is usually too
small for our use case here. Furthermore, `blender::Any` can store
additional user-defined type information without increasing the
stack size.
Differential Revision: https://developer.blender.org/D12986
This implements the initial core framework for fields and anonymous
attributes (also see T91274).
The new functionality is hidden behind the "Geometry Nodes Fields"
feature flag. When enabled in the user preferences, the following
new nodes become available: `Position`, `Index`, `Normal`,
`Set Position` and `Attribute Capture`.
Socket inspection has not been updated to work with fields yet.
Besides these changes at the user level, this patch contains the
ground work for:
* building and evaluating fields at run-time (`FN_fields.hh`) and
* creating and accessing anonymous attributes on geometry
(`BKE_anonymous_attribute.h`).
For evaluating fields we use a new so called multi-function procedure
(`FN_multi_function_procedure.hh`). It allows composing multi-functions
in arbitrary ways and supports efficient evaluation as is required by
fields. See `FN_multi_function_procedure.hh` for more details on how
this evaluation mechanism can be used.
A new `AttributeIDRef` has been added which allows handling named
and anonymous attributes in the same way in many places.
Hans and I worked on this patch together.
Differential Revision: https://developer.blender.org/D12414