This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/mesh.c
Andre Susano Pinto 656ee61718 Merge from trunk
(The last time there was some files missing due to failed connection to svn server while merging.. thats why this stuff of reverting last merge and redoing it)

svn merge -r 16231:16608 https://svn.blender.org/svnroot/bf-blender/trunk/blender
2008-09-19 14:15:36 +00:00

1261 lines
27 KiB
C

/* mesh.c
*
*
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "MEM_guardedalloc.h"
#include "DNA_ID.h"
#include "DNA_curve_types.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_image_types.h"
#include "DNA_key_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_ipo_types.h"
#include "BKE_customdata.h"
#include "BKE_depsgraph.h"
#include "BKE_main.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_multires.h"
#include "BKE_subsurf.h"
#include "BKE_displist.h"
#include "BKE_library.h"
#include "BKE_material.h"
#include "BKE_key.h"
/* these 2 are only used by conversion functions */
#include "BKE_curve.h"
/* -- */
#include "BKE_object.h"
#include "BKE_utildefines.h"
#include "BKE_bad_level_calls.h"
#ifdef WITH_VERSE
#include "BKE_verse.h"
#endif
#include "BLI_blenlib.h"
#include "BLI_editVert.h"
#include "BLI_arithb.h"
void mesh_update_customdata_pointers(Mesh *me)
{
me->mvert = CustomData_get_layer(&me->vdata, CD_MVERT);
me->dvert = CustomData_get_layer(&me->vdata, CD_MDEFORMVERT);
me->msticky = CustomData_get_layer(&me->vdata, CD_MSTICKY);
me->medge = CustomData_get_layer(&me->edata, CD_MEDGE);
me->mface = CustomData_get_layer(&me->fdata, CD_MFACE);
me->mcol = CustomData_get_layer(&me->fdata, CD_MCOL);
me->mtface = CustomData_get_layer(&me->fdata, CD_MTFACE);
}
/* Note: unlinking is called when me->id.us is 0, question remains how
* much unlinking of Library data in Mesh should be done... probably
* we need a more generic method, like the expand() functions in
* readfile.c */
void unlink_mesh(Mesh *me)
{
int a;
if(me==0) return;
for(a=0; a<me->totcol; a++) {
if(me->mat[a]) me->mat[a]->id.us--;
me->mat[a]= 0;
}
if(me->key) {
me->key->id.us--;
if (me->key->id.us == 0 && me->key->ipo )
me->key->ipo->id.us--;
}
me->key= 0;
if(me->texcomesh) me->texcomesh= 0;
}
/* do not free mesh itself */
void free_mesh(Mesh *me)
{
unlink_mesh(me);
if(me->pv) {
if(me->pv->vert_map) MEM_freeN(me->pv->vert_map);
if(me->pv->edge_map) MEM_freeN(me->pv->edge_map);
if(me->pv->old_faces) MEM_freeN(me->pv->old_faces);
if(me->pv->old_edges) MEM_freeN(me->pv->old_edges);
me->totvert= me->pv->totvert;
me->totedge= me->pv->totedge;
me->totface= me->pv->totface;
MEM_freeN(me->pv);
}
CustomData_free(&me->vdata, me->totvert);
CustomData_free(&me->edata, me->totedge);
CustomData_free(&me->fdata, me->totface);
if(me->mat) MEM_freeN(me->mat);
if(me->bb) MEM_freeN(me->bb);
if(me->mselect) MEM_freeN(me->mselect);
if(me->mr) multires_free(me->mr);
}
void copy_dverts(MDeformVert *dst, MDeformVert *src, int copycount)
{
/* Assumes dst is already set up */
int i;
if (!src || !dst)
return;
memcpy (dst, src, copycount * sizeof(MDeformVert));
for (i=0; i<copycount; i++){
if (src[i].dw){
dst[i].dw = MEM_callocN (sizeof(MDeformWeight)*src[i].totweight, "copy_deformWeight");
memcpy (dst[i].dw, src[i].dw, sizeof (MDeformWeight)*src[i].totweight);
}
}
}
void free_dverts(MDeformVert *dvert, int totvert)
{
/* Instead of freeing the verts directly,
call this function to delete any special
vert data */
int i;
if (!dvert)
return;
/* Free any special data from the verts */
for (i=0; i<totvert; i++){
if (dvert[i].dw) MEM_freeN (dvert[i].dw);
}
MEM_freeN (dvert);
}
Mesh *add_mesh(char *name)
{
Mesh *me;
me= alloc_libblock(&G.main->mesh, ID_ME, name);
me->size[0]= me->size[1]= me->size[2]= 1.0;
me->smoothresh= 30;
me->texflag= AUTOSPACE;
me->flag= ME_TWOSIDED;
me->bb= unit_boundbox();
#ifdef WITH_VERSE
me->vnode = NULL;
#endif
return me;
}
Mesh *copy_mesh(Mesh *me)
{
Mesh *men;
MTFace *tface;
int a, i;
men= copy_libblock(me);
men->mat= MEM_dupallocN(me->mat);
for(a=0; a<men->totcol; a++) {
id_us_plus((ID *)men->mat[a]);
}
id_us_plus((ID *)men->texcomesh);
CustomData_copy(&me->vdata, &men->vdata, CD_MASK_MESH, CD_DUPLICATE, men->totvert);
CustomData_copy(&me->edata, &men->edata, CD_MASK_MESH, CD_DUPLICATE, men->totedge);
CustomData_copy(&me->fdata, &men->fdata, CD_MASK_MESH, CD_DUPLICATE, men->totface);
mesh_update_customdata_pointers(men);
/* ensure indirect linked data becomes lib-extern */
for(i=0; i<me->fdata.totlayer; i++) {
if(me->fdata.layers[i].type == CD_MTFACE) {
tface= (MTFace*)me->fdata.layers[i].data;
for(a=0; a<me->totface; a++, tface++)
if(tface->tpage)
id_lib_extern((ID*)tface->tpage);
}
}
if(me->mr)
men->mr= multires_copy(me->mr);
men->mselect= NULL;
men->bb= MEM_dupallocN(men->bb);
men->key= copy_key(me->key);
if(men->key) men->key->from= (ID *)men;
#ifdef WITH_VERSE
men->vnode = NULL;
#endif
return men;
}
void make_local_tface(Mesh *me)
{
MTFace *tface;
Image *ima;
int a, i;
for(i=0; i<me->fdata.totlayer; i++) {
if(me->fdata.layers[i].type == CD_MTFACE) {
tface= (MTFace*)me->fdata.layers[i].data;
for(a=0; a<me->totface; a++, tface++) {
/* special case: ima always local immediately */
if(tface->tpage) {
ima= tface->tpage;
if(ima->id.lib) {
ima->id.lib= 0;
ima->id.flag= LIB_LOCAL;
new_id(0, (ID *)ima, 0);
}
}
}
}
}
}
void make_local_mesh(Mesh *me)
{
Object *ob;
Mesh *men;
int local=0, lib=0;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(me->id.lib==0) return;
if(me->id.us==1) {
me->id.lib= 0;
me->id.flag= LIB_LOCAL;
new_id(0, (ID *)me, 0);
if(me->mtface) make_local_tface(me);
return;
}
ob= G.main->object.first;
while(ob) {
if( me==get_mesh(ob) ) {
if(ob->id.lib) lib= 1;
else local= 1;
}
ob= ob->id.next;
}
if(local && lib==0) {
me->id.lib= 0;
me->id.flag= LIB_LOCAL;
new_id(0, (ID *)me, 0);
if(me->mtface) make_local_tface(me);
}
else if(local && lib) {
men= copy_mesh(me);
men->id.us= 0;
ob= G.main->object.first;
while(ob) {
if( me==get_mesh(ob) ) {
if(ob->id.lib==0) {
set_mesh(ob, men);
}
}
ob= ob->id.next;
}
}
}
void boundbox_mesh(Mesh *me, float *loc, float *size)
{
MVert *mvert;
BoundBox *bb;
float min[3], max[3];
float mloc[3], msize[3];
int a;
if(me->bb==0) me->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
bb= me->bb;
INIT_MINMAX(min, max);
if (!loc) loc= mloc;
if (!size) size= msize;
mvert= me->mvert;
for(a=0; a<me->totvert; a++, mvert++) {
DO_MINMAX(mvert->co, min, max);
}
if(!me->totvert) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
loc[0]= (min[0]+max[0])/2.0f;
loc[1]= (min[1]+max[1])/2.0f;
loc[2]= (min[2]+max[2])/2.0f;
size[0]= (max[0]-min[0])/2.0f;
size[1]= (max[1]-min[1])/2.0f;
size[2]= (max[2]-min[2])/2.0f;
boundbox_set_from_min_max(bb, min, max);
}
void tex_space_mesh(Mesh *me)
{
KeyBlock *kb;
float *fp, loc[3], size[3], min[3], max[3];
int a;
boundbox_mesh(me, loc, size);
if(me->texflag & AUTOSPACE) {
if(me->key) {
kb= me->key->refkey;
if (kb) {
INIT_MINMAX(min, max);
fp= kb->data;
for(a=0; a<kb->totelem; a++, fp+=3) {
DO_MINMAX(fp, min, max);
}
if(kb->totelem) {
loc[0]= (min[0]+max[0])/2.0f; loc[1]= (min[1]+max[1])/2.0f; loc[2]= (min[2]+max[2])/2.0f;
size[0]= (max[0]-min[0])/2.0f; size[1]= (max[1]-min[1])/2.0f; size[2]= (max[2]-min[2])/2.0f;
}
else {
loc[0]= loc[1]= loc[2]= 0.0;
size[0]= size[1]= size[2]= 0.0;
}
}
}
for (a=0; a<3; a++) {
if(size[a]==0.0) size[a]= 1.0;
else if(size[a]>0.0 && size[a]<0.00001) size[a]= 0.00001;
else if(size[a]<0.0 && size[a]> -0.00001) size[a]= -0.00001;
}
VECCOPY(me->loc, loc);
VECCOPY(me->size, size);
me->rot[0]= me->rot[1]= me->rot[2]= 0.0;
}
}
BoundBox *mesh_get_bb(Object *ob)
{
Mesh *me= ob->data;
if(ob->bb)
return ob->bb;
if (!me->bb)
tex_space_mesh(me);
return me->bb;
}
void mesh_get_texspace(Mesh *me, float *loc_r, float *rot_r, float *size_r)
{
if (!me->bb) {
tex_space_mesh(me);
}
if (loc_r) VECCOPY(loc_r, me->loc);
if (rot_r) VECCOPY(rot_r, me->rot);
if (size_r) VECCOPY(size_r, me->size);
}
float *get_mesh_orco_verts(Object *ob)
{
Mesh *me = ob->data;
int a, totvert;
float (*vcos)[3] = NULL;
/* Get appropriate vertex coordinates */
if(me->key && me->texcomesh==0 && me->key->refkey) {
vcos= mesh_getRefKeyCos(me, &totvert);
}
else {
MVert *mvert = NULL;
Mesh *tme = me->texcomesh?me->texcomesh:me;
vcos = MEM_callocN(sizeof(*vcos)*me->totvert, "orco mesh");
mvert = tme->mvert;
totvert = MIN2(tme->totvert, me->totvert);
for(a=0; a<totvert; a++, mvert++) {
vcos[a][0]= mvert->co[0];
vcos[a][1]= mvert->co[1];
vcos[a][2]= mvert->co[2];
}
}
return (float*)vcos;
}
void transform_mesh_orco_verts(Mesh *me, float (*orco)[3], int totvert, int invert)
{
float loc[3], size[3];
int a;
mesh_get_texspace(me->texcomesh?me->texcomesh:me, loc, NULL, size);
if(invert) {
for(a=0; a<totvert; a++) {
float *co = orco[a];
co[0] = co[0]*size[0] + loc[0];
co[1] = co[1]*size[1] + loc[1];
co[2] = co[2]*size[2] + loc[2];
}
}
else {
for(a=0; a<totvert; a++) {
float *co = orco[a];
co[0] = (co[0]-loc[0])/size[0];
co[1] = (co[1]-loc[1])/size[1];
co[2] = (co[2]-loc[2])/size[2];
}
}
}
/* rotates the vertices of a face in case v[2] or v[3] (vertex index) is = 0.
this is necessary to make the if(mface->v4) check for quads work */
int test_index_face(MFace *mface, CustomData *fdata, int mfindex, int nr)
{
/* first test if the face is legal */
if(mface->v3 && mface->v3==mface->v4) {
mface->v4= 0;
nr--;
}
if(mface->v2 && mface->v2==mface->v3) {
mface->v3= mface->v4;
mface->v4= 0;
nr--;
}
if(mface->v1==mface->v2) {
mface->v2= mface->v3;
mface->v3= mface->v4;
mface->v4= 0;
nr--;
}
/* prevent a zero at wrong index location */
if(nr==3) {
if(mface->v3==0) {
static int corner_indices[4] = {1, 2, 0, 3};
SWAP(int, mface->v1, mface->v2);
SWAP(int, mface->v2, mface->v3);
if(fdata)
CustomData_swap(fdata, mfindex, corner_indices);
}
}
else if(nr==4) {
if(mface->v3==0 || mface->v4==0) {
static int corner_indices[4] = {2, 3, 0, 1};
SWAP(int, mface->v1, mface->v3);
SWAP(int, mface->v2, mface->v4);
if(fdata)
CustomData_swap(fdata, mfindex, corner_indices);
}
}
return nr;
}
Mesh *get_mesh(Object *ob)
{
if(ob==0) return 0;
if(ob->type==OB_MESH) return ob->data;
else return 0;
}
void set_mesh(Object *ob, Mesh *me)
{
Mesh *old=0;
if(ob==0) return;
if(ob->type==OB_MESH) {
old= ob->data;
old->id.us--;
ob->data= me;
id_us_plus((ID *)me);
}
test_object_materials((ID *)me);
}
/* ************** make edges in a Mesh, for outside of editmode */
struct edgesort {
int v1, v2;
short is_loose, is_draw;
};
/* edges have to be added with lowest index first for sorting */
static void to_edgesort(struct edgesort *ed, int v1, int v2, short is_loose, short is_draw)
{
if(v1<v2) {
ed->v1= v1; ed->v2= v2;
}
else {
ed->v1= v2; ed->v2= v1;
}
ed->is_loose= is_loose;
ed->is_draw= is_draw;
}
static int vergedgesort(const void *v1, const void *v2)
{
const struct edgesort *x1=v1, *x2=v2;
if( x1->v1 > x2->v1) return 1;
else if( x1->v1 < x2->v1) return -1;
else if( x1->v2 > x2->v2) return 1;
else if( x1->v2 < x2->v2) return -1;
return 0;
}
void make_edges(Mesh *me, int old)
{
MFace *mface;
MEdge *medge;
struct edgesort *edsort, *ed;
int a, totedge=0, final=0;
/* we put all edges in array, sort them, and detect doubles that way */
for(a= me->totface, mface= me->mface; a>0; a--, mface++) {
if(mface->v4) totedge+=4;
else if(mface->v3) totedge+=3;
else totedge+=1;
}
if(totedge==0) {
/* flag that mesh has edges */
me->medge = MEM_callocN(0, "make mesh edges");
me->totedge = 0;
return;
}
ed= edsort= MEM_mallocN(totedge*sizeof(struct edgesort), "edgesort");
for(a= me->totface, mface= me->mface; a>0; a--, mface++) {
to_edgesort(ed++, mface->v1, mface->v2, !mface->v3, mface->edcode & ME_V1V2);
if(mface->v4) {
to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3);
to_edgesort(ed++, mface->v3, mface->v4, 0, mface->edcode & ME_V3V4);
to_edgesort(ed++, mface->v4, mface->v1, 0, mface->edcode & ME_V4V1);
}
else if(mface->v3) {
to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3);
to_edgesort(ed++, mface->v3, mface->v1, 0, mface->edcode & ME_V3V1);
}
}
qsort(edsort, totedge, sizeof(struct edgesort), vergedgesort);
/* count final amount */
for(a=totedge, ed=edsort; a>1; a--, ed++) {
/* edge is unique when it differs from next edge, or is last */
if(ed->v1 != (ed+1)->v1 || ed->v2 != (ed+1)->v2) final++;
}
final++;
medge= CustomData_add_layer(&me->edata, CD_MEDGE, CD_CALLOC, NULL, final);
me->medge= medge;
me->totedge= final;
for(a=totedge, ed=edsort; a>1; a--, ed++) {
/* edge is unique when it differs from next edge, or is last */
if(ed->v1 != (ed+1)->v1 || ed->v2 != (ed+1)->v2) {
medge->v1= ed->v1;
medge->v2= ed->v2;
if(old==0 || ed->is_draw) medge->flag= ME_EDGEDRAW|ME_EDGERENDER;
if(ed->is_loose) medge->flag|= ME_LOOSEEDGE;
medge++;
}
else {
/* equal edge, we merge the drawflag */
(ed+1)->is_draw |= ed->is_draw;
}
}
/* last edge */
medge->v1= ed->v1;
medge->v2= ed->v2;
medge->flag= ME_EDGEDRAW;
if(ed->is_loose) medge->flag|= ME_LOOSEEDGE;
medge->flag |= ME_EDGERENDER;
MEM_freeN(edsort);
mesh_strip_loose_faces(me);
}
void mesh_strip_loose_faces(Mesh *me)
{
int a,b;
for (a=b=0; a<me->totface; a++) {
if (me->mface[a].v3) {
if (a!=b) {
memcpy(&me->mface[b],&me->mface[a],sizeof(me->mface[b]));
CustomData_copy_data(&me->fdata, &me->fdata, a, b, 1);
CustomData_free_elem(&me->fdata, a, 1);
}
b++;
}
}
me->totface = b;
}
void mball_to_mesh(ListBase *lb, Mesh *me)
{
DispList *dl;
MVert *mvert;
MFace *mface;
float *nors, *verts;
int a, *index;
dl= lb->first;
if(dl==0) return;
if(dl->type==DL_INDEX4) {
me->flag= ME_NOPUNOFLIP;
me->totvert= dl->nr;
me->totface= dl->parts;
mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, dl->nr);
mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, dl->parts);
me->mvert= mvert;
me->mface= mface;
a= dl->nr;
nors= dl->nors;
verts= dl->verts;
while(a--) {
VECCOPY(mvert->co, verts);
mvert->no[0]= (short int)(nors[0]*32767.0);
mvert->no[1]= (short int)(nors[1]*32767.0);
mvert->no[2]= (short int)(nors[2]*32767.0);
mvert++;
nors+= 3;
verts+= 3;
}
a= dl->parts;
index= dl->index;
while(a--) {
mface->v1= index[0];
mface->v2= index[1];
mface->v3= index[2];
mface->v4= index[3];
mface->flag= ME_SMOOTH;
test_index_face(mface, NULL, 0, (mface->v3==mface->v4)? 3: 4);
mface++;
index+= 4;
}
make_edges(me, 0); // all edges
}
}
/* this may fail replacing ob->data, be sure to check ob->type */
void nurbs_to_mesh(Object *ob)
{
Object *ob1;
DispList *dl;
Mesh *me;
Curve *cu;
MVert *mvert;
MFace *mface;
float *data;
int a, b, ofs, vertcount, startvert, totvert=0, totvlak=0;
int p1, p2, p3, p4, *index;
cu= ob->data;
/* count */
dl= cu->disp.first;
while(dl) {
if(dl->type==DL_SEGM) {
totvert+= dl->parts*dl->nr;
totvlak+= dl->parts*(dl->nr-1);
}
else if(dl->type==DL_POLY) {
/* cyclic polys are filled. except when 3D */
if(cu->flag & CU_3D) {
totvert+= dl->parts*dl->nr;
totvlak+= dl->parts*dl->nr;
}
}
else if(dl->type==DL_SURF) {
totvert+= dl->parts*dl->nr;
totvlak+= (dl->parts-1+((dl->flag & DL_CYCL_V)==2))*(dl->nr-1+(dl->flag & DL_CYCL_U));
}
else if(dl->type==DL_INDEX3) {
totvert+= dl->nr;
totvlak+= dl->parts;
}
dl= dl->next;
}
if(totvert==0) {
/* error("can't convert"); */
/* Make Sure you check ob->data is a curve */
return;
}
/* make mesh */
me= add_mesh("Mesh");
me->totvert= totvert;
me->totface= totvlak;
me->totcol= cu->totcol;
me->mat= cu->mat;
cu->mat= 0;
cu->totcol= 0;
mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, me->totvert);
mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, me->totface);
me->mvert= mvert;
me->mface= mface;
/* verts and faces */
vertcount= 0;
dl= cu->disp.first;
while(dl) {
if(dl->type==DL_SEGM) {
startvert= vertcount;
a= dl->parts*dl->nr;
data= dl->verts;
while(a--) {
VECCOPY(mvert->co, data);
data+=3;
vertcount++;
mvert++;
}
for(a=0; a<dl->parts; a++) {
ofs= a*dl->nr;
for(b=1; b<dl->nr; b++) {
mface->v1= startvert+ofs+b-1;
mface->v2= startvert+ofs+b;
mface++;
}
}
}
else if(dl->type==DL_POLY) {
/* 3d polys are not filled */
if(cu->flag & CU_3D) {
startvert= vertcount;
a= dl->parts*dl->nr;
data= dl->verts;
while(a--) {
VECCOPY(mvert->co, data);
data+=3;
vertcount++;
mvert++;
}
for(a=0; a<dl->parts; a++) {
ofs= a*dl->nr;
for(b=0; b<dl->nr; b++) {
mface->v1= startvert+ofs+b;
if(b==dl->nr-1) mface->v2= startvert+ofs;
else mface->v2= startvert+ofs+b+1;
mface++;
}
}
}
}
else if(dl->type==DL_INDEX3) {
startvert= vertcount;
a= dl->nr;
data= dl->verts;
while(a--) {
VECCOPY(mvert->co, data);
data+=3;
vertcount++;
mvert++;
}
a= dl->parts;
index= dl->index;
while(a--) {
mface->v1= startvert+index[0];
mface->v2= startvert+index[2];
mface->v3= startvert+index[1];
mface->v4= 0;
test_index_face(mface, NULL, 0, 3);
mface++;
index+= 3;
}
}
else if(dl->type==DL_SURF) {
startvert= vertcount;
a= dl->parts*dl->nr;
data= dl->verts;
while(a--) {
VECCOPY(mvert->co, data);
data+=3;
vertcount++;
mvert++;
}
for(a=0; a<dl->parts; a++) {
if( (dl->flag & DL_CYCL_V)==0 && a==dl->parts-1) break;
if(dl->flag & DL_CYCL_U) { /* p2 -> p1 -> */
p1= startvert+ dl->nr*a; /* p4 -> p3 -> */
p2= p1+ dl->nr-1; /* -----> next row */
p3= p1+ dl->nr;
p4= p2+ dl->nr;
b= 0;
}
else {
p2= startvert+ dl->nr*a;
p1= p2+1;
p4= p2+ dl->nr;
p3= p1+ dl->nr;
b= 1;
}
if( (dl->flag & DL_CYCL_V) && a==dl->parts-1) {
p3-= dl->parts*dl->nr;
p4-= dl->parts*dl->nr;
}
for(; b<dl->nr; b++) {
mface->v1= p1;
mface->v2= p3;
mface->v3= p4;
mface->v4= p2;
mface->mat_nr= (unsigned char)dl->col;
test_index_face(mface, NULL, 0, 4);
mface++;
p4= p3;
p3++;
p2= p1;
p1++;
}
}
}
dl= dl->next;
}
make_edges(me, 0); // all edges
mesh_calc_normals(me->mvert, me->totvert, me->mface, me->totface, NULL);
if(ob->data) {
free_libblock(&G.main->curve, ob->data);
}
ob->data= me;
ob->type= OB_MESH;
/* other users */
ob1= G.main->object.first;
while(ob1) {
if(ob1->data==cu) {
ob1->type= OB_MESH;
ob1->data= ob->data;
id_us_plus((ID *)ob->data);
}
ob1= ob1->id.next;
}
}
void mesh_delete_material_index(Mesh *me, int index) {
int i;
for (i=0; i<me->totface; i++) {
MFace *mf = &((MFace*) me->mface)[i];
if (mf->mat_nr && mf->mat_nr>=index)
mf->mat_nr--;
}
}
void mesh_set_smooth_flag(Object *meshOb, int enableSmooth) {
Mesh *me = meshOb->data;
int i;
for (i=0; i<me->totface; i++) {
MFace *mf = &((MFace*) me->mface)[i];
if (enableSmooth) {
mf->flag |= ME_SMOOTH;
} else {
mf->flag &= ~ME_SMOOTH;
}
}
DAG_object_flush_update(G.scene, meshOb, OB_RECALC_DATA);
}
void mesh_calc_normals(MVert *mverts, int numVerts, MFace *mfaces, int numFaces, float **faceNors_r)
{
float (*tnorms)[3]= MEM_callocN(numVerts*sizeof(*tnorms), "tnorms");
float *fnors= MEM_mallocN(sizeof(*fnors)*3*numFaces, "meshnormals");
int i;
for (i=0; i<numFaces; i++) {
MFace *mf= &mfaces[i];
float *f_no= &fnors[i*3];
if (mf->v4)
CalcNormFloat4(mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, mverts[mf->v4].co, f_no);
else
CalcNormFloat(mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, f_no);
VecAddf(tnorms[mf->v1], tnorms[mf->v1], f_no);
VecAddf(tnorms[mf->v2], tnorms[mf->v2], f_no);
VecAddf(tnorms[mf->v3], tnorms[mf->v3], f_no);
if (mf->v4)
VecAddf(tnorms[mf->v4], tnorms[mf->v4], f_no);
}
for (i=0; i<numVerts; i++) {
MVert *mv= &mverts[i];
float *no= tnorms[i];
if (Normalize(no)==0.0) {
VECCOPY(no, mv->co);
Normalize(no);
}
mv->no[0]= (short)(no[0]*32767.0);
mv->no[1]= (short)(no[1]*32767.0);
mv->no[2]= (short)(no[2]*32767.0);
}
MEM_freeN(tnorms);
if (faceNors_r) {
*faceNors_r = fnors;
} else {
MEM_freeN(fnors);
}
}
float (*mesh_getVertexCos(Mesh *me, int *numVerts_r))[3]
{
#ifdef WITH_VERSE
if(me->vnode) {
struct VLayer *vlayer;
struct VerseVert *vvert;
unsigned int i, numVerts;
float (*cos)[3];
vlayer = find_verse_layer_type((VGeomData*)((VNode*)me->vnode)->data, VERTEX_LAYER);
vvert = vlayer->dl.lb.first;
numVerts = vlayer->dl.da.count;
cos = MEM_mallocN(sizeof(*cos)*numVerts, "verse_vertexcos");
for(i=0; i<numVerts && vvert; vvert = vvert->next, i++) {
VECCOPY(cos[i], vvert->co);
}
return cos;
}
else {
#endif
int i, numVerts = me->totvert;
float (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "vertexcos1");
if (numVerts_r) *numVerts_r = numVerts;
for (i=0; i<numVerts; i++)
VECCOPY(cos[i], me->mvert[i].co);
return cos;
#ifdef WITH_VERSE
}
#endif
}
float (*mesh_getRefKeyCos(Mesh *me, int *numVerts_r))[3]
{
KeyBlock *kb;
float (*cos)[3] = NULL;
int totvert;
if(me->key && me->key->refkey) {
if(numVerts_r) *numVerts_r= me->totvert;
kb= me->key->refkey;
/* prevent accessing invalid memory */
if (me->totvert > kb->totelem) cos= MEM_callocN(sizeof(*cos)*me->totvert, "vertexcos1");
else cos= MEM_mallocN(sizeof(*cos)*me->totvert, "vertexcos1");
totvert= MIN2(kb->totelem, me->totvert);
memcpy(cos, kb->data, sizeof(*cos)*totvert);
}
return cos;
}
UvVertMap *make_uv_vert_map(struct MFace *mface, struct MTFace *tface, unsigned int totface, unsigned int totvert, int selected, float *limit)
{
UvVertMap *vmap;
UvMapVert *buf;
MFace *mf;
MTFace *tf;
unsigned int a;
int i, totuv, nverts;
totuv = 0;
/* generate UvMapVert array */
mf= mface;
tf= tface;
for(a=0; a<totface; a++, mf++, tf++)
if(!selected || (!(mf->flag & ME_HIDE) && (mf->flag & ME_FACE_SEL)))
totuv += (mf->v4)? 4: 3;
if(totuv==0)
return NULL;
vmap= (UvVertMap*)MEM_callocN(sizeof(*vmap), "UvVertMap");
if (!vmap)
return NULL;
vmap->vert= (UvMapVert**)MEM_callocN(sizeof(*vmap->vert)*totvert, "UvMapVert*");
buf= vmap->buf= (UvMapVert*)MEM_callocN(sizeof(*vmap->buf)*totuv, "UvMapVert");
if (!vmap->vert || !vmap->buf) {
free_uv_vert_map(vmap);
return NULL;
}
mf= mface;
tf= tface;
for(a=0; a<totface; a++, mf++, tf++) {
if(!selected || (!(mf->flag & ME_HIDE) && (mf->flag & ME_FACE_SEL))) {
nverts= (mf->v4)? 4: 3;
for(i=0; i<nverts; i++) {
buf->tfindex= i;
buf->f= a;
buf->separate = 0;
buf->next= vmap->vert[*(&mf->v1 + i)];
vmap->vert[*(&mf->v1 + i)]= buf;
buf++;
}
}
}
/* sort individual uvs for each vert */
tf= tface;
for(a=0; a<totvert; a++) {
UvMapVert *newvlist= NULL, *vlist=vmap->vert[a];
UvMapVert *iterv, *v, *lastv, *next;
float *uv, *uv2, uvdiff[2];
while(vlist) {
v= vlist;
vlist= vlist->next;
v->next= newvlist;
newvlist= v;
uv= (tf+v->f)->uv[v->tfindex];
lastv= NULL;
iterv= vlist;
while(iterv) {
next= iterv->next;
uv2= (tf+iterv->f)->uv[iterv->tfindex];
Vec2Subf(uvdiff, uv2, uv);
if(fabs(uv[0]-uv2[0]) < limit[0] && fabs(uv[1]-uv2[1]) < limit[1]) {
if(lastv) lastv->next= next;
else vlist= next;
iterv->next= newvlist;
newvlist= iterv;
}
else
lastv=iterv;
iterv= next;
}
newvlist->separate = 1;
}
vmap->vert[a]= newvlist;
}
return vmap;
}
UvMapVert *get_uv_map_vert(UvVertMap *vmap, unsigned int v)
{
return vmap->vert[v];
}
void free_uv_vert_map(UvVertMap *vmap)
{
if (vmap) {
if (vmap->vert) MEM_freeN(vmap->vert);
if (vmap->buf) MEM_freeN(vmap->buf);
MEM_freeN(vmap);
}
}
/* Partial Mesh Visibility */
PartialVisibility *mesh_pmv_copy(PartialVisibility *pmv)
{
PartialVisibility *n= MEM_dupallocN(pmv);
n->vert_map= MEM_dupallocN(pmv->vert_map);
n->edge_map= MEM_dupallocN(pmv->edge_map);
n->old_edges= MEM_dupallocN(pmv->old_edges);
n->old_faces= MEM_dupallocN(pmv->old_faces);
return n;
}
void mesh_pmv_free(PartialVisibility *pv)
{
MEM_freeN(pv->vert_map);
MEM_freeN(pv->edge_map);
MEM_freeN(pv->old_faces);
MEM_freeN(pv->old_edges);
MEM_freeN(pv);
}
void mesh_pmv_revert(Object *ob, Mesh *me)
{
if(me->pv) {
unsigned i;
MVert *nve, *old_verts;
/* Reorder vertices */
nve= me->mvert;
old_verts = MEM_mallocN(sizeof(MVert)*me->pv->totvert,"PMV revert verts");
for(i=0; i<me->pv->totvert; ++i)
old_verts[i]= nve[me->pv->vert_map[i]];
/* Restore verts, edges and faces */
CustomData_free_layer_active(&me->vdata, CD_MVERT, me->totvert);
CustomData_free_layer_active(&me->edata, CD_MEDGE, me->totedge);
CustomData_free_layer_active(&me->fdata, CD_MFACE, me->totface);
CustomData_add_layer(&me->vdata, CD_MVERT, CD_ASSIGN, old_verts, me->pv->totvert);
CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, me->pv->old_edges, me->pv->totedge);
CustomData_add_layer(&me->fdata, CD_MFACE, CD_ASSIGN, me->pv->old_faces, me->pv->totface);
mesh_update_customdata_pointers(me);
me->totvert= me->pv->totvert;
me->totedge= me->pv->totedge;
me->totface= me->pv->totface;
me->pv->old_edges= NULL;
me->pv->old_faces= NULL;
/* Free maps */
MEM_freeN(me->pv->edge_map);
me->pv->edge_map= NULL;
MEM_freeN(me->pv->vert_map);
me->pv->vert_map= NULL;
DAG_object_flush_update(G.scene, ob, OB_RECALC_DATA);
}
}
void mesh_pmv_off(Object *ob, Mesh *me)
{
if(ob && me->pv) {
mesh_pmv_revert(ob, me);
MEM_freeN(me->pv);
me->pv= NULL;
}
}