This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/BKE_attribute_access.hh
Jacques Lucke 4fe8d0419c Functions: refactor virtual array data structures
When a function is executed for many elements (e.g. per point) it is often the case
that some parameters are different for every element and other parameters are
the same (there are some more less common cases). To simplify writing such
functions one can use a "virtual array". This is a data structure that has a value
for every index, but might not be stored as an actual array internally. Instead, it
might be just a single value or is computed on the fly. There are various tradeoffs
involved when using this data structure which are mentioned in `BLI_virtual_array.hh`.
It is called "virtual", because it uses inheritance and virtual methods.

Furthermore, there is a new virtual vector array data structure, which is an array
of vectors. Both these types have corresponding generic variants, which can be used
when the data type is not known at compile time. This is typically the case when
building a somewhat generic execution system. The function system used these virtual
data structures before, but now they are more versatile.

I've done this refactor in preparation for the attribute processor and other features of
geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used
independent of the function system.

One open question for me is whether all the generic data structures (and `CPPType`)
should be moved to blenlib as well. They are well isolated and don't really contain
any business logic. That can be done later if necessary.
2021-03-21 19:33:13 +01:00

319 lines
8.9 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
#include <mutex>
#include "FN_cpp_type.hh"
#include "FN_generic_span.hh"
#include "BKE_attribute.h"
#include "BLI_color.hh"
#include "BLI_float2.hh"
#include "BLI_float3.hh"
namespace blender::bke {
using fn::CPPType;
const CPPType *custom_data_type_to_cpp_type(const CustomDataType type);
CustomDataType cpp_type_to_custom_data_type(const CPPType &type);
CustomDataType attribute_data_type_highest_complexity(Span<CustomDataType> data_types);
AttributeDomain attribute_domain_highest_priority(Span<AttributeDomain> domains);
/**
* This class offers an indirection for reading an attribute.
* This is useful for the following reasons:
* - Blender does not store all attributes the same way.
* The simplest case are custom data layers with primitive types.
* A bit more complex are mesh attributes like the position of vertices,
* which are embedded into the MVert struct.
* Even more complex to access are vertex weights.
* - Sometimes attributes are stored on one domain, but we want to access
* the attribute on a different domain. Therefore, we have to interpolate
* between the domains.
*/
class ReadAttribute {
protected:
const AttributeDomain domain_;
const CPPType &cpp_type_;
const CustomDataType custom_data_type_;
const int64_t size_;
/* Protects the span below, so that no two threads initialize it at the same time. */
mutable std::mutex span_mutex_;
/* When it is not null, it points to the attribute array or a temporary array that contains all
* the attribute values. */
mutable void *array_buffer_ = nullptr;
/* Is true when the buffer above is owned by the attribute accessor. */
mutable bool array_is_temporary_ = false;
public:
ReadAttribute(AttributeDomain domain, const CPPType &cpp_type, const int64_t size)
: domain_(domain),
cpp_type_(cpp_type),
custom_data_type_(cpp_type_to_custom_data_type(cpp_type)),
size_(size)
{
}
virtual ~ReadAttribute();
AttributeDomain domain() const
{
return domain_;
}
const CPPType &cpp_type() const
{
return cpp_type_;
}
CustomDataType custom_data_type() const
{
return custom_data_type_;
}
int64_t size() const
{
return size_;
}
void get(const int64_t index, void *r_value) const
{
BLI_assert(index < size_);
this->get_internal(index, r_value);
}
/* Get a span that contains all attribute values. */
fn::GSpan get_span() const;
template<typename T> Span<T> get_span() const
{
return this->get_span().typed<T>();
}
protected:
/* r_value is expected to be uninitialized. */
virtual void get_internal(const int64_t index, void *r_value) const = 0;
virtual void initialize_span() const;
};
/**
* This exists for similar reasons as the ReadAttribute class, except that
* it does not deal with interpolation between domains.
*/
class WriteAttribute {
protected:
const AttributeDomain domain_;
const CPPType &cpp_type_;
const CustomDataType custom_data_type_;
const int64_t size_;
/* When not null, this points either to the attribute array or to a temporary array. */
void *array_buffer_ = nullptr;
/* True, when the buffer points to a temporary array. */
bool array_is_temporary_ = false;
/* This helps to protect against forgetting to apply changes done to the array. */
bool array_should_be_applied_ = false;
public:
WriteAttribute(AttributeDomain domain, const CPPType &cpp_type, const int64_t size)
: domain_(domain),
cpp_type_(cpp_type),
custom_data_type_(cpp_type_to_custom_data_type(cpp_type)),
size_(size)
{
}
virtual ~WriteAttribute();
AttributeDomain domain() const
{
return domain_;
}
const CPPType &cpp_type() const
{
return cpp_type_;
}
CustomDataType custom_data_type() const
{
return custom_data_type_;
}
int64_t size() const
{
return size_;
}
void get(const int64_t index, void *r_value) const
{
BLI_assert(index < size_);
this->get_internal(index, r_value);
}
void set(const int64_t index, const void *value)
{
BLI_assert(index < size_);
this->set_internal(index, value);
}
/* Get a span that new attribute values can be written into. When all values have been changed,
* #apply_span has to be called. */
fn::GMutableSpan get_span();
/* The span returned by this method might not contain the current attribute values. */
fn::GMutableSpan get_span_for_write_only();
/* Write the changes to the span into the actual attribute, if they aren't already. */
void apply_span();
template<typename T> MutableSpan<T> get_span()
{
return this->get_span().typed<T>();
}
template<typename T> MutableSpan<T> get_span_for_write_only()
{
return this->get_span_for_write_only().typed<T>();
}
protected:
virtual void get_internal(const int64_t index, void *r_value) const = 0;
virtual void set_internal(const int64_t index, const void *value) = 0;
virtual void initialize_span(const bool write_only);
virtual void apply_span_if_necessary();
};
using ReadAttributePtr = std::unique_ptr<ReadAttribute>;
using WriteAttributePtr = std::unique_ptr<WriteAttribute>;
/* This provides type safe access to an attribute.
* The underlying ReadAttribute is owned optionally. */
template<typename T> class TypedReadAttribute {
private:
std::unique_ptr<const ReadAttribute> owned_attribute_;
const ReadAttribute *attribute_;
public:
TypedReadAttribute(ReadAttributePtr attribute) : TypedReadAttribute(*attribute)
{
owned_attribute_ = std::move(attribute);
BLI_assert(owned_attribute_);
}
TypedReadAttribute(const ReadAttribute &attribute) : attribute_(&attribute)
{
BLI_assert(attribute_->cpp_type().is<T>());
}
int64_t size() const
{
return attribute_->size();
}
T operator[](const int64_t index) const
{
BLI_assert(index < attribute_->size());
T value;
value.~T();
attribute_->get(index, &value);
return value;
}
/* Get a span to that contains all attribute values for faster and more convenient access. */
Span<T> get_span() const
{
return attribute_->get_span().template typed<T>();
}
};
/* This provides type safe access to an attribute.
* The underlying WriteAttribute is owned optionally. */
template<typename T> class TypedWriteAttribute {
private:
std::unique_ptr<WriteAttribute> owned_attribute_;
WriteAttribute *attribute_;
public:
TypedWriteAttribute(WriteAttributePtr attribute) : TypedWriteAttribute(*attribute)
{
owned_attribute_ = std::move(attribute);
BLI_assert(owned_attribute_);
}
TypedWriteAttribute(WriteAttribute &attribute) : attribute_(&attribute)
{
BLI_assert(attribute_->cpp_type().is<T>());
}
int64_t size() const
{
return attribute_->size();
}
T operator[](const int64_t index) const
{
BLI_assert(index < attribute_->size());
T value;
value.~T();
attribute_->get(index, &value);
return value;
}
void set(const int64_t index, const T &value)
{
attribute_->set(index, &value);
}
/* Get a span that new values can be written into. Once all values have been updated #apply_span
* has to be called. */
MutableSpan<T> get_span()
{
return attribute_->get_span().typed<T>();
}
/* The span returned by this method might not contain the current attribute values. */
MutableSpan<T> get_span_for_write_only()
{
return attribute_->get_span_for_write_only().typed<T>();
}
/* Write back all changes to the actual attribute, if necessary. */
void apply_span()
{
attribute_->apply_span();
}
};
using BooleanReadAttribute = TypedReadAttribute<bool>;
using FloatReadAttribute = TypedReadAttribute<float>;
using Float2ReadAttribute = TypedReadAttribute<float2>;
using Float3ReadAttribute = TypedReadAttribute<float3>;
using Int32ReadAttribute = TypedReadAttribute<int>;
using Color4fReadAttribute = TypedReadAttribute<Color4f>;
using BooleanWriteAttribute = TypedWriteAttribute<bool>;
using FloatWriteAttribute = TypedWriteAttribute<float>;
using Float2WriteAttribute = TypedWriteAttribute<float2>;
using Float3WriteAttribute = TypedWriteAttribute<float3>;
using Int32WriteAttribute = TypedWriteAttribute<int>;
using Color4fWriteAttribute = TypedWriteAttribute<Color4f>;
} // namespace blender::bke