Generally we don't want to do per-element operations on these spans because of the overhead of the runtime type system, but these operations on the whole span avoid ugly pointer arithmetic in other areas.
273 lines
6.1 KiB
C++
273 lines
6.1 KiB
C++
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#pragma once
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#include "BLI_cpp_type.hh"
|
|
#include "BLI_span.hh"
|
|
|
|
namespace blender {
|
|
|
|
/**
|
|
* A generic span. It behaves just like a blender::Span<T>, but the type is only known at run-time.
|
|
*/
|
|
class GSpan {
|
|
protected:
|
|
const CPPType *type_ = nullptr;
|
|
const void *data_ = nullptr;
|
|
int64_t size_ = 0;
|
|
|
|
public:
|
|
GSpan() = default;
|
|
|
|
GSpan(const CPPType *type, const void *buffer, int64_t size)
|
|
: type_(type), data_(buffer), size_(size)
|
|
{
|
|
BLI_assert(size >= 0);
|
|
BLI_assert(buffer != nullptr || size == 0);
|
|
BLI_assert(size == 0 || type != nullptr);
|
|
BLI_assert(type == nullptr || type->pointer_has_valid_alignment(buffer));
|
|
}
|
|
|
|
GSpan(const CPPType &type, const void *buffer, int64_t size) : GSpan(&type, buffer, size)
|
|
{
|
|
}
|
|
|
|
GSpan(const CPPType &type) : type_(&type)
|
|
{
|
|
}
|
|
|
|
GSpan(const CPPType *type) : type_(type)
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
GSpan(Span<T> array)
|
|
: GSpan(CPPType::get<T>(), static_cast<const void *>(array.data()), array.size())
|
|
{
|
|
}
|
|
|
|
const CPPType &type() const
|
|
{
|
|
BLI_assert(type_ != nullptr);
|
|
return *type_;
|
|
}
|
|
|
|
const CPPType *type_ptr() const
|
|
{
|
|
return type_;
|
|
}
|
|
|
|
bool is_empty() const
|
|
{
|
|
return size_ == 0;
|
|
}
|
|
|
|
int64_t size() const
|
|
{
|
|
return size_;
|
|
}
|
|
|
|
const void *data() const
|
|
{
|
|
return data_;
|
|
}
|
|
|
|
const void *operator[](int64_t index) const
|
|
{
|
|
BLI_assert(index < size_);
|
|
return POINTER_OFFSET(data_, type_->size() * index);
|
|
}
|
|
|
|
template<typename T> Span<T> typed() const
|
|
{
|
|
BLI_assert(type_->is<T>());
|
|
return Span<T>(static_cast<const T *>(data_), size_);
|
|
}
|
|
|
|
GSpan slice(const int64_t start, int64_t size) const
|
|
{
|
|
BLI_assert(start >= 0);
|
|
BLI_assert(size >= 0);
|
|
const int64_t new_size = std::max<int64_t>(0, std::min(size, size_ - start));
|
|
return GSpan(type_, POINTER_OFFSET(data_, type_->size() * start), new_size);
|
|
}
|
|
|
|
GSpan slice(const IndexRange range) const
|
|
{
|
|
return this->slice(range.start(), range.size());
|
|
}
|
|
|
|
GSpan drop_front(const int64_t n) const
|
|
{
|
|
BLI_assert(n >= 0);
|
|
const int64_t new_size = std::max<int64_t>(0, size_ - n);
|
|
return GSpan(*type_, POINTER_OFFSET(data_, type_->size() * n), new_size);
|
|
}
|
|
|
|
GSpan drop_back(const int64_t n) const
|
|
{
|
|
BLI_assert(n >= 0);
|
|
const int64_t new_size = std::max<int64_t>(0, size_ - n);
|
|
return GSpan(*type_, data_, new_size);
|
|
}
|
|
|
|
GSpan take_front(const int64_t n) const
|
|
{
|
|
BLI_assert(n >= 0);
|
|
const int64_t new_size = std::min<int64_t>(size_, n);
|
|
return GSpan(*type_, data_, new_size);
|
|
}
|
|
|
|
GSpan take_back(const int64_t n) const
|
|
{
|
|
BLI_assert(n >= 0);
|
|
const int64_t new_size = std::min<int64_t>(size_, n);
|
|
return GSpan(*type_, POINTER_OFFSET(data_, type_->size() * (size_ - new_size)), new_size);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* A generic mutable span. It behaves just like a blender::MutableSpan<T>, but the type is only
|
|
* known at run-time.
|
|
*/
|
|
class GMutableSpan {
|
|
protected:
|
|
const CPPType *type_ = nullptr;
|
|
void *data_ = nullptr;
|
|
int64_t size_ = 0;
|
|
|
|
public:
|
|
GMutableSpan() = default;
|
|
|
|
GMutableSpan(const CPPType *type, void *buffer, int64_t size)
|
|
: type_(type), data_(buffer), size_(size)
|
|
{
|
|
BLI_assert(size >= 0);
|
|
BLI_assert(buffer != nullptr || size == 0);
|
|
BLI_assert(size == 0 || type != nullptr);
|
|
BLI_assert(type == nullptr || type->pointer_has_valid_alignment(buffer));
|
|
}
|
|
|
|
GMutableSpan(const CPPType &type, void *buffer, int64_t size) : GMutableSpan(&type, buffer, size)
|
|
{
|
|
}
|
|
|
|
GMutableSpan(const CPPType &type) : type_(&type)
|
|
{
|
|
}
|
|
|
|
GMutableSpan(const CPPType *type) : type_(type)
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
GMutableSpan(MutableSpan<T> array)
|
|
: GMutableSpan(CPPType::get<T>(), static_cast<void *>(array.begin()), array.size())
|
|
{
|
|
}
|
|
|
|
operator GSpan() const
|
|
{
|
|
return GSpan(type_, data_, size_);
|
|
}
|
|
|
|
const CPPType &type() const
|
|
{
|
|
BLI_assert(type_ != nullptr);
|
|
return *type_;
|
|
}
|
|
|
|
const CPPType *type_ptr() const
|
|
{
|
|
return type_;
|
|
}
|
|
|
|
bool is_empty() const
|
|
{
|
|
return size_ == 0;
|
|
}
|
|
|
|
int64_t size() const
|
|
{
|
|
return size_;
|
|
}
|
|
|
|
void *data() const
|
|
{
|
|
return data_;
|
|
}
|
|
|
|
void *operator[](int64_t index) const
|
|
{
|
|
BLI_assert(index >= 0);
|
|
BLI_assert(index < size_);
|
|
return POINTER_OFFSET(data_, type_->size() * index);
|
|
}
|
|
|
|
template<typename T> MutableSpan<T> typed() const
|
|
{
|
|
BLI_assert(type_->is<T>());
|
|
return MutableSpan<T>(static_cast<T *>(data_), size_);
|
|
}
|
|
|
|
GMutableSpan slice(const int64_t start, int64_t size) const
|
|
{
|
|
BLI_assert(start >= 0);
|
|
BLI_assert(size >= 0);
|
|
const int64_t new_size = std::max<int64_t>(0, std::min(size, size_ - start));
|
|
return GMutableSpan(*type_, POINTER_OFFSET(data_, type_->size() * start), new_size);
|
|
}
|
|
|
|
GMutableSpan slice(IndexRange range) const
|
|
{
|
|
return this->slice(range.start(), range.size());
|
|
}
|
|
|
|
GMutableSpan drop_front(const int64_t n) const
|
|
{
|
|
BLI_assert(n >= 0);
|
|
const int64_t new_size = std::max<int64_t>(0, size_ - n);
|
|
return GMutableSpan(*type_, POINTER_OFFSET(data_, type_->size() * n), new_size);
|
|
}
|
|
|
|
GMutableSpan drop_back(const int64_t n) const
|
|
{
|
|
BLI_assert(n >= 0);
|
|
const int64_t new_size = std::max<int64_t>(0, size_ - n);
|
|
return GMutableSpan(*type_, data_, new_size);
|
|
}
|
|
|
|
GMutableSpan take_front(const int64_t n) const
|
|
{
|
|
BLI_assert(n >= 0);
|
|
const int64_t new_size = std::min<int64_t>(size_, n);
|
|
return GMutableSpan(*type_, data_, new_size);
|
|
}
|
|
|
|
GMutableSpan take_back(const int64_t n) const
|
|
{
|
|
BLI_assert(n >= 0);
|
|
const int64_t new_size = std::min<int64_t>(size_, n);
|
|
return GMutableSpan(
|
|
*type_, POINTER_OFFSET(data_, type_->size() * (size_ - new_size)), new_size);
|
|
}
|
|
|
|
/**
|
|
* Copy all values from another span into this span. This invokes undefined behavior when the
|
|
* destination contains uninitialized data and T is not trivially copy constructible.
|
|
* The size of both spans is expected to be the same.
|
|
*/
|
|
void copy_from(GSpan values)
|
|
{
|
|
BLI_assert(type_ == &values.type());
|
|
BLI_assert(size_ == values.size());
|
|
type_->copy_assign_n(values.data(), data_, size_);
|
|
}
|
|
};
|
|
|
|
} // namespace blender
|