This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/device/device_cpu.cpp
Sergey Sharybin 7b356a8565 Cycles: Reduce amount of malloc() calls from the kernel
This commit makes it so malloc() is only happening once per volume and
once per transparent shadow query (per thread), improving scalability of
the code to multiple CPU cores.

Hard to measure this with a low-bottom i7 here currently, but from quick
tests seems volume sampling gave about 3-5% speedup.

The idea is to store allocated memory in kernel globals, which are per
thread on CPU already.

Reviewers: dingto, juicyfruit, lukasstockner97, maiself, brecht

Reviewed By: brecht

Subscribers: Blendify, nutel

Differential Revision: https://developer.blender.org/D1996
2016-05-18 10:14:24 +02:00

546 lines
13 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
/* So ImathMath is included before our kernel_cpu_compat. */
#ifdef WITH_OSL
/* So no context pollution happens from indirectly included windows.h */
# include "util_windows.h"
# include <OSL/oslexec.h>
#endif
#include "device.h"
#include "device_intern.h"
#include "kernel.h"
#include "kernel_compat_cpu.h"
#include "kernel_types.h"
#include "kernel_globals.h"
#include "osl_shader.h"
#include "osl_globals.h"
#include "buffers.h"
#include "util_debug.h"
#include "util_foreach.h"
#include "util_function.h"
#include "util_logging.h"
#include "util_opengl.h"
#include "util_progress.h"
#include "util_system.h"
#include "util_thread.h"
CCL_NAMESPACE_BEGIN
class CPUDevice : public Device
{
public:
TaskPool task_pool;
KernelGlobals kernel_globals;
#ifdef WITH_OSL
OSLGlobals osl_globals;
#endif
CPUDevice(DeviceInfo& info, Stats &stats, bool background)
: Device(info, stats, background)
{
#ifdef WITH_OSL
kernel_globals.osl = &osl_globals;
#endif
/* do now to avoid thread issues */
system_cpu_support_sse2();
system_cpu_support_sse3();
system_cpu_support_sse41();
system_cpu_support_avx();
system_cpu_support_avx2();
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
VLOG(1) << "Will be using AVX2 kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
VLOG(1) << "Will be using AVX kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
VLOG(1) << "Will be using SSE4.1 kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
VLOG(1) << "Will be using SSE3kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
VLOG(1) << "Will be using SSE2 kernels.";
}
else
#endif
{
VLOG(1) << "Will be using regular kernels.";
}
}
~CPUDevice()
{
task_pool.stop();
}
void mem_alloc(device_memory& mem, MemoryType /*type*/)
{
mem.device_pointer = mem.data_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void mem_copy_to(device_memory& /*mem*/)
{
/* no-op */
}
void mem_copy_from(device_memory& /*mem*/,
int /*y*/, int /*w*/, int /*h*/,
int /*elem*/)
{
/* no-op */
}
void mem_zero(device_memory& mem)
{
memset((void*)mem.device_pointer, 0, mem.memory_size());
}
void mem_free(device_memory& mem)
{
if(mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void const_copy_to(const char *name, void *host, size_t size)
{
kernel_const_copy(&kernel_globals, name, host, size);
}
void tex_alloc(const char *name,
device_memory& mem,
InterpolationType interpolation,
ExtensionType extension)
{
VLOG(1) << "Texture allocate: " << name << ", " << mem.memory_size() << " bytes.";
kernel_tex_copy(&kernel_globals,
name,
mem.data_pointer,
mem.data_width,
mem.data_height,
mem.data_depth,
interpolation,
extension);
mem.device_pointer = mem.data_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void tex_free(device_memory& mem)
{
if(mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void *osl_memory()
{
#ifdef WITH_OSL
return &osl_globals;
#else
return NULL;
#endif
}
void thread_run(DeviceTask *task)
{
if(task->type == DeviceTask::PATH_TRACE)
thread_path_trace(*task);
else if(task->type == DeviceTask::FILM_CONVERT)
thread_film_convert(*task);
else if(task->type == DeviceTask::SHADER)
thread_shader(*task);
}
class CPUDeviceTask : public DeviceTask {
public:
CPUDeviceTask(CPUDevice *device, DeviceTask& task)
: DeviceTask(task)
{
run = function_bind(&CPUDevice::thread_run, device, this);
}
};
void thread_path_trace(DeviceTask& task)
{
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
return;
}
KernelGlobals kg = thread_kernel_globals_init();
RenderTile tile;
void(*path_trace_kernel)(KernelGlobals*, float*, unsigned int*, int, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
path_trace_kernel = kernel_cpu_avx2_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
path_trace_kernel = kernel_cpu_avx_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
path_trace_kernel = kernel_cpu_sse41_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
path_trace_kernel = kernel_cpu_sse3_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
path_trace_kernel = kernel_cpu_sse2_path_trace;
}
else
#endif
{
path_trace_kernel = kernel_cpu_path_trace;
}
while(task.acquire_tile(this, tile)) {
float *render_buffer = (float*)tile.buffer;
uint *rng_state = (uint*)tile.rng_state;
int start_sample = tile.start_sample;
int end_sample = tile.start_sample + tile.num_samples;
for(int sample = start_sample; sample < end_sample; sample++) {
if(task.get_cancel() || task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
path_trace_kernel(&kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(&tile);
}
task.release_tile(tile);
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
}
thread_kernel_globals_free(&kg);
}
void thread_film_convert(DeviceTask& task)
{
float sample_scale = 1.0f/(task.sample + 1);
if(task.rgba_half) {
void(*convert_to_half_float_kernel)(KernelGlobals *, uchar4 *, float *, float, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
convert_to_half_float_kernel = kernel_cpu_avx2_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
convert_to_half_float_kernel = kernel_cpu_avx_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
convert_to_half_float_kernel = kernel_cpu_sse41_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
convert_to_half_float_kernel = kernel_cpu_sse3_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
convert_to_half_float_kernel = kernel_cpu_sse2_convert_to_half_float;
}
else
#endif
{
convert_to_half_float_kernel = kernel_cpu_convert_to_half_float;
}
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
convert_to_half_float_kernel(&kernel_globals, (uchar4*)task.rgba_half, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else {
void(*convert_to_byte_kernel)(KernelGlobals *, uchar4 *, float *, float, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
convert_to_byte_kernel = kernel_cpu_avx2_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
convert_to_byte_kernel = kernel_cpu_avx_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
convert_to_byte_kernel = kernel_cpu_sse41_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
convert_to_byte_kernel = kernel_cpu_sse3_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
convert_to_byte_kernel = kernel_cpu_sse2_convert_to_byte;
}
else
#endif
{
convert_to_byte_kernel = kernel_cpu_convert_to_byte;
}
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
convert_to_byte_kernel(&kernel_globals, (uchar4*)task.rgba_byte, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
}
void thread_shader(DeviceTask& task)
{
KernelGlobals kg = kernel_globals;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
void(*shader_kernel)(KernelGlobals*, uint4*, float4*, float*, int, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
shader_kernel = kernel_cpu_avx2_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
shader_kernel = kernel_cpu_avx_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
shader_kernel = kernel_cpu_sse41_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
shader_kernel = kernel_cpu_sse3_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
shader_kernel = kernel_cpu_sse2_shader;
}
else
#endif
{
shader_kernel = kernel_cpu_shader;
}
for(int sample = 0; sample < task.num_samples; sample++) {
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++)
shader_kernel(&kg,
(uint4*)task.shader_input,
(float4*)task.shader_output,
(float*)task.shader_output_luma,
task.shader_eval_type,
task.shader_filter,
x,
task.offset,
sample);
if(task.get_cancel() || task_pool.canceled())
break;
task.update_progress(NULL);
}
#ifdef WITH_OSL
OSLShader::thread_free(&kg);
#endif
}
int get_split_task_count(DeviceTask& task)
{
if(task.type == DeviceTask::SHADER)
return task.get_subtask_count(TaskScheduler::num_threads(), 256);
else
return task.get_subtask_count(TaskScheduler::num_threads());
}
void task_add(DeviceTask& task)
{
/* split task into smaller ones */
list<DeviceTask> tasks;
if(task.type == DeviceTask::SHADER)
task.split(tasks, TaskScheduler::num_threads(), 256);
else
task.split(tasks, TaskScheduler::num_threads());
foreach(DeviceTask& task, tasks)
task_pool.push(new CPUDeviceTask(this, task));
}
void task_wait()
{
task_pool.wait_work();
}
void task_cancel()
{
task_pool.cancel();
}
protected:
inline KernelGlobals thread_kernel_globals_init()
{
KernelGlobals kg = kernel_globals;
kg.transparent_shadow_intersections = NULL;
const int decoupled_count = sizeof(kg.decoupled_volume_steps) /
sizeof(*kg.decoupled_volume_steps);
for(int i = 0; i < decoupled_count; ++i) {
kg.decoupled_volume_steps[i] = NULL;
}
kg.decoupled_volume_steps_index = 0;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
return kg;
}
inline void thread_kernel_globals_free(KernelGlobals *kg)
{
if(kg->transparent_shadow_intersections != NULL) {
free(kg->transparent_shadow_intersections);
}
const int decoupled_count = sizeof(kg->decoupled_volume_steps) /
sizeof(*kg->decoupled_volume_steps);
for(int i = 0; i < decoupled_count; ++i) {
if(kg->decoupled_volume_steps[i] != NULL) {
free(kg->decoupled_volume_steps[i]);
}
}
#ifdef WITH_OSL
OSLShader::thread_free(kg);
#endif
}
};
Device *device_cpu_create(DeviceInfo& info, Stats &stats, bool background)
{
return new CPUDevice(info, stats, background);
}
void device_cpu_info(vector<DeviceInfo>& devices)
{
DeviceInfo info;
info.type = DEVICE_CPU;
info.description = system_cpu_brand_string();
info.id = "CPU";
info.num = 0;
info.advanced_shading = true;
info.pack_images = false;
devices.insert(devices.begin(), info);
}
string device_cpu_capabilities(void)
{
string capabilities = "";
capabilities += system_cpu_support_sse2() ? "SSE2 " : "";
capabilities += system_cpu_support_sse3() ? "SSE3 " : "";
capabilities += system_cpu_support_sse41() ? "SSE41 " : "";
capabilities += system_cpu_support_avx() ? "AVX " : "";
capabilities += system_cpu_support_avx2() ? "AVX2" : "";
if(capabilities[capabilities.size() - 1] == ' ')
capabilities.resize(capabilities.size() - 1);
return capabilities;
}
CCL_NAMESPACE_END