This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/bvhutils.c
Andre Susano Pinto 0c1bfa4a37 Merging Shrinkwrap Constraint!
+bvhtree cache (if the derived model doenst gets destroyed then the same BVHtree can be used)
	this was needed to allow shrinkwrap constraint to be usable.

It has been ready for a long time.. but only got merged now, for 2.49.
2009-04-15 19:33:25 +00:00

688 lines
14 KiB
C

/**
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): André Pinto.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include "BKE_bvhutils.h"
#include "DNA_object_types.h"
#include "DNA_modifier_types.h"
#include "DNA_meshdata_types.h"
#include "BKE_DerivedMesh.h"
#include "BKE_utildefines.h"
#include "BKE_deform.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_displist.h"
#include "BKE_global.h"
#include "BLI_arithb.h"
#include "BLI_linklist.h"
#include "MEM_guardedalloc.h"
/* Math stuff for ray casting on mesh faces and for nearest surface */
static float ray_tri_intersection(const BVHTreeRay *ray, const float m_dist, const float *v0, const float *v1, const float *v2)
{
float dist;
if(RayIntersectsTriangle((float*)ray->origin, (float*)ray->direction, (float*)v0, (float*)v1, (float*)v2, &dist, NULL))
return dist;
return FLT_MAX;
}
static float sphereray_tri_intersection(const BVHTreeRay *ray, float radius, const float m_dist, const float *v0, const float *v1, const float *v2)
{
float idist;
float p1[3];
float plane_normal[3], hit_point[3];
CalcNormFloat((float*)v0, (float*)v1, (float*)v2, plane_normal);
VECADDFAC( p1, ray->origin, ray->direction, m_dist);
if(SweepingSphereIntersectsTriangleUV((float*)ray->origin, p1, radius, (float*)v0, (float*)v1, (float*)v2, &idist, hit_point))
{
return idist * m_dist;
}
return FLT_MAX;
}
/*
* Function adapted from David Eberly's distance tools (LGPL)
* http://www.geometrictools.com/LibFoundation/Distance/Distance.html
*/
static float nearest_point_in_tri_surface(const float *v0,const float *v1,const float *v2,const float *p, int *v, int *e, float *nearest )
{
float diff[3];
float e0[3];
float e1[3];
float A00;
float A01;
float A11;
float B0;
float B1;
float C;
float Det;
float S;
float T;
float sqrDist;
int lv = -1, le = -1;
VECSUB(diff, v0, p);
VECSUB(e0, v1, v0);
VECSUB(e1, v2, v0);
A00 = INPR ( e0, e0 );
A01 = INPR( e0, e1 );
A11 = INPR ( e1, e1 );
B0 = INPR( diff, e0 );
B1 = INPR( diff, e1 );
C = INPR( diff, diff );
Det = fabs( A00 * A11 - A01 * A01 );
S = A01 * B1 - A11 * B0;
T = A01 * B0 - A00 * B1;
if ( S + T <= Det )
{
if ( S < 0.0f )
{
if ( T < 0.0f ) // Region 4
{
if ( B0 < 0.0f )
{
T = 0.0f;
if ( -B0 >= A00 )
{
S = (float)1.0;
sqrDist = A00 + 2.0f * B0 + C;
lv = 1;
}
else
{
if(fabs(A00) > FLT_EPSILON)
S = -B0/A00;
else
S = 0.0f;
sqrDist = B0 * S + C;
le = 0;
}
}
else
{
S = 0.0f;
if ( B1 >= 0.0f )
{
T = 0.0f;
sqrDist = C;
lv = 0;
}
else if ( -B1 >= A11 )
{
T = 1.0f;
sqrDist = A11 + 2.0f * B1 + C;
lv = 2;
}
else
{
if(fabs(A11) > FLT_EPSILON)
T = -B1 / A11;
else
T = 0.0f;
sqrDist = B1 * T + C;
le = 1;
}
}
}
else // Region 3
{
S = 0.0f;
if ( B1 >= 0.0f )
{
T = 0.0f;
sqrDist = C;
lv = 0;
}
else if ( -B1 >= A11 )
{
T = 1.0f;
sqrDist = A11 + 2.0f * B1 + C;
lv = 2;
}
else
{
if(fabs(A11) > FLT_EPSILON)
T = -B1 / A11;
else
T = 0.0;
sqrDist = B1 * T + C;
le = 1;
}
}
}
else if ( T < 0.0f ) // Region 5
{
T = 0.0f;
if ( B0 >= 0.0f )
{
S = 0.0f;
sqrDist = C;
lv = 0;
}
else if ( -B0 >= A00 )
{
S = 1.0f;
sqrDist = A00 + 2.0f * B0 + C;
lv = 1;
}
else
{
if(fabs(A00) > FLT_EPSILON)
S = -B0 / A00;
else
S = 0.0f;
sqrDist = B0 * S + C;
le = 0;
}
}
else // Region 0
{
// Minimum at interior lv
float invDet;
if(fabs(Det) > FLT_EPSILON)
invDet = 1.0f / Det;
else
invDet = 0.0f;
S *= invDet;
T *= invDet;
sqrDist = S * ( A00 * S + A01 * T + 2.0f * B0) +
T * ( A01 * S + A11 * T + 2.0f * B1 ) + C;
}
}
else
{
float tmp0, tmp1, numer, denom;
if ( S < 0.0f ) // Region 2
{
tmp0 = A01 + B0;
tmp1 = A11 + B1;
if ( tmp1 > tmp0 )
{
numer = tmp1 - tmp0;
denom = A00 - 2.0f * A01 + A11;
if ( numer >= denom )
{
S = 1.0f;
T = 0.0f;
sqrDist = A00 + 2.0f * B0 + C;
lv = 1;
}
else
{
if(fabs(denom) > FLT_EPSILON)
S = numer / denom;
else
S = 0.0f;
T = 1.0f - S;
sqrDist = S * ( A00 * S + A01 * T + 2.0f * B0 ) +
T * ( A01 * S + A11 * T + 2.0f * B1 ) + C;
le = 2;
}
}
else
{
S = 0.0f;
if ( tmp1 <= 0.0f )
{
T = 1.0f;
sqrDist = A11 + 2.0f * B1 + C;
lv = 2;
}
else if ( B1 >= 0.0f )
{
T = 0.0f;
sqrDist = C;
lv = 0;
}
else
{
if(fabs(A11) > FLT_EPSILON)
T = -B1 / A11;
else
T = 0.0f;
sqrDist = B1 * T + C;
le = 1;
}
}
}
else if ( T < 0.0f ) // Region 6
{
tmp0 = A01 + B1;
tmp1 = A00 + B0;
if ( tmp1 > tmp0 )
{
numer = tmp1 - tmp0;
denom = A00 - 2.0f * A01 + A11;
if ( numer >= denom )
{
T = 1.0f;
S = 0.0f;
sqrDist = A11 + 2.0f * B1 + C;
lv = 2;
}
else
{
if(fabs(denom) > FLT_EPSILON)
T = numer / denom;
else
T = 0.0f;
S = 1.0f - T;
sqrDist = S * ( A00 * S + A01 * T + 2.0f * B0 ) +
T * ( A01 * S + A11 * T + 2.0f * B1 ) + C;
le = 2;
}
}
else
{
T = 0.0f;
if ( tmp1 <= 0.0f )
{
S = 1.0f;
sqrDist = A00 + 2.0f * B0 + C;
lv = 1;
}
else if ( B0 >= 0.0f )
{
S = 0.0f;
sqrDist = C;
lv = 0;
}
else
{
if(fabs(A00) > FLT_EPSILON)
S = -B0 / A00;
else
S = 0.0f;
sqrDist = B0 * S + C;
le = 0;
}
}
}
else // Region 1
{
numer = A11 + B1 - A01 - B0;
if ( numer <= 0.0f )
{
S = 0.0f;
T = 1.0f;
sqrDist = A11 + 2.0f * B1 + C;
lv = 2;
}
else
{
denom = A00 - 2.0f * A01 + A11;
if ( numer >= denom )
{
S = 1.0f;
T = 0.0f;
sqrDist = A00 + 2.0f * B0 + C;
lv = 1;
}
else
{
if(fabs(denom) > FLT_EPSILON)
S = numer / denom;
else
S = 0.0f;
T = 1.0f - S;
sqrDist = S * ( A00 * S + A01 * T + 2.0f * B0 ) +
T * ( A01 * S + A11 * T + 2.0f * B1 ) + C;
le = 2;
}
}
}
}
// Account for numerical round-off error
if ( sqrDist < FLT_EPSILON )
sqrDist = 0.0f;
{
float w[3], x[3], y[3], z[3];
VECCOPY(w, v0);
VECCOPY(x, e0);
VecMulf(x, S);
VECCOPY(y, e1);
VecMulf(y, T);
VECADD(z, w, x);
VECADD(z, z, y);
//VECSUB(d, p, z);
VECCOPY(nearest, z);
// d = p - ( v0 + S * e0 + T * e1 );
}
*v = lv;
*e = le;
return sqrDist;
}
/*
* BVH from meshs callbacks
*/
// Callback to bvh tree nearest point. The tree must bust have been built using bvhtree_from_mesh_faces.
// userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree.
static void mesh_faces_nearest_point(void *userdata, int index, const float *co, BVHTreeNearest *nearest)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh*) userdata;
MVert *vert = data->vert;
MFace *face = data->face + index;
float *t0, *t1, *t2, *t3;
t0 = vert[ face->v1 ].co;
t1 = vert[ face->v2 ].co;
t2 = vert[ face->v3 ].co;
t3 = face->v4 ? vert[ face->v4].co : NULL;
do
{
float nearest_tmp[3], dist;
int vertex, edge;
dist = nearest_point_in_tri_surface(t0, t1, t2, co, &vertex, &edge, nearest_tmp);
if(dist < nearest->dist)
{
nearest->index = index;
nearest->dist = dist;
VECCOPY(nearest->co, nearest_tmp);
CalcNormFloat(t0, t1, t2, nearest->no);
}
t1 = t2;
t2 = t3;
t3 = NULL;
} while(t2);
}
// Callback to bvh tree raycast. The tree must bust have been built using bvhtree_from_mesh_faces.
// userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree.
static void mesh_faces_spherecast(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh*) userdata;
MVert *vert = data->vert;
MFace *face = data->face + index;
float *t0, *t1, *t2, *t3;
t0 = vert[ face->v1 ].co;
t1 = vert[ face->v2 ].co;
t2 = vert[ face->v3 ].co;
t3 = face->v4 ? vert[ face->v4].co : NULL;
do
{
float dist;
if(data->sphere_radius == 0.0f)
dist = ray_tri_intersection(ray, hit->dist, t0, t1, t2);
else
dist = sphereray_tri_intersection(ray, data->sphere_radius, hit->dist, t0, t1, t2);
if(dist >= 0 && dist < hit->dist)
{
hit->index = index;
hit->dist = dist;
VECADDFAC(hit->co, ray->origin, ray->direction, dist);
CalcNormFloat(t0, t1, t2, hit->no);
}
t1 = t2;
t2 = t3;
t3 = NULL;
} while(t2);
}
/*
* BVH builders
*/
// Builds a bvh tree.. where nodes are the vertexs of the given mesh
BVHTree* bvhtree_from_mesh_verts(BVHTreeFromMesh *data, DerivedMesh *mesh, float epsilon, int tree_type, int axis)
{
BVHTree *tree = bvhcache_find(&mesh->bvhCache, BVHTREE_FROM_VERTICES);
//Not in cache
if(tree == NULL)
{
int i;
int numVerts= mesh->getNumVerts(mesh);
MVert *vert = mesh->getVertDataArray(mesh, CD_MVERT);
if(vert != NULL)
{
tree = BLI_bvhtree_new(numVerts, epsilon, tree_type, axis);
if(tree != NULL)
{
for(i = 0; i < numVerts; i++)
BLI_bvhtree_insert(tree, i, vert[i].co, 1);
BLI_bvhtree_balance(tree);
//Save on cache for later use
// printf("BVHTree built and saved on cache\n");
bvhcache_insert(&mesh->bvhCache, tree, BVHTREE_FROM_VERTICES);
}
}
}
else
{
// printf("BVHTree is already build, using cached tree\n");
}
//Setup BVHTreeFromMesh
memset(data, 0, sizeof(*data));
data->tree = tree;
if(data->tree)
{
data->cached = TRUE;
//a NULL nearest callback works fine
//remeber the min distance to point is the same as the min distance to BV of point
data->nearest_callback = NULL;
data->raycast_callback = NULL;
data->mesh = mesh;
data->vert = mesh->getVertDataArray(mesh, CD_MVERT);
data->face = mesh->getFaceDataArray(mesh, CD_MFACE);
data->sphere_radius = epsilon;
}
return data->tree;
}
// Builds a bvh tree.. where nodes are the faces of the given mesh.
BVHTree* bvhtree_from_mesh_faces(BVHTreeFromMesh *data, DerivedMesh *mesh, float epsilon, int tree_type, int axis)
{
BVHTree *tree = bvhcache_find(&mesh->bvhCache, BVHTREE_FROM_FACES);
//Not in cache
if(tree == NULL)
{
int i;
int numFaces= mesh->getNumFaces(mesh);
MVert *vert = mesh->getVertDataArray(mesh, CD_MVERT);
MFace *face = mesh->getFaceDataArray(mesh, CD_MFACE);
if(vert != NULL && face != NULL)
{
/* Create a bvh-tree of the given target */
tree = BLI_bvhtree_new(numFaces, epsilon, tree_type, axis);
if(tree != NULL)
{
for(i = 0; i < numFaces; i++)
{
float co[4][3];
VECCOPY(co[0], vert[ face[i].v1 ].co);
VECCOPY(co[1], vert[ face[i].v2 ].co);
VECCOPY(co[2], vert[ face[i].v3 ].co);
if(face[i].v4)
VECCOPY(co[3], vert[ face[i].v4 ].co);
BLI_bvhtree_insert(tree, i, co[0], face[i].v4 ? 4 : 3);
}
BLI_bvhtree_balance(tree);
//Save on cache for later use
// printf("BVHTree built and saved on cache\n");
bvhcache_insert(&mesh->bvhCache, tree, BVHTREE_FROM_FACES);
}
}
}
else
{
// printf("BVHTree is already build, using cached tree\n");
}
//Setup BVHTreeFromMesh
memset(data, 0, sizeof(*data));
data->tree = tree;
if(data->tree)
{
data->cached = TRUE;
data->nearest_callback = mesh_faces_nearest_point;
data->raycast_callback = mesh_faces_spherecast;
data->mesh = mesh;
data->vert = mesh->getVertDataArray(mesh, CD_MVERT);
data->face = mesh->getFaceDataArray(mesh, CD_MFACE);
data->sphere_radius = epsilon;
}
return data->tree;
}
// Frees data allocated by a call to bvhtree_from_mesh_*.
void free_bvhtree_from_mesh(struct BVHTreeFromMesh *data)
{
if(data->tree)
{
if(!data->cached)
BLI_bvhtree_free(data->tree);
memset( data, 0, sizeof(data) );
}
}
/* BVHCache */
typedef struct BVHCacheItem
{
int type;
BVHTree *tree;
} BVHCacheItem;
static void bvhcacheitem_set_if_match(void *_cached, void *_search)
{
BVHCacheItem * cached = (BVHCacheItem *)_cached;
BVHCacheItem * search = (BVHCacheItem *)_search;
if(search->type == cached->type)
{
search->tree = cached->tree;
}
}
BVHTree *bvhcache_find(BVHCache *cache, int type)
{
BVHCacheItem item;
item.type = type;
item.tree = NULL;
BLI_linklist_apply(*cache, bvhcacheitem_set_if_match, &item);
return item.tree;
}
void bvhcache_insert(BVHCache *cache, BVHTree *tree, int type)
{
BVHCacheItem *item = NULL;
assert( tree != NULL );
assert( bvhcache_find(cache, type) == NULL );
item = MEM_mallocN(sizeof(BVHCacheItem), "BVHCacheItem");
assert( item != NULL );
item->type = type;
item->tree = tree;
BLI_linklist_prepend( cache, item );
}
void bvhcache_init(BVHCache *cache)
{
*cache = NULL;
}
static void bvhcacheitem_free(void *_item)
{
BVHCacheItem *item = (BVHCacheItem *)_item;
BLI_bvhtree_free(item->tree);
MEM_freeN(item);
}
void bvhcache_free(BVHCache *cache)
{
BLI_linklist_free(*cache, (LinkNodeFreeFP)bvhcacheitem_free);
*cache = NULL;
}