This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/curve.c
Campbell Barton 97af551cb7 [#18439] Controlling the bevel shape for a text object with a curve no longer works.
own fault, broke rev16702.
Curves created by fonts didnt have their radius set. Forgot do do this when making radius calculated with the curve (like tilt)
2009-03-31 06:22:25 +00:00

2637 lines
58 KiB
C

/* curve.c
*
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <math.h> // floor
#include <string.h>
#include <stdlib.h>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "DNA_object_types.h"
#include "DNA_curve_types.h"
#include "DNA_material_types.h"
/* for dereferencing pointers */
#include "DNA_ID.h"
#include "DNA_vfont_types.h"
#include "DNA_key_types.h"
#include "DNA_ipo_types.h"
#include "BKE_global.h"
#include "BKE_main.h"
#include "BKE_utildefines.h" // VECCOPY
#include "BKE_object.h"
#include "BKE_mesh.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_ipo.h"
#include "BKE_anim.h"
#include "BKE_library.h"
#include "BKE_key.h"
/* globals */
extern ListBase editNurb; /* editcurve.c */
/* local */
int cu_isectLL(float *v1, float *v2, float *v3, float *v4,
short cox, short coy,
float *labda, float *mu, float *vec);
void unlink_curve(Curve *cu)
{
int a;
for(a=0; a<cu->totcol; a++) {
if(cu->mat[a]) cu->mat[a]->id.us--;
cu->mat[a]= 0;
}
if(cu->vfont) cu->vfont->id.us--;
cu->vfont= 0;
if(cu->key) cu->key->id.us--;
cu->key= 0;
if(cu->ipo) cu->ipo->id.us--;
cu->ipo= 0;
}
/* niet curve zelf vrijgeven */
void free_curve(Curve *cu)
{
freeNurblist(&cu->nurb);
BLI_freelistN(&cu->bev);
freedisplist(&cu->disp);
unlink_curve(cu);
if(cu->mat) MEM_freeN(cu->mat);
if(cu->str) MEM_freeN(cu->str);
if(cu->strinfo) MEM_freeN(cu->strinfo);
if(cu->bb) MEM_freeN(cu->bb);
if(cu->path) free_path(cu->path);
if(cu->tb) MEM_freeN(cu->tb);
}
Curve *add_curve(char *name, int type)
{
Curve *cu;
cu= alloc_libblock(&G.main->curve, ID_CU, name);
cu->size[0]= cu->size[1]= cu->size[2]= 1.0;
cu->flag= CU_FRONT+CU_BACK;
cu->pathlen= 100;
cu->resolu= cu->resolv= 12;
cu->width= 1.0;
cu->wordspace = 1.0;
cu->spacing= cu->linedist= 1.0;
cu->fsize= 1.0;
cu->ulheight = 0.05;
cu->texflag= CU_AUTOSPACE;
cu->bb= unit_boundbox();
return cu;
}
Curve *copy_curve(Curve *cu)
{
Curve *cun;
int a;
cun= copy_libblock(cu);
cun->nurb.first= cun->nurb.last= 0;
duplicateNurblist( &(cun->nurb), &(cu->nurb));
cun->mat= MEM_dupallocN(cu->mat);
for(a=0; a<cun->totcol; a++) {
id_us_plus((ID *)cun->mat[a]);
}
cun->str= MEM_dupallocN(cu->str);
cun->strinfo= MEM_dupallocN(cu->strinfo);
cun->tb= MEM_dupallocN(cu->tb);
cun->bb= MEM_dupallocN(cu->bb);
cun->key= copy_key(cu->key);
if(cun->key) cun->key->from= (ID *)cun;
cun->disp.first= cun->disp.last= 0;
cun->bev.first= cun->bev.last= 0;
cun->path= 0;
/* single user ipo too */
if(cun->ipo) cun->ipo= copy_ipo(cun->ipo);
id_us_plus((ID *)cun->vfont);
id_us_plus((ID *)cun->vfontb);
id_us_plus((ID *)cun->vfonti);
id_us_plus((ID *)cun->vfontbi);
return cun;
}
void make_local_curve(Curve *cu)
{
Object *ob = 0;
Curve *cun;
int local=0, lib=0;
/* - when there are only lib users: don't do
* - when there are only local users: set flag
* - mixed: do a copy
*/
if(cu->id.lib==0) return;
if(cu->vfont) cu->vfont->id.lib= 0;
if(cu->id.us==1) {
cu->id.lib= 0;
cu->id.flag= LIB_LOCAL;
new_id(0, (ID *)cu, 0);
return;
}
ob= G.main->object.first;
while(ob) {
if(ob->data==cu) {
if(ob->id.lib) lib= 1;
else local= 1;
}
ob= ob->id.next;
}
if(local && lib==0) {
cu->id.lib= 0;
cu->id.flag= LIB_LOCAL;
new_id(0, (ID *)cu, 0);
}
else if(local && lib) {
cun= copy_curve(cu);
cun->id.us= 0;
ob= G.main->object.first;
while(ob) {
if(ob->data==cu) {
if(ob->id.lib==0) {
ob->data= cun;
cun->id.us++;
cu->id.us--;
}
}
ob= ob->id.next;
}
}
}
short curve_type(Curve *cu)
{
Nurb *nu;
if(cu->vfont) {
return OB_FONT;
}
for (nu= cu->nurb.first; nu; nu= nu->next) {
if(nu->pntsv>1) {
return OB_SURF;
}
}
return OB_CURVE;
}
void test_curve_type(Object *ob)
{
ob->type = curve_type(ob->data);
}
void tex_space_curve(Curve *cu)
{
DispList *dl;
BoundBox *bb;
float *fp, min[3], max[3], loc[3], size[3];
int tot, doit= 0;
if(cu->bb==NULL) cu->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
bb= cu->bb;
INIT_MINMAX(min, max);
dl= cu->disp.first;
while(dl) {
if(dl->type==DL_INDEX3 || dl->type==DL_INDEX3) tot= dl->nr;
else tot= dl->nr*dl->parts;
if(tot) doit= 1;
fp= dl->verts;
while(tot--) {
DO_MINMAX(fp, min, max);
fp += 3;
}
dl= dl->next;
}
if(!doit) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
loc[0]= (min[0]+max[0])/2.0f;
loc[1]= (min[1]+max[1])/2.0f;
loc[2]= (min[2]+max[2])/2.0f;
size[0]= (max[0]-min[0])/2.0f;
size[1]= (max[1]-min[1])/2.0f;
size[2]= (max[2]-min[2])/2.0f;
boundbox_set_from_min_max(bb, min, max);
if(cu->texflag & CU_AUTOSPACE) {
VECCOPY(cu->loc, loc);
VECCOPY(cu->size, size);
cu->rot[0]= cu->rot[1]= cu->rot[2]= 0.0;
if(cu->size[0]==0.0) cu->size[0]= 1.0;
else if(cu->size[0]>0.0 && cu->size[0]<0.00001) cu->size[0]= 0.00001;
else if(cu->size[0]<0.0 && cu->size[0]> -0.00001) cu->size[0]= -0.00001;
if(cu->size[1]==0.0) cu->size[1]= 1.0;
else if(cu->size[1]>0.0 && cu->size[1]<0.00001) cu->size[1]= 0.00001;
else if(cu->size[1]<0.0 && cu->size[1]> -0.00001) cu->size[1]= -0.00001;
if(cu->size[2]==0.0) cu->size[2]= 1.0;
else if(cu->size[2]>0.0 && cu->size[2]<0.00001) cu->size[2]= 0.00001;
else if(cu->size[2]<0.0 && cu->size[2]> -0.00001) cu->size[2]= -0.00001;
}
}
int count_curveverts(ListBase *nurb)
{
Nurb *nu;
int tot=0;
nu= nurb->first;
while(nu) {
if(nu->bezt) tot+= 3*nu->pntsu;
else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
nu= nu->next;
}
return tot;
}
int count_curveverts_without_handles(ListBase *nurb)
{
Nurb *nu;
int tot=0;
nu= nurb->first;
while(nu) {
if(nu->bezt) tot+= nu->pntsu;
else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
nu= nu->next;
}
return tot;
}
/* **************** NURBS ROUTINES ******************** */
void freeNurb(Nurb *nu)
{
if(nu==0) return;
if(nu->bezt) MEM_freeN(nu->bezt);
nu->bezt= 0;
if(nu->bp) MEM_freeN(nu->bp);
nu->bp= 0;
if(nu->knotsu) MEM_freeN(nu->knotsu);
nu->knotsu= NULL;
if(nu->knotsv) MEM_freeN(nu->knotsv);
nu->knotsv= NULL;
/* if(nu->trim.first) freeNurblist(&(nu->trim)); */
MEM_freeN(nu);
}
void freeNurblist(ListBase *lb)
{
Nurb *nu, *next;
if(lb==0) return;
nu= lb->first;
while(nu) {
next= nu->next;
freeNurb(nu);
nu= next;
}
lb->first= lb->last= 0;
}
Nurb *duplicateNurb(Nurb *nu)
{
Nurb *newnu;
int len;
newnu= (Nurb*)MEM_mallocN(sizeof(Nurb),"duplicateNurb");
if(newnu==0) return 0;
memcpy(newnu, nu, sizeof(Nurb));
if(nu->bezt) {
newnu->bezt=
(BezTriple*)MEM_mallocN((nu->pntsu)* sizeof(BezTriple),"duplicateNurb2");
memcpy(newnu->bezt, nu->bezt, nu->pntsu*sizeof(BezTriple));
}
else {
len= nu->pntsu*nu->pntsv;
newnu->bp=
(BPoint*)MEM_mallocN((len)* sizeof(BPoint),"duplicateNurb3");
memcpy(newnu->bp, nu->bp, len*sizeof(BPoint));
newnu->knotsu= newnu->knotsv= NULL;
if(nu->knotsu) {
len= KNOTSU(nu);
if(len) {
newnu->knotsu= MEM_mallocN(len*sizeof(float), "duplicateNurb4");
memcpy(newnu->knotsu, nu->knotsu, sizeof(float)*len);
}
}
if(nu->pntsv>1 && nu->knotsv) {
len= KNOTSV(nu);
if(len) {
newnu->knotsv= MEM_mallocN(len*sizeof(float), "duplicateNurb5");
memcpy(newnu->knotsv, nu->knotsv, sizeof(float)*len);
}
}
}
return newnu;
}
void duplicateNurblist(ListBase *lb1, ListBase *lb2)
{
Nurb *nu, *nun;
freeNurblist(lb1);
nu= lb2->first;
while(nu) {
nun= duplicateNurb(nu);
BLI_addtail(lb1, nun);
nu= nu->next;
}
}
void test2DNurb(Nurb *nu)
{
BezTriple *bezt;
BPoint *bp;
int a;
if( nu->type== CU_BEZIER+CU_2D ) {
a= nu->pntsu;
bezt= nu->bezt;
while(a--) {
bezt->vec[0][2]= 0.0;
bezt->vec[1][2]= 0.0;
bezt->vec[2][2]= 0.0;
bezt++;
}
}
else if(nu->type & CU_2D) {
a= nu->pntsu*nu->pntsv;
bp= nu->bp;
while(a--) {
bp->vec[2]= 0.0;
bp++;
}
}
}
void minmaxNurb(Nurb *nu, float *min, float *max)
{
BezTriple *bezt;
BPoint *bp;
int a;
if( (nu->type & 7)==CU_BEZIER ) {
a= nu->pntsu;
bezt= nu->bezt;
while(a--) {
DO_MINMAX(bezt->vec[0], min, max);
DO_MINMAX(bezt->vec[1], min, max);
DO_MINMAX(bezt->vec[2], min, max);
bezt++;
}
}
else {
a= nu->pntsu*nu->pntsv;
bp= nu->bp;
while(a--) {
DO_MINMAX(bp->vec, min, max);
bp++;
}
}
}
/* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */
static void calcknots(float *knots, short aantal, short order, short type)
/* knots: number of pnts NOT corrected for cyclic */
/* type; 0: uniform, 1: endpoints, 2: bezier */
{
float k;
int a, t;
t = aantal+order;
if(type==0) {
for(a=0;a<t;a++) {
knots[a]= (float)a;
}
}
else if(type==1) {
k= 0.0;
for(a=1;a<=t;a++) {
knots[a-1]= k;
if(a>=order && a<=aantal) k+= 1.0;
}
}
else if(type==2) {
/* Warning, the order MUST be 2 or 4, if this is not enforced, the displist will be corrupt */
if(order==4) {
k= 0.34;
for(a=0;a<t;a++) {
knots[a]= (float)floor(k);
k+= (1.0/3.0);
}
}
else if(order==3) {
k= 0.6;
for(a=0;a<t;a++) {
if(a>=order && a<=aantal) k+= (0.5);
knots[a]= (float)floor(k);
}
}
else {
printf("bez nurb curve order is not 3 or 4, should never happen\n");
}
}
}
static void makecyclicknots(float *knots, short pnts, short order)
/* pnts, order: number of pnts NOT corrected for cyclic */
{
int a, b, order2, c;
if(knots==0) return;
order2=order-1;
/* do first long rows (order -1), remove identical knots at endpoints */
if(order>2) {
b= pnts+order2;
for(a=1; a<order2; a++) {
if(knots[b]!= knots[b-a]) break;
}
if(a==order2) knots[pnts+order-2]+= 1.0;
}
b= order;
c=pnts + order + order2;
for(a=pnts+order2; a<c; a++) {
knots[a]= knots[a-1]+ (knots[b]-knots[b-1]);
b--;
}
}
void makeknots(Nurb *nu, short uv)
{
if( (nu->type & 7)==CU_NURBS ) {
if(uv == 1) {
if(nu->knotsu) MEM_freeN(nu->knotsu);
if(check_valid_nurb_u(nu)) {
nu->knotsu= MEM_callocN(4+sizeof(float)*KNOTSU(nu), "makeknots");
if(nu->flagu & CU_CYCLIC) {
calcknots(nu->knotsu, nu->pntsu, nu->orderu, 0); /* cyclic should be uniform */
makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu);
} else {
calcknots(nu->knotsu, nu->pntsu, nu->orderu, nu->flagu>>1);
}
}
else nu->knotsu= NULL;
} else if(uv == 2) {
if(nu->knotsv) MEM_freeN(nu->knotsv);
if(check_valid_nurb_v(nu)) {
nu->knotsv= MEM_callocN(4+sizeof(float)*KNOTSV(nu), "makeknots");
if(nu->flagv & CU_CYCLIC) {
calcknots(nu->knotsv, nu->pntsv, nu->orderv, 0); /* cyclic should be uniform */
makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv);
} else {
calcknots(nu->knotsv, nu->pntsv, nu->orderv, nu->flagv>>1);
}
}
else nu->knotsv= NULL;
}
}
}
static void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end)
{
float d, e;
int i, i1 = 0, i2 = 0 ,j, orderpluspnts, opp2, o2;
orderpluspnts= order+pnts;
opp2 = orderpluspnts-1;
/* this is for float inaccuracy */
if(t < knots[0]) t= knots[0];
else if(t > knots[opp2]) t= knots[opp2];
/* this part is order '1' */
o2 = order + 1;
for(i=0;i<opp2;i++) {
if(knots[i]!=knots[i+1] && t>= knots[i] && t<=knots[i+1]) {
basis[i]= 1.0;
i1= i-o2;
if(i1<0) i1= 0;
i2= i;
i++;
while(i<opp2) {
basis[i]= 0.0;
i++;
}
break;
}
else basis[i]= 0.0;
}
basis[i]= 0.0;
/* this is order 2,3,... */
for(j=2; j<=order; j++) {
if(i2+j>= orderpluspnts) i2= opp2-j;
for(i= i1; i<=i2; i++) {
if(basis[i]!=0.0)
d= ((t-knots[i])*basis[i]) / (knots[i+j-1]-knots[i]);
else
d= 0.0;
if(basis[i+1]!=0.0)
e= ((knots[i+j]-t)*basis[i+1]) / (knots[i+j]-knots[i+1]);
else
e= 0.0;
basis[i]= d+e;
}
}
*start= 1000;
*end= 0;
for(i=i1; i<=i2; i++) {
if(basis[i]>0.0) {
*end= i;
if(*start==1000) *start= i;
}
}
}
void makeNurbfaces(Nurb *nu, float *coord_array, int rowstride)
/* coord_array has to be 3*4*resolu*resolv in size, and zero-ed */
{
BPoint *bp;
float *basisu, *basis, *basisv, *sum, *fp, *in;
float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv;
int i, j, iofs, jofs, cycl, len, resolu, resolv;
int istart, iend, jsta, jen, *jstart, *jend, ratcomp;
int totu = nu->pntsu*nu->resolu, totv = nu->pntsv*nu->resolv;
if(nu->knotsu==NULL || nu->knotsv==NULL) return;
if(nu->orderu>nu->pntsu) return;
if(nu->orderv>nu->pntsv) return;
if(coord_array==NULL) return;
/* allocate and initialize */
len = totu * totv;
if(len==0) return;
sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbfaces1");
len= totu*totv;
if(len==0) {
MEM_freeN(sum);
return;
}
bp= nu->bp;
i= nu->pntsu*nu->pntsv;
ratcomp=0;
while(i--) {
if(bp->vec[3]!=1.0) {
ratcomp= 1;
break;
}
bp++;
}
fp= nu->knotsu;
ustart= fp[nu->orderu-1];
if(nu->flagu & CU_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1];
else uend= fp[nu->pntsu];
ustep= (uend-ustart)/((nu->flagu & CU_CYCLIC) ? totu : totu - 1);
basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbfaces3");
fp= nu->knotsv;
vstart= fp[nu->orderv-1];
if(nu->flagv & CU_CYCLIC) vend= fp[nu->pntsv+nu->orderv-1];
else vend= fp[nu->pntsv];
vstep= (vend-vstart)/((nu->flagv & CU_CYCLIC) ? totv : totv - 1);
len= KNOTSV(nu);
basisv= (float *)MEM_mallocN(sizeof(float)*len*totv, "makeNurbfaces3");
jstart= (int *)MEM_mallocN(sizeof(float)*totv, "makeNurbfaces4");
jend= (int *)MEM_mallocN(sizeof(float)*totv, "makeNurbfaces5");
/* precalculation of basisv and jstart,jend */
if(nu->flagv & CU_CYCLIC) cycl= nu->orderv-1;
else cycl= 0;
v= vstart;
basis= basisv;
resolv= totv;
while(resolv--) {
basisNurb(v, nu->orderv, (short)(nu->pntsv+cycl), nu->knotsv, basis, jstart+resolv, jend+resolv);
basis+= KNOTSV(nu);
v+= vstep;
}
if(nu->flagu & CU_CYCLIC) cycl= nu->orderu-1;
else cycl= 0;
in= coord_array;
u= ustart;
resolu= totu;
while(resolu--) {
basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
basis= basisv;
resolv= totv;
while(resolv--) {
jsta= jstart[resolv];
jen= jend[resolv];
/* calculate sum */
sumdiv= 0.0;
fp= sum;
for(j= jsta; j<=jen; j++) {
if(j>=nu->pntsv) jofs= (j - nu->pntsv);
else jofs= j;
bp= nu->bp+ nu->pntsu*jofs+istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>= nu->pntsu) {
iofs= i- nu->pntsu;
bp= nu->bp+ nu->pntsu*jofs+iofs;
}
else bp++;
if(ratcomp) {
*fp= basisu[i]*basis[j]*bp->vec[3];
sumdiv+= *fp;
}
else *fp= basisu[i]*basis[j];
}
}
if(ratcomp) {
fp= sum;
for(j= jsta; j<=jen; j++) {
for(i= istart; i<=iend; i++, fp++) {
*fp/= sumdiv;
}
}
}
/* one! (1.0) real point now */
fp= sum;
for(j= jsta; j<=jen; j++) {
if(j>=nu->pntsv) jofs= (j - nu->pntsv);
else jofs= j;
bp= nu->bp+ nu->pntsu*jofs+istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>= nu->pntsu) {
iofs= i- nu->pntsu;
bp= nu->bp+ nu->pntsu*jofs+iofs;
}
else bp++;
if(*fp!=0.0) {
in[0]+= (*fp) * bp->vec[0];
in[1]+= (*fp) * bp->vec[1];
in[2]+= (*fp) * bp->vec[2];
}
}
}
in+=3;
basis+= KNOTSV(nu);
}
u+= ustep;
if (rowstride!=0) in = (float*) (((unsigned char*) in) + (rowstride - 3*totv*sizeof(*in)));
}
/* free */
MEM_freeN(sum);
MEM_freeN(basisu);
MEM_freeN(basisv);
MEM_freeN(jstart);
MEM_freeN(jend);
}
void makeNurbcurve(Nurb *nu, float *coord_array, float *tilt_array, float *radius_array, int resolu)
/* coord_array has to be 3*4*pntsu*resolu in size and zero-ed
* tilt_array and radius_array will be written to if valid */
{
BPoint *bp;
float u, ustart, uend, ustep, sumdiv;
float *basisu, *sum, *fp;
float *coord_fp= coord_array, *tilt_fp= tilt_array, *radius_fp= radius_array;
int i, len, istart, iend, cycl;
if(nu->knotsu==NULL) return;
if(nu->orderu>nu->pntsu) return;
if(coord_array==0) return;
/* allocate and initialize */
len= nu->pntsu;
if(len==0) return;
sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1");
resolu= (resolu*SEGMENTSU(nu));
if(resolu==0) {
MEM_freeN(sum);
return;
}
fp= nu->knotsu;
ustart= fp[nu->orderu-1];
if(nu->flagu & CU_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1];
else uend= fp[nu->pntsu];
ustep= (uend-ustart)/(resolu - ((nu->flagu & CU_CYCLIC) ? 0 : 1));
basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbcurve3");
if(nu->flagu & CU_CYCLIC) cycl= nu->orderu-1;
else cycl= 0;
u= ustart;
while(resolu--) {
basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
/* calc sum */
sumdiv= 0.0;
fp= sum;
bp= nu->bp+ istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
else bp++;
*fp= basisu[i]*bp->vec[3];
sumdiv+= *fp;
}
if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) {
/* is normalizing needed? */
fp= sum;
for(i= istart; i<=iend; i++, fp++) {
*fp/= sumdiv;
}
}
/* one! (1.0) real point */
fp= sum;
bp= nu->bp+ istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
else bp++;
if(*fp!=0.0) {
coord_fp[0]+= (*fp) * bp->vec[0];
coord_fp[1]+= (*fp) * bp->vec[1];
coord_fp[2]+= (*fp) * bp->vec[2];
if (tilt_fp)
(*tilt_fp) += (*fp) * bp->alfa;
if (radius_fp)
(*radius_fp) += (*fp) * bp->radius;
}
}
coord_fp+= 3;
if (tilt_fp) tilt_fp++;
if (radius_fp) radius_fp++;
u+= ustep;
}
/* free */
MEM_freeN(sum);
MEM_freeN(basisu);
}
/* forward differencing method for bezier curve */
void forward_diff_bezier(float q0, float q1, float q2, float q3, float *p, int it, int stride)
{
float rt0,rt1,rt2,rt3,f;
int a;
f= (float)it;
rt0= q0;
rt1= 3.0f*(q1-q0)/f;
f*= f;
rt2= 3.0f*(q0-2.0f*q1+q2)/f;
f*= it;
rt3= (q3-q0+3.0f*(q1-q2))/f;
q0= rt0;
q1= rt1+rt2+rt3;
q2= 2*rt2+6*rt3;
q3= 6*rt3;
for(a=0; a<=it; a++) {
*p= q0;
p+= stride;
q0+= q1;
q1+= q2;
q2+= q3;
}
}
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
float *make_orco_surf(Object *ob)
{
Curve *cu= ob->data;
Nurb *nu;
int a, b, tot=0;
int sizeu, sizev;
float *fp, *coord_array;
/* first calculate the size of the datablock */
nu= cu->nurb.first;
while(nu) {
/* as we want to avoid the seam in a cyclic nurbs
texture wrapping, reserve extra orco data space to save these extra needed
vertex based UV coordinates for the meridian vertices.
Vertices on the 0/2pi boundary are not duplicated inside the displist but later in
the renderface/vert construction.
See also convertblender.c: init_render_surf()
*/
sizeu = nu->pntsu*nu->resolu;
sizev = nu->pntsv*nu->resolv;
if (nu->flagu & CU_CYCLIC) sizeu++;
if (nu->flagv & CU_CYCLIC) sizev++;
if(nu->pntsv>1) tot+= sizeu * sizev;
nu= nu->next;
}
/* makeNurbfaces wants zeros */
fp= coord_array= MEM_callocN(3*sizeof(float)*tot, "make_orco");
nu= cu->nurb.first;
while(nu) {
if(nu->pntsv>1) {
sizeu = nu->pntsu*nu->resolu;
sizev = nu->pntsv*nu->resolv;
if (nu->flagu & CU_CYCLIC) sizeu++;
if (nu->flagv & CU_CYCLIC) sizev++;
if(cu->flag & CU_UV_ORCO) {
for(b=0; b< sizeu; b++) {
for(a=0; a< sizev; a++) {
if(sizev <2) fp[0]= 0.0f;
else fp[0]= -1.0f + 2.0f*((float)a)/(sizev - 1);
if(sizeu <2) fp[1]= 0.0f;
else fp[1]= -1.0f + 2.0f*((float)b)/(sizeu - 1);
fp[2]= 0.0;
fp+= 3;
}
}
}
else {
float *_tdata= MEM_callocN((nu->pntsu*nu->resolu) * (nu->pntsv*nu->resolv) *3*sizeof(float), "temp data");
float *tdata= _tdata;
makeNurbfaces(nu, tdata, 0);
for(b=0; b<sizeu; b++) {
int use_b= b;
if (b==sizeu-1 && (nu->flagu & CU_CYCLIC))
use_b= 0;
for(a=0; a<sizev; a++) {
int use_a= a;
if (a==sizev-1 && (nu->flagv & CU_CYCLIC))
use_a= 0;
tdata = _tdata + 3 * (use_b * (nu->pntsv*nu->resolv) + use_a);
fp[0]= (tdata[0]-cu->loc[0])/cu->size[0];
fp[1]= (tdata[1]-cu->loc[1])/cu->size[1];
fp[2]= (tdata[2]-cu->loc[2])/cu->size[2];
fp+= 3;
}
}
MEM_freeN(_tdata);
}
}
nu= nu->next;
}
return coord_array;
}
/* NOTE: This routine is tied to the order of vertex
* built by displist and as passed to the renderer.
*/
float *make_orco_curve(Object *ob)
{
Curve *cu = ob->data;
DispList *dl;
int u, v, numVerts;
float *fp, *coord_array;
int remakeDisp = 0;
if (!(cu->flag&CU_UV_ORCO) && cu->key && cu->key->refkey) {
cp_cu_key(cu, cu->key->refkey, 0, count_curveverts(&cu->nurb));
makeDispListCurveTypes(ob, 1);
remakeDisp = 1;
}
/* Assumes displist has been built */
numVerts = 0;
for (dl=cu->disp.first; dl; dl=dl->next) {
if (dl->type==DL_INDEX3) {
numVerts += dl->nr;
} else if (dl->type==DL_SURF) {
/* convertblender.c uses the Surface code for creating renderfaces when cyclic U only (closed circle beveling) */
if (dl->flag & DL_CYCL_U) {
if (dl->flag & DL_CYCL_V)
numVerts += (dl->parts+1)*(dl->nr+1);
else
numVerts += dl->parts*(dl->nr+1);
}
else
numVerts += dl->parts*dl->nr;
}
}
fp= coord_array= MEM_mallocN(3*sizeof(float)*numVerts, "cu_orco");
for (dl=cu->disp.first; dl; dl=dl->next) {
if (dl->type==DL_INDEX3) {
for (u=0; u<dl->nr; u++, fp+=3) {
if (cu->flag & CU_UV_ORCO) {
fp[0]= 2.0f*u/(dl->nr-1) - 1.0f;
fp[1]= 0.0;
fp[2]= 0.0;
} else {
VECCOPY(fp, &dl->verts[u*3]);
fp[0]= (fp[0]-cu->loc[0])/cu->size[0];
fp[1]= (fp[1]-cu->loc[1])/cu->size[1];
fp[2]= (fp[2]-cu->loc[2])/cu->size[2];
}
}
} else if (dl->type==DL_SURF) {
int sizeu= dl->nr, sizev= dl->parts;
/* exception as handled in convertblender.c too */
if (dl->flag & DL_CYCL_U) {
sizeu++;
if (dl->flag & DL_CYCL_V)
sizev++;
}
for (u=0; u<sizev; u++) {
for (v=0; v<sizeu; v++,fp+=3) {
if (cu->flag & CU_UV_ORCO) {
fp[0]= 2.0f*u/(dl->parts-1) - 1.0f;
fp[1]= 2.0f*v/(dl->nr-1) - 1.0f;
fp[2]= 0.0;
} else {
float *vert;
int realv= v % dl->nr;
int realu= u % dl->parts;
vert= dl->verts + 3*(dl->nr*realu + realv);
VECCOPY(fp, vert);
fp[0]= (fp[0]-cu->loc[0])/cu->size[0];
fp[1]= (fp[1]-cu->loc[1])/cu->size[1];
fp[2]= (fp[2]-cu->loc[2])/cu->size[2];
}
}
}
}
}
if (remakeDisp) {
makeDispListCurveTypes(ob, 0);
}
return coord_array;
}
/* ***************** BEVEL ****************** */
void makebevelcurve(Object *ob, ListBase *disp)
{
DispList *dl, *dlnew;
Curve *bevcu, *cu;
float *fp, facx, facy, angle, dangle;
int nr, a;
cu= ob->data;
disp->first = disp->last = NULL;
/* if a font object is being edited, then do nothing */
if( ob == G.obedit && ob->type == OB_FONT ) return;
if(cu->bevobj && cu->bevobj!=ob) {
if(cu->bevobj->type==OB_CURVE) {
bevcu= cu->bevobj->data;
if(bevcu->ext1==0.0 && bevcu->ext2==0.0) {
facx= cu->bevobj->size[0];
facy= cu->bevobj->size[1];
dl= bevcu->disp.first;
if(dl==0) {
makeDispListCurveTypes(cu->bevobj, 0);
dl= bevcu->disp.first;
}
while(dl) {
if ELEM(dl->type, DL_POLY, DL_SEGM) {
dlnew= MEM_mallocN(sizeof(DispList), "makebevelcurve1");
*dlnew= *dl;
dlnew->verts= MEM_mallocN(3*sizeof(float)*dl->parts*dl->nr, "makebevelcurve1");
memcpy(dlnew->verts, dl->verts, 3*sizeof(float)*dl->parts*dl->nr);
if(dlnew->type==DL_SEGM) dlnew->flag |= (DL_FRONT_CURVE|DL_BACK_CURVE);
BLI_addtail(disp, dlnew);
fp= dlnew->verts;
nr= dlnew->parts*dlnew->nr;
while(nr--) {
fp[2]= fp[1]*facy;
fp[1]= -fp[0]*facx;
fp[0]= 0.0;
fp+= 3;
}
}
dl= dl->next;
}
}
}
}
else if(cu->ext1==0.0 && cu->ext2==0.0) {
;
}
else if(cu->ext2==0.0) {
dl= MEM_callocN(sizeof(DispList), "makebevelcurve2");
dl->verts= MEM_mallocN(2*3*sizeof(float), "makebevelcurve2");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->parts= 1;
dl->flag= DL_FRONT_CURVE|DL_BACK_CURVE;
dl->nr= 2;
fp= dl->verts;
fp[0]= fp[1]= 0.0;
fp[2]= -cu->ext1;
fp[3]= fp[4]= 0.0;
fp[5]= cu->ext1;
}
else if( (cu->flag & (CU_FRONT|CU_BACK))==0 && cu->ext1==0.0f) { // we make a full round bevel in that case
nr= 4+ 2*cu->bevresol;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
BLI_addtail(disp, dl);
dl->type= DL_POLY;
dl->parts= 1;
dl->flag= DL_BACK_CURVE;
dl->nr= nr;
/* a circle */
fp= dl->verts;
dangle= (2.0f*M_PI/(nr));
angle= -(nr-1)*dangle;
for(a=0; a<nr; a++) {
fp[0]= 0.0;
fp[1]= (float)(cos(angle)*(cu->ext2));
fp[2]= (float)(sin(angle)*(cu->ext2)) - cu->ext1;
angle+= dangle;
fp+= 3;
}
}
else {
short dnr;
/* bevel now in three parts, for proper vertex normals */
/* part 1 */
dnr= nr= 2+ cu->bevresol;
if( (cu->flag & (CU_FRONT|CU_BACK))==0)
nr= 3+ 2*cu->bevresol;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->parts= 1;
dl->flag= DL_BACK_CURVE;
dl->nr= nr;
/* half a circle */
fp= dl->verts;
dangle= (0.5*M_PI/(dnr-1));
angle= -(nr-1)*dangle;
for(a=0; a<nr; a++) {
fp[0]= 0.0;
fp[1]= (float)(cos(angle)*(cu->ext2));
fp[2]= (float)(sin(angle)*(cu->ext2)) - cu->ext1;
angle+= dangle;
fp+= 3;
}
/* part 2, sidefaces */
if(cu->ext1!=0.0) {
nr= 2;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p2");
dl->verts= MEM_callocN(nr*3*sizeof(float), "makebevelcurve p2");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->parts= 1;
dl->nr= nr;
fp= dl->verts;
fp[1]= cu->ext2;
fp[2]= -cu->ext1;
fp[4]= cu->ext2;
fp[5]= cu->ext1;
if( (cu->flag & (CU_FRONT|CU_BACK))==0) {
dl= MEM_dupallocN(dl);
dl->verts= MEM_dupallocN(dl->verts);
BLI_addtail(disp, dl);
fp= dl->verts;
fp[1]= -fp[1];
fp[2]= -fp[2];
fp[4]= -fp[4];
fp[5]= -fp[5];
}
}
/* part 3 */
dnr= nr= 2+ cu->bevresol;
if( (cu->flag & (CU_FRONT|CU_BACK))==0)
nr= 3+ 2*cu->bevresol;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p3");
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p3");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->flag= DL_FRONT_CURVE;
dl->parts= 1;
dl->nr= nr;
/* half a circle */
fp= dl->verts;
angle= 0.0;
dangle= (0.5*M_PI/(dnr-1));
for(a=0; a<nr; a++) {
fp[0]= 0.0;
fp[1]= (float)(cos(angle)*(cu->ext2));
fp[2]= (float)(sin(angle)*(cu->ext2)) + cu->ext1;
angle+= dangle;
fp+= 3;
}
}
}
int cu_isectLL(float *v1, float *v2, float *v3, float *v4, short cox, short coy, float *labda, float *mu, float *vec)
{
/* return:
-1: colliniar
0: no intersection of segments
1: exact intersection of segments
2: cross-intersection of segments
*/
float deler;
deler= (v1[cox]-v2[cox])*(v3[coy]-v4[coy])-(v3[cox]-v4[cox])*(v1[coy]-v2[coy]);
if(deler==0.0) return -1;
*labda= (v1[coy]-v3[coy])*(v3[cox]-v4[cox])-(v1[cox]-v3[cox])*(v3[coy]-v4[coy]);
*labda= -(*labda/deler);
deler= v3[coy]-v4[coy];
if(deler==0) {
deler=v3[cox]-v4[cox];
*mu= -(*labda*(v2[cox]-v1[cox])+v1[cox]-v3[cox])/deler;
} else {
*mu= -(*labda*(v2[coy]-v1[coy])+v1[coy]-v3[coy])/deler;
}
vec[cox]= *labda*(v2[cox]-v1[cox])+v1[cox];
vec[coy]= *labda*(v2[coy]-v1[coy])+v1[coy];
if(*labda>=0.0 && *labda<=1.0 && *mu>=0.0 && *mu<=1.0) {
if(*labda==0.0 || *labda==1.0 || *mu==0.0 || *mu==1.0) return 1;
return 2;
}
return 0;
}
static short bevelinside(BevList *bl1,BevList *bl2)
{
/* is bl2 INSIDE bl1 ? with left-right method and "labda's" */
/* returns '1' if correct hole */
BevPoint *bevp, *prevbevp;
float min,max,vec[3],hvec1[3],hvec2[3],lab,mu;
int nr, links=0,rechts=0,mode;
/* take first vertex of possible hole */
bevp= (BevPoint *)(bl2+1);
hvec1[0]= bevp->x;
hvec1[1]= bevp->y;
hvec1[2]= 0.0;
VECCOPY(hvec2,hvec1);
hvec2[0]+=1000;
/* test it with all edges of potential surounding poly */
/* count number of transitions left-right */
bevp= (BevPoint *)(bl1+1);
nr= bl1->nr;
prevbevp= bevp+(nr-1);
while(nr--) {
min= prevbevp->y;
max= bevp->y;
if(max<min) {
min= max;
max= prevbevp->y;
}
if(min!=max) {
if(min<=hvec1[1] && max>=hvec1[1]) {
/* there's a transition, calc intersection point */
mode= cu_isectLL(&(prevbevp->x),&(bevp->x),hvec1,hvec2,0,1,&lab,&mu,vec);
/* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition
only allow for one situation: we choose lab= 1.0
*/
if(mode>=0 && lab!=0.0) {
if(vec[0]<hvec1[0]) links++;
else rechts++;
}
}
}
prevbevp= bevp;
bevp++;
}
if( (links & 1) && (rechts & 1) ) return 1;
return 0;
}
struct bevelsort {
float left;
BevList *bl;
int dir;
};
static int vergxcobev(const void *a1, const void *a2)
{
const struct bevelsort *x1=a1,*x2=a2;
if( x1->left > x2->left ) return 1;
else if( x1->left < x2->left) return -1;
return 0;
}
/* this function cannot be replaced with atan2, but why? */
static void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa)
{
float t01, t02, x3, y3;
t01= (float)sqrt(x1*x1+y1*y1);
t02= (float)sqrt(x2*x2+y2*y2);
if(t01==0.0) t01= 1.0;
if(t02==0.0) t02= 1.0;
x1/=t01;
y1/=t01;
x2/=t02;
y2/=t02;
t02= x1*x2+y1*y2;
if(fabs(t02)>=1.0) t02= .5*M_PI;
else t02= (saacos(t02))/2.0f;
t02= (float)sin(t02);
if(t02==0.0) t02= 1.0;
x3= x1-x2;
y3= y1-y2;
if(x3==0 && y3==0) {
x3= y1;
y3= -x1;
} else {
t01= (float)sqrt(x3*x3+y3*y3);
x3/=t01;
y3/=t01;
}
*sina= -y3/t02;
*cosa= x3/t02;
}
static void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *tilt_array, float *radius_array, int resolu)
{
BezTriple *pprev, *next, *last;
float fac, dfac, t[4];
int a;
last= nu->bezt+(nu->pntsu-1);
/* returns a point */
if(prevbezt==nu->bezt) {
if(nu->flagu & CU_CYCLIC) pprev= last;
else pprev= prevbezt;
}
else pprev= prevbezt-1;
/* next point */
if(bezt==last) {
if(nu->flagu & CU_CYCLIC) next= nu->bezt;
else next= bezt;
}
else next= bezt+1;
fac= 0.0;
dfac= 1.0f/(float)resolu;
for(a=0; a<resolu; a++, fac+= dfac) {
if (tilt_array) {
if (nu->tilt_interp==3) { /* May as well support for tilt also 2.47 ease interp */
tilt_array[a] = prevbezt->alfa + (bezt->alfa - prevbezt->alfa)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
} else {
set_four_ipo(fac, t, nu->tilt_interp);
tilt_array[a]= t[0]*pprev->alfa + t[1]*prevbezt->alfa + t[2]*bezt->alfa + t[3]*next->alfa;
}
}
if (radius_array) {
if (nu->radius_interp==3) {
/* Support 2.47 ease interp
* Note! - this only takes the 2 points into account,
* giving much more localized results to changes in radius, sometimes you want that */
radius_array[a] = prevbezt->radius + (bezt->radius - prevbezt->radius)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
} else {
/* reuse interpolation from tilt if we can */
if (tilt_array==NULL || nu->tilt_interp != nu->radius_interp) {
set_four_ipo(fac, t, nu->radius_interp);
}
radius_array[a]= t[0]*pprev->radius + t[1]*prevbezt->radius + t[2]*bezt->radius + t[3]*next->radius;
}
}
}
}
void makeBevelList(Object *ob)
{
/*
- convert all curves to polys, with indication of resol and flags for double-vertices
- possibly; do a smart vertice removal (in case Nurb)
- separate in individual blicks with BoundBox
- AutoHole detection
*/
Curve *cu;
Nurb *nu;
BezTriple *bezt, *prevbezt;
BPoint *bp;
BevList *bl, *blnew, *blnext;
BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0;
float min, inp, x1, x2, y1, y2, vec[3];
float *coord_array, *tilt_array=NULL, *radius_array=NULL, *coord_fp, *tilt_fp=NULL, *radius_fp=NULL;
float *v1, *v2;
struct bevelsort *sortdata, *sd, *sd1;
int a, b, nr, poly, resolu, len=0;
int do_tilt, do_radius;
/* this function needs an object, because of tflag and upflag */
cu= ob->data;
/* do we need to calculate the radius for each point? */
/* do_radius = (cu->bevobj || cu->taperobj || (cu->flag & CU_FRONT) || (cu->flag & CU_BACK)) ? 0 : 1; */
/* STEP 1: MAKE POLYS */
BLI_freelistN(&(cu->bev));
if(ob==G.obedit && ob->type!=OB_FONT) nu= editNurb.first;
else nu= cu->nurb.first;
while(nu) {
/* check if we will calculate tilt data */
do_tilt = CU_DO_TILT(cu, nu);
do_radius = CU_DO_RADIUS(cu, nu); /* normal display uses the radius, better just to calculate them */
/* check we are a single point? also check we are not a surface and that the orderu is sane,
* enforced in the UI but can go wrong possibly */
if(!check_valid_nurb_u(nu)) {
bl= MEM_callocN(sizeof(BevList)+1*sizeof(BevPoint), "makeBevelList1");
BLI_addtail(&(cu->bev), bl);
bl->nr= 0;
} else {
if(G.rendering && cu->resolu_ren!=0)
resolu= cu->resolu_ren;
else
resolu= nu->resolu;
if((nu->type & 7)==CU_POLY) {
len= nu->pntsu;
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList2");
BLI_addtail(&(cu->bev), bl);
if(nu->flagu & CU_CYCLIC) bl->poly= 0;
else bl->poly= -1;
bl->nr= len;
bl->flag= 0;
bevp= (BevPoint *)(bl+1);
bp= nu->bp;
while(len--) {
bevp->x= bp->vec[0];
bevp->y= bp->vec[1];
bevp->z= bp->vec[2];
bevp->alfa= bp->alfa;
bevp->radius= bp->radius;
bevp->f1= SELECT;
bevp++;
bp++;
}
}
else if((nu->type & 7)==CU_BEZIER) {
len= resolu*(nu->pntsu+ (nu->flagu & CU_CYCLIC) -1)+1; /* in case last point is not cyclic */
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelBPoints");
BLI_addtail(&(cu->bev), bl);
if(nu->flagu & CU_CYCLIC) bl->poly= 0;
else bl->poly= -1;
bevp= (BevPoint *)(bl+1);
a= nu->pntsu-1;
bezt= nu->bezt;
if(nu->flagu & CU_CYCLIC) {
a++;
prevbezt= nu->bezt+(nu->pntsu-1);
}
else {
prevbezt= bezt;
bezt++;
}
coord_array= coord_fp= MEM_mallocN(3*sizeof(float)*(resolu+1), "makeBevelCoords");
if(do_tilt)
tilt_array= tilt_fp= MEM_callocN(sizeof(float)*(resolu+1), "makeBevelTilt");
if (do_radius)
radius_array= radius_fp= MEM_callocN(sizeof(float)*(resolu+1), "nakeBevelRadius");
while(a--) {
if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) {
bevp->x= prevbezt->vec[1][0];
bevp->y= prevbezt->vec[1][1];
bevp->z= prevbezt->vec[1][2];
bevp->alfa= prevbezt->alfa;
bevp->radius= prevbezt->radius;
bevp->f1= SELECT;
bevp->f2= 0;
bevp++;
bl->nr++;
bl->flag= 1;
}
else {
v1= prevbezt->vec[1];
v2= bezt->vec[0];
/* always do all three, to prevent data hanging around */
forward_diff_bezier(v1[0], v1[3], v2[0], v2[3], coord_array, resolu, 3);
forward_diff_bezier(v1[1], v1[4], v2[1], v2[4], coord_array+1, resolu, 3);
forward_diff_bezier(v1[2], v1[5], v2[2], v2[5], coord_array+2, resolu, 3);
if (do_tilt || do_radius)
alfa_bezpart(prevbezt, bezt, nu, tilt_array, radius_array, resolu);
/* indicate with handlecodes double points */
if(prevbezt->h1==prevbezt->h2) {
if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= SELECT;
}
else {
if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= SELECT;
else if(prevbezt->h2==0 || prevbezt->h2==HD_VECT) bevp->f1= SELECT;
}
nr= resolu;
coord_fp = coord_array;
tilt_fp = tilt_array;
radius_fp = radius_array;
while(nr--) {
bevp->x= coord_fp[0];
bevp->y= coord_fp[1];
bevp->z= coord_fp[2];
coord_fp+=3;
if (do_tilt) {
bevp->alfa= *tilt_fp;
tilt_fp++;
}
if (do_radius) {
bevp->radius= *radius_fp;
radius_fp++;
}
bevp++;
}
bl->nr+= resolu;
}
prevbezt= bezt;
bezt++;
}
MEM_freeN(coord_array);
if (do_tilt) MEM_freeN(tilt_array);
if (do_radius) MEM_freeN(radius_array);
coord_array = tilt_array = radius_array = NULL;
if((nu->flagu & CU_CYCLIC)==0) { /* not cyclic: endpoint */
bevp->x= prevbezt->vec[1][0];
bevp->y= prevbezt->vec[1][1];
bevp->z= prevbezt->vec[1][2];
bevp->alfa= prevbezt->alfa;
bevp->radius= prevbezt->radius;
bl->nr++;
}
}
else if((nu->type & 7)==CU_NURBS) {
if(nu->pntsv==1) {
len= (resolu*SEGMENTSU(nu));
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList3");
BLI_addtail(&(cu->bev), bl);
bl->nr= len;
bl->flag= 0;
if(nu->flagu & CU_CYCLIC) bl->poly= 0;
else bl->poly= -1;
bevp= (BevPoint *)(bl+1);
coord_array= coord_fp= MEM_callocN(3*sizeof(float)*len, "makeBevelCoords"); /* has to be zero-ed */
if(do_tilt)
tilt_array= tilt_fp= MEM_callocN(sizeof(float)*len, "makeBevelTilt");
if (do_radius)
radius_array= radius_fp= MEM_callocN(sizeof(float)*len, "nakeBevelRadius");
makeNurbcurve(nu, coord_array, tilt_array, radius_array, resolu);
while(len--) {
bevp->x= coord_fp[0];
bevp->y= coord_fp[1];
bevp->z= coord_fp[2];
coord_fp+=3;
if (do_tilt) {
bevp->alfa= *tilt_fp;
tilt_fp++;
}
if (do_radius) {
bevp->radius= *radius_fp;
radius_fp++;
}
bevp->f1= bevp->f2= 0;
bevp++;
}
MEM_freeN(coord_array);
if (do_tilt) MEM_freeN(tilt_array);
if (do_radius) MEM_freeN(radius_array);
coord_array = tilt_array = radius_array = NULL;
}
}
}
nu= nu->next;
}
/* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */
bl= cu->bev.first;
while(bl) {
if (bl->nr) { /* null bevel items come from single points */
nr= bl->nr;
bevp1= (BevPoint *)(bl+1);
bevp0= bevp1+(nr-1);
nr--;
while(nr--) {
if( fabs(bevp0->x-bevp1->x)<0.00001 ) {
if( fabs(bevp0->y-bevp1->y)<0.00001 ) {
if( fabs(bevp0->z-bevp1->z)<0.00001 ) {
bevp0->f2= SELECT;
bl->flag++;
}
}
}
bevp0= bevp1;
bevp1++;
}
}
bl= bl->next;
}
bl= cu->bev.first;
while(bl) {
blnext= bl->next;
if(bl->nr && bl->flag) {
nr= bl->nr- bl->flag+1; /* +1 because vectorbezier sets flag too */
blnew= MEM_mallocN(sizeof(BevList)+nr*sizeof(BevPoint), "makeBevelList4");
memcpy(blnew, bl, sizeof(BevList));
blnew->nr= 0;
BLI_remlink(&(cu->bev), bl);
BLI_insertlinkbefore(&(cu->bev),blnext,blnew); /* to make sure bevlijst is tuned with nurblist */
bevp0= (BevPoint *)(bl+1);
bevp1= (BevPoint *)(blnew+1);
nr= bl->nr;
while(nr--) {
if(bevp0->f2==0) {
memcpy(bevp1, bevp0, sizeof(BevPoint));
bevp1++;
blnew->nr++;
}
bevp0++;
}
MEM_freeN(bl);
blnew->flag= 0;
}
bl= blnext;
}
/* STEP 3: COUNT POLYS TELLEN AND AUTOHOLE */
bl= cu->bev.first;
poly= 0;
while(bl) {
if(bl->nr && bl->poly>=0) {
poly++;
bl->poly= poly;
bl->gat= 0; /* 'gat' is dutch for hole */
}
bl= bl->next;
}
/* find extreme left points, also test (turning) direction */
if(poly>0) {
sd= sortdata= MEM_mallocN(sizeof(struct bevelsort)*poly, "makeBevelList5");
bl= cu->bev.first;
while(bl) {
if(bl->poly>0) {
min= 300000.0;
bevp= (BevPoint *)(bl+1);
nr= bl->nr;
while(nr--) {
if(min>bevp->x) {
min= bevp->x;
bevp1= bevp;
}
bevp++;
}
sd->bl= bl;
sd->left= min;
bevp= (BevPoint *)(bl+1);
if(bevp1== bevp) bevp0= bevp+ (bl->nr-1);
else bevp0= bevp1-1;
bevp= bevp+ (bl->nr-1);
if(bevp1== bevp) bevp2= (BevPoint *)(bl+1);
else bevp2= bevp1+1;
inp= (bevp1->x- bevp0->x)*(bevp0->y- bevp2->y)
+(bevp0->y- bevp1->y)*(bevp0->x- bevp2->x);
if(inp>0.0) sd->dir= 1;
else sd->dir= 0;
sd++;
}
bl= bl->next;
}
qsort(sortdata,poly,sizeof(struct bevelsort), vergxcobev);
sd= sortdata+1;
for(a=1; a<poly; a++, sd++) {
bl= sd->bl; /* is bl a hole? */
sd1= sortdata+ (a-1);
for(b=a-1; b>=0; b--, sd1--) { /* all polys to the left */
if(bevelinside(sd1->bl, bl)) {
bl->gat= 1- sd1->bl->gat;
break;
}
}
}
/* turning direction */
if((cu->flag & CU_3D)==0) {
sd= sortdata;
for(a=0; a<poly; a++, sd++) {
if(sd->bl->gat==sd->dir) {
bl= sd->bl;
bevp1= (BevPoint *)(bl+1);
bevp2= bevp1+ (bl->nr-1);
nr= bl->nr/2;
while(nr--) {
SWAP(BevPoint, *bevp1, *bevp2);
bevp1++;
bevp2--;
}
}
}
}
MEM_freeN(sortdata);
}
/* STEP 4: COSINES */
bl= cu->bev.first;
while(bl) {
if(bl->nr==2) { /* 2 pnt, treat separate */
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+1;
x1= bevp1->x- bevp2->x;
y1= bevp1->y- bevp2->y;
calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa));
bevp2->sina= bevp1->sina;
bevp2->cosa= bevp1->cosa;
if(cu->flag & CU_3D) { /* 3D */
float quat[4], q[4];
vec[0]= bevp1->x - bevp2->x;
vec[1]= bevp1->y - bevp2->y;
vec[2]= bevp1->z - bevp2->z;
vectoquat(vec, 5, 1, quat);
Normalize(vec);
q[0]= (float)cos(0.5*bevp1->alfa);
x1= (float)sin(0.5*bevp1->alfa);
q[1]= x1*vec[0];
q[2]= x1*vec[1];
q[3]= x1*vec[2];
QuatMul(quat, q, quat);
QuatToMat3(quat, bevp1->mat);
Mat3CpyMat3(bevp2->mat, bevp1->mat);
}
}
else if(bl->nr>2) {
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
if(cu->flag & CU_3D) { /* 3D */
float quat[4], q[4];
vec[0]= bevp2->x - bevp0->x;
vec[1]= bevp2->y - bevp0->y;
vec[2]= bevp2->z - bevp0->z;
Normalize(vec);
vectoquat(vec, 5, 1, quat);
q[0]= (float)cos(0.5*bevp1->alfa);
x1= (float)sin(0.5*bevp1->alfa);
q[1]= x1*vec[0];
q[2]= x1*vec[1];
q[3]= x1*vec[2];
QuatMul(quat, q, quat);
QuatToMat3(quat, bevp1->mat);
}
x1= bevp1->x- bevp0->x;
x2= bevp1->x- bevp2->x;
y1= bevp1->y- bevp0->y;
y2= bevp1->y- bevp2->y;
calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
/* correct non-cyclic cases */
if(bl->poly== -1) {
if(bl->nr>2) {
bevp= (BevPoint *)(bl+1);
bevp1= bevp+1;
bevp->sina= bevp1->sina;
bevp->cosa= bevp1->cosa;
Mat3CpyMat3(bevp->mat, bevp1->mat);
bevp= (BevPoint *)(bl+1);
bevp+= (bl->nr-1);
bevp1= bevp-1;
bevp->sina= bevp1->sina;
bevp->cosa= bevp1->cosa;
Mat3CpyMat3(bevp->mat, bevp1->mat);
}
}
}
bl= bl->next;
}
}
/* ****************** HANDLES ************** */
/*
* handlecodes:
* 1: nothing, 1:auto, 2:vector, 3:aligned
*/
/* mode: is not zero when IpoCurve, is 2 when forced horizontal for autohandles */
void calchandleNurb(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode)
{
float *p1,*p2,*p3, pt[3];
float dx1,dy1,dz1,dx,dy,dz,vx,vy,vz,len,len1,len2;
if(bezt->h1==0 && bezt->h2==0) return;
p2= bezt->vec[1];
if(prev==0) {
p3= next->vec[1];
pt[0]= 2*p2[0]- p3[0];
pt[1]= 2*p2[1]- p3[1];
pt[2]= 2*p2[2]- p3[2];
p1= pt;
}
else p1= prev->vec[1];
if(next==0) {
pt[0]= 2*p2[0]- p1[0];
pt[1]= 2*p2[1]- p1[1];
pt[2]= 2*p2[2]- p1[2];
p3= pt;
}
else p3= next->vec[1];
dx= p2[0]- p1[0];
dy= p2[1]- p1[1];
dz= p2[2]- p1[2];
if(mode) len1= dx;
else len1= (float)sqrt(dx*dx+dy*dy+dz*dz);
dx1= p3[0]- p2[0];
dy1= p3[1]- p2[1];
dz1= p3[2]- p2[2];
if(mode) len2= dx1;
else len2= (float)sqrt(dx1*dx1+dy1*dy1+dz1*dz1);
if(len1==0.0f) len1=1.0f;
if(len2==0.0f) len2=1.0f;
if(bezt->h1==HD_AUTO || bezt->h2==HD_AUTO) { /* auto */
vx= dx1/len2 + dx/len1;
vy= dy1/len2 + dy/len1;
vz= dz1/len2 + dz/len1;
len= 2.5614f*(float)sqrt(vx*vx + vy*vy + vz*vz);
if(len!=0.0f) {
int leftviolate=0, rightviolate=0; /* for mode==2 */
if(len1>5.0f*len2) len1= 5.0f*len2;
if(len2>5.0f*len1) len2= 5.0f*len1;
if(bezt->h1==HD_AUTO) {
len1/=len;
*(p2-3)= *p2-vx*len1;
*(p2-2)= *(p2+1)-vy*len1;
*(p2-1)= *(p2+2)-vz*len1;
if(mode==2 && next && prev) { // keep horizontal if extrema
float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
float ydiff2= next->vec[1][1] - bezt->vec[1][1];
if( (ydiff1<=0.0 && ydiff2<=0.0) || (ydiff1>=0.0 && ydiff2>=0.0) ) {
bezt->vec[0][1]= bezt->vec[1][1];
}
else { // handles should not be beyond y coord of two others
if(ydiff1<=0.0) {
if(prev->vec[1][1] > bezt->vec[0][1]) {
bezt->vec[0][1]= prev->vec[1][1];
leftviolate= 1;
}
}
else {
if(prev->vec[1][1] < bezt->vec[0][1]) {
bezt->vec[0][1]= prev->vec[1][1];
leftviolate= 1;
}
}
}
}
}
if(bezt->h2==HD_AUTO) {
len2/=len;
*(p2+3)= *p2+vx*len2;
*(p2+4)= *(p2+1)+vy*len2;
*(p2+5)= *(p2+2)+vz*len2;
if(mode==2 && next && prev) { // keep horizontal if extrema
float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
float ydiff2= next->vec[1][1] - bezt->vec[1][1];
if( (ydiff1<=0.0 && ydiff2<=0.0) || (ydiff1>=0.0 && ydiff2>=0.0) ) {
bezt->vec[2][1]= bezt->vec[1][1];
}
else { // handles should not be beyond y coord of two others
if(ydiff1<=0.0) {
if(next->vec[1][1] < bezt->vec[2][1]) {
bezt->vec[2][1]= next->vec[1][1];
rightviolate= 1;
}
}
else {
if(next->vec[1][1] > bezt->vec[2][1]) {
bezt->vec[2][1]= next->vec[1][1];
rightviolate= 1;
}
}
}
}
}
if(leftviolate || rightviolate) { /* align left handle */
float h1[3], h2[3];
VecSubf(h1, p2-3, p2);
VecSubf(h2, p2, p2+3);
len1= Normalize(h1);
len2= Normalize(h2);
vz= INPR(h1, h2);
if(leftviolate) {
*(p2+3)= *(p2) - vz*len2*h1[0];
*(p2+4)= *(p2+1) - vz*len2*h1[1];
*(p2+5)= *(p2+2) - vz*len2*h1[2];
}
else {
*(p2-3)= *(p2) + vz*len1*h2[0];
*(p2-2)= *(p2+1) + vz*len1*h2[1];
*(p2-1)= *(p2+2) + vz*len1*h2[2];
}
}
}
}
if(bezt->h1==HD_VECT) { /* vector */
dx/=3.0;
dy/=3.0;
dz/=3.0;
*(p2-3)= *p2-dx;
*(p2-2)= *(p2+1)-dy;
*(p2-1)= *(p2+2)-dz;
}
if(bezt->h2==HD_VECT) {
dx1/=3.0;
dy1/=3.0;
dz1/=3.0;
*(p2+3)= *p2+dx1;
*(p2+4)= *(p2+1)+dy1;
*(p2+5)= *(p2+2)+dz1;
}
len2= VecLenf(p2, p2+3);
len1= VecLenf(p2, p2-3);
if(len1==0.0) len1=1.0;
if(len2==0.0) len2=1.0;
if(bezt->f1 & SELECT) { /* order of calculation */
if(bezt->h2==HD_ALIGN) { /* aligned */
len= len2/len1;
p2[3]= p2[0]+len*(p2[0]-p2[-3]);
p2[4]= p2[1]+len*(p2[1]-p2[-2]);
p2[5]= p2[2]+len*(p2[2]-p2[-1]);
}
if(bezt->h1==HD_ALIGN) {
len= len1/len2;
p2[-3]= p2[0]+len*(p2[0]-p2[3]);
p2[-2]= p2[1]+len*(p2[1]-p2[4]);
p2[-1]= p2[2]+len*(p2[2]-p2[5]);
}
}
else {
if(bezt->h1==HD_ALIGN) {
len= len1/len2;
p2[-3]= p2[0]+len*(p2[0]-p2[3]);
p2[-2]= p2[1]+len*(p2[1]-p2[4]);
p2[-1]= p2[2]+len*(p2[2]-p2[5]);
}
if(bezt->h2==HD_ALIGN) { /* aligned */
len= len2/len1;
p2[3]= p2[0]+len*(p2[0]-p2[-3]);
p2[4]= p2[1]+len*(p2[1]-p2[-2]);
p2[5]= p2[2]+len*(p2[2]-p2[-1]);
}
}
}
void calchandlesNurb(Nurb *nu) /* first, if needed, set handle flags */
{
BezTriple *bezt, *prev, *next;
short a;
if((nu->type & 7)!=CU_BEZIER) return;
if(nu->pntsu<2) return;
a= nu->pntsu;
bezt= nu->bezt;
if(nu->flagu & CU_CYCLIC) prev= bezt+(a-1);
else prev= 0;
next= bezt+1;
while(a--) {
calchandleNurb(bezt, prev, next, 0);
prev= bezt;
if(a==1) {
if(nu->flagu & CU_CYCLIC) next= nu->bezt;
else next= 0;
}
else next++;
bezt++;
}
}
void testhandlesNurb(Nurb *nu)
{
/* use when something has changed with handles.
it treats all BezTriples with the following rules:
PHASE 1: do types have to be altered?
Auto handles: become aligned when selection status is NOT(000 || 111)
Vector handles: become 'nothing' when (one half selected AND other not)
PHASE 2: recalculate handles
*/
BezTriple *bezt;
short flag, a;
if((nu->type & 7)!=CU_BEZIER) return;
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
flag= 0;
if(bezt->f1 & SELECT) flag++;
if(bezt->f2 & SELECT) flag += 2;
if(bezt->f3 & SELECT) flag += 4;
if( !(flag==0 || flag==7) ) {
if(bezt->h1==HD_AUTO) { /* auto */
bezt->h1= HD_ALIGN;
}
if(bezt->h2==HD_AUTO) { /* auto */
bezt->h2= HD_ALIGN;
}
if(bezt->h1==HD_VECT) { /* vector */
if(flag < 4) bezt->h1= 0;
}
if(bezt->h2==HD_VECT) { /* vector */
if( flag > 3) bezt->h2= 0;
}
}
bezt++;
}
calchandlesNurb(nu);
}
void autocalchandlesNurb(Nurb *nu, int flag)
{
/* checks handle coordinates and calculates type */
BezTriple *bezt2, *bezt1, *bezt0;
int i, align, leftsmall, rightsmall;
if(nu==0 || nu->bezt==0) return;
bezt2 = nu->bezt;
bezt1 = bezt2 + (nu->pntsu-1);
bezt0 = bezt1 - 1;
i = nu->pntsu;
while(i--) {
align= leftsmall= rightsmall= 0;
/* left handle: */
if(flag==0 || (bezt1->f1 & flag) ) {
bezt1->h1= 0;
/* distance too short: vectorhandle */
if( VecLenf( bezt1->vec[1], bezt0->vec[1] ) < 0.0001) {
bezt1->h1= HD_VECT;
leftsmall= 1;
}
else {
/* aligned handle? */
if(DistVL2Dfl(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001) {
align= 1;
bezt1->h1= HD_ALIGN;
}
/* or vector handle? */
if(DistVL2Dfl(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001)
bezt1->h1= HD_VECT;
}
}
/* right handle: */
if(flag==0 || (bezt1->f3 & flag) ) {
bezt1->h2= 0;
/* distance too short: vectorhandle */
if( VecLenf( bezt1->vec[1], bezt2->vec[1] ) < 0.0001) {
bezt1->h2= HD_VECT;
rightsmall= 1;
}
else {
/* aligned handle? */
if(align) bezt1->h2= HD_ALIGN;
/* or vector handle? */
if(DistVL2Dfl(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001)
bezt1->h2= HD_VECT;
}
}
if(leftsmall && bezt1->h2==HD_ALIGN) bezt1->h2= 0;
if(rightsmall && bezt1->h1==HD_ALIGN) bezt1->h1= 0;
/* undesired combination: */
if(bezt1->h1==HD_ALIGN && bezt1->h2==HD_VECT) bezt1->h1= 0;
if(bezt1->h2==HD_ALIGN && bezt1->h1==HD_VECT) bezt1->h2= 0;
bezt0= bezt1;
bezt1= bezt2;
bezt2++;
}
calchandlesNurb(nu);
}
void autocalchandlesNurb_all(int flag)
{
Nurb *nu;
nu= editNurb.first;
while(nu) {
autocalchandlesNurb(nu, flag);
nu= nu->next;
}
}
void sethandlesNurb(short code)
{
/* code==1: set autohandle */
/* code==2: set vectorhandle */
/* code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */
/* code==4: sets icu flag to become IPO_AUTO_HORIZ, horizontal extremes on auto-handles */
/* code==5: Set align, like 3 but no toggle */
/* code==6: Clear align, like 3 but no toggle */
Nurb *nu;
BezTriple *bezt;
short a, ok=0;
if(code==1 || code==2) {
nu= editNurb.first;
while(nu) {
if( (nu->type & 7)==CU_BEZIER) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if((bezt->f1 & SELECT) || (bezt->f3 & SELECT)) {
if(bezt->f1 & SELECT) bezt->h1= code;
if(bezt->f3 & SELECT) bezt->h2= code;
if(bezt->h1!=bezt->h2) {
if ELEM(bezt->h1, HD_ALIGN, HD_AUTO) bezt->h1= HD_FREE;
if ELEM(bezt->h2, HD_ALIGN, HD_AUTO) bezt->h2= HD_FREE;
}
}
bezt++;
}
calchandlesNurb(nu);
}
nu= nu->next;
}
}
else {
/* there is 1 handle not FREE: FREE it all, else make ALIGNED */
nu= editNurb.first;
if (code == 5) {
ok = HD_ALIGN;
} else if (code == 6) {
ok = HD_FREE;
} else {
/* Toggle */
while(nu) {
if( (nu->type & 7)==CU_BEZIER) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if((bezt->f1 & SELECT) && bezt->h1) ok= 1;
if((bezt->f3 & SELECT) && bezt->h2) ok= 1;
if(ok) break;
bezt++;
}
}
nu= nu->next;
}
if(ok) ok= HD_FREE;
else ok= HD_ALIGN;
}
nu= editNurb.first;
while(nu) {
if( (nu->type & 7)==CU_BEZIER) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if(bezt->f1 & SELECT) bezt->h1= ok;
if(bezt->f3 & SELECT) bezt->h2= ok;
bezt++;
}
calchandlesNurb(nu);
}
nu= nu->next;
}
}
}
static void swapdata(void *adr1, void *adr2, int len)
{
if(len<=0) return;
if(len<65) {
char adr[64];
memcpy(adr, adr1, len);
memcpy(adr1, adr2, len);
memcpy(adr2, adr, len);
}
else {
char *adr;
adr= (char *)MEM_mallocN(len, "curve swap");
memcpy(adr, adr1, len);
memcpy(adr1, adr2, len);
memcpy(adr2, adr, len);
MEM_freeN(adr);
}
}
void switchdirectionNurb(Nurb *nu)
{
BezTriple *bezt1, *bezt2;
BPoint *bp1, *bp2;
float *fp1, *fp2, *tempf;
int a, b;
if(nu->pntsu==1 && nu->pntsv==1) return;
if((nu->type & 7)==CU_BEZIER) {
a= nu->pntsu;
bezt1= nu->bezt;
bezt2= bezt1+(a-1);
if(a & 1) a+= 1; /* if odd, also swap middle content */
a/= 2;
while(a>0) {
if(bezt1!=bezt2) SWAP(BezTriple, *bezt1, *bezt2);
swapdata(bezt1->vec[0], bezt1->vec[2], 12);
if(bezt1!=bezt2) swapdata(bezt2->vec[0], bezt2->vec[2], 12);
SWAP(char, bezt1->h1, bezt1->h2);
SWAP(short, bezt1->f1, bezt1->f3);
if(bezt1!=bezt2) {
SWAP(char, bezt2->h1, bezt2->h2);
SWAP(short, bezt2->f1, bezt2->f3);
bezt1->alfa= -bezt1->alfa;
bezt2->alfa= -bezt2->alfa;
}
a--;
bezt1++;
bezt2--;
}
}
else if(nu->pntsv==1) {
a= nu->pntsu;
bp1= nu->bp;
bp2= bp1+(a-1);
a/= 2;
while(bp1!=bp2 && a>0) {
SWAP(BPoint, *bp1, *bp2);
a--;
bp1->alfa= -bp1->alfa;
bp2->alfa= -bp2->alfa;
bp1++;
bp2--;
}
if((nu->type & 7)==CU_NURBS) {
/* inverse knots */
a= KNOTSU(nu);
fp1= nu->knotsu;
fp2= fp1+(a-1);
a/= 2;
while(fp1!=fp2 && a>0) {
SWAP(float, *fp1, *fp2);
a--;
fp1++;
fp2--;
}
/* and make in increasing order again */
a= KNOTSU(nu);
fp1= nu->knotsu;
fp2=tempf= MEM_mallocN(sizeof(float)*a, "switchdirect");
while(a--) {
fp2[0]= fabs(fp1[1]-fp1[0]);
fp1++;
fp2++;
}
a= KNOTSU(nu)-1;
fp1= nu->knotsu;
fp2= tempf;
fp1[0]= 0.0;
fp1++;
while(a--) {
fp1[0]= fp1[-1]+fp2[0];
fp1++;
fp2++;
}
MEM_freeN(tempf);
}
}
else {
for(b=0; b<nu->pntsv; b++) {
bp1= nu->bp+b*nu->pntsu;
a= nu->pntsu;
bp2= bp1+(a-1);
a/= 2;
while(bp1!=bp2 && a>0) {
SWAP(BPoint, *bp1, *bp2);
a--;
bp1++;
bp2--;
}
}
}
}
float (*curve_getVertexCos(Curve *cu, ListBase *lb, int *numVerts_r))[3]
{
int i, numVerts = *numVerts_r = count_curveverts(lb);
float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "cu_vcos");
Nurb *nu;
co = cos[0];
for (nu=lb->first; nu; nu=nu->next) {
if ((nu->type & 7)==CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for (i=0; i<nu->pntsu; i++,bezt++) {
VECCOPY(co, bezt->vec[0]); co+=3;
VECCOPY(co, bezt->vec[1]); co+=3;
VECCOPY(co, bezt->vec[2]); co+=3;
}
} else {
BPoint *bp = nu->bp;
for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
VECCOPY(co, bp->vec); co+=3;
}
}
}
return cos;
}
void curve_applyVertexCos(Curve *cu, ListBase *lb, float (*vertexCos)[3])
{
float *co = vertexCos[0];
Nurb *nu;
int i;
for (nu=lb->first; nu; nu=nu->next) {
if ((nu->type & 7)==CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for (i=0; i<nu->pntsu; i++,bezt++) {
VECCOPY(bezt->vec[0], co); co+=3;
VECCOPY(bezt->vec[1], co); co+=3;
VECCOPY(bezt->vec[2], co); co+=3;
}
} else {
BPoint *bp = nu->bp;
for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
VECCOPY(bp->vec, co); co+=3;
}
}
}
}
int check_valid_nurb_u( struct Nurb *nu )
{
if (nu==NULL) return 0;
if (nu->pntsu <= 1) return 0;
if ((nu->type & 7)!=CU_NURBS) return 1; /* not a nurb, lets assume its valid */
if (nu->pntsu < nu->orderu) return 0;
if (((nu->flag & CU_CYCLIC)==0) && ((nu->flagu>>1) & 2)) { /* Bezier U Endpoints */
if (nu->orderu==4) {
if (nu->pntsu < 5) return 0; /* bezier with 4 orderu needs 5 points */
} else if (nu->orderu != 3) return 0; /* order must be 3 or 4 */
}
return 1;
}
int check_valid_nurb_v( struct Nurb *nu)
{
if (nu==NULL) return 0;
if (nu->pntsv <= 1) return 0;
if ((nu->type & 7)!=CU_NURBS) return 1; /* not a nurb, lets assume its valid */
if (nu->pntsv < nu->orderv) return 0;
if (((nu->flag & CU_CYCLIC)==0) && ((nu->flagv>>1) & 2)) { /* Bezier V Endpoints */
if (nu->orderv==4) {
if (nu->pntsv < 5) return 0; /* bezier with 4 orderu needs 5 points */
} else if (nu->orderv != 3) return 0; /* order must be 3 or 4 */
}
return 1;
}
int clamp_nurb_order_u( struct Nurb *nu )
{
int change = 0;
if(nu->pntsu<nu->orderu) {
nu->orderu= nu->pntsu;
change= 1;
}
if(((nu->flag & CU_CYCLIC)==0) && (nu->flagu>>1)&2) {
CLAMP(nu->orderu, 3,4);
change= 1;
}
return change;
}
int clamp_nurb_order_v( struct Nurb *nu)
{
int change = 0;
if(nu->pntsv<nu->orderv) {
nu->orderv= nu->pntsv;
change= 1;
}
if(((nu->flag & CU_CYCLIC)==0) && (nu->flagv>>1)&2) {
CLAMP(nu->orderv, 3,4);
change= 1;
}
return change;
}