This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/iksolver/intern/TNT/fmat.h
2002-10-30 02:07:20 +00:00

611 lines
12 KiB
C++

/**
* $Id$
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
/*
*
* Template Numerical Toolkit (TNT): Linear Algebra Module
*
* Mathematical and Computational Sciences Division
* National Institute of Technology,
* Gaithersburg, MD USA
*
*
* This software was developed at the National Institute of Standards and
* Technology (NIST) by employees of the Federal Government in the course
* of their official duties. Pursuant to title 17 Section 105 of the
* United States Code, this software is not subject to copyright protection
* and is in the public domain. The Template Numerical Toolkit (TNT) is
* an experimental system. NIST assumes no responsibility whatsoever for
* its use by other parties, and makes no guarantees, expressed or implied,
* about its quality, reliability, or any other characteristic.
*
* BETA VERSION INCOMPLETE AND SUBJECT TO CHANGE
* see http://math.nist.gov/tnt for latest updates.
*
*/
// Fortran-compatible matrix: column oriented, 1-based (i,j) indexing
#ifndef FMAT_H
#define FMAT_H
#include "subscript.h"
#include "vec.h"
#include <cstdlib>
#include <cassert>
#include <iostream>
#include <strstream>
#ifdef TNT_USE_REGIONS
#include "region2d.h"
#endif
// simple 1-based, column oriented Matrix class
namespace TNT
{
template <class T>
class Fortran_Matrix
{
public:
typedef T value_type;
typedef T element_type;
typedef T* pointer;
typedef T* iterator;
typedef T& reference;
typedef const T* const_iterator;
typedef const T& const_reference;
Subscript lbound() const { return 1;}
protected:
T* v_; // these are adjusted to simulate 1-offset
Subscript m_;
Subscript n_;
T** col_; // these are adjusted to simulate 1-offset
// internal helper function to create the array
// of row pointers
void initialize(Subscript M, Subscript N)
{
// adjust col_[] pointers so that they are 1-offset:
// col_[j][i] is really col_[j-1][i-1];
//
// v_[] is the internal contiguous array, it is still 0-offset
//
v_ = new T[M*N];
col_ = new T*[N];
assert(v_ != NULL);
assert(col_ != NULL);
m_ = M;
n_ = N;
T* p = v_ - 1;
for (Subscript i=0; i<N; i++)
{
col_[i] = p;
p += M ;
}
col_ --;
}
void copy(const T* v)
{
Subscript N = m_ * n_;
Subscript i;
#ifdef TNT_UNROLL_LOOPS
Subscript Nmod4 = N & 3;
Subscript N4 = N - Nmod4;
for (i=0; i<N4; i+=4)
{
v_[i] = v[i];
v_[i+1] = v[i+1];
v_[i+2] = v[i+2];
v_[i+3] = v[i+3];
}
for (i=N4; i< N; i++)
v_[i] = v[i];
#else
for (i=0; i< N; i++)
v_[i] = v[i];
#endif
}
void set(const T& val)
{
Subscript N = m_ * n_;
Subscript i;
#ifdef TNT_UNROLL_LOOPS
Subscript Nmod4 = N & 3;
Subscript N4 = N - Nmod4;
for (i=0; i<N4; i+=4)
{
v_[i] = val;
v_[i+1] = val;
v_[i+2] = val;
v_[i+3] = val;
}
for (i=N4; i< N; i++)
v_[i] = val;
#else
for (i=0; i< N; i++)
v_[i] = val;
#endif
}
void destroy()
{
/* do nothing, if no memory has been previously allocated */
if (v_ == NULL) return ;
/* if we are here, then matrix was previously allocated */
delete [] (v_);
col_ ++; // changed back to 0-offset
delete [] (col_);
}
public:
T* begin() { return v_; }
const T* begin() const { return v_;}
T* end() { return v_ + m_*n_; }
const T* end() const { return v_ + m_*n_; }
// constructors
Fortran_Matrix() : v_(0), m_(0), n_(0), col_(0) {};
Fortran_Matrix(const Fortran_Matrix<T> &A)
{
initialize(A.m_, A.n_);
copy(A.v_);
}
Fortran_Matrix(Subscript M, Subscript N, const T& value = T())
{
initialize(M,N);
set(value);
}
Fortran_Matrix(Subscript M, Subscript N, const T* v)
{
initialize(M,N);
copy(v);
}
Fortran_Matrix(Subscript M, Subscript N, char *s)
{
initialize(M,N);
std::istrstream ins(s);
Subscript i, j;
for (i=1; i<=M; i++)
for (j=1; j<=N; j++)
ins >> (*this)(i,j);
}
// destructor
~Fortran_Matrix()
{
destroy();
}
// assignments
//
Fortran_Matrix<T>& operator=(const Fortran_Matrix<T> &A)
{
if (v_ == A.v_)
return *this;
if (m_ == A.m_ && n_ == A.n_) // no need to re-alloc
copy(A.v_);
else
{
destroy();
initialize(A.m_, A.n_);
copy(A.v_);
}
return *this;
}
Fortran_Matrix<T>& operator=(const T& scalar)
{
set(scalar);
return *this;
}
Subscript dim(Subscript d) const
{
#ifdef TNT_BOUNDS_CHECK
assert( d >= 1);
assert( d <= 2);
#endif
return (d==1) ? m_ : ((d==2) ? n_ : 0);
}
Subscript num_rows() const { return m_; }
Subscript num_cols() const { return n_; }
Fortran_Matrix<T>& newsize(Subscript M, Subscript N)
{
if (num_rows() == M && num_cols() == N)
return *this;
destroy();
initialize(M,N);
return *this;
}
// 1-based element access
//
inline reference operator()(Subscript i, Subscript j)
{
#ifdef TNT_BOUNDS_CHECK
assert(1<=i);
assert(i <= m_) ;
assert(1<=j);
assert(j <= n_);
#endif
return col_[j][i];
}
inline const_reference operator() (Subscript i, Subscript j) const
{
#ifdef TNT_BOUNDS_CHECK
assert(1<=i);
assert(i <= m_) ;
assert(1<=j);
assert(j <= n_);
#endif
return col_[j][i];
}
#ifdef TNT_USE_REGIONS
typedef Region2D<Fortran_Matrix<T> > Region;
typedef const_Region2D< Fortran_Matrix<T> > const_Region;
Region operator()(const Index1D &I, const Index1D &J)
{
return Region(*this, I,J);
}
const_Region operator()(const Index1D &I, const Index1D &J) const
{
return const_Region(*this, I,J);
}
#endif
};
/* *************************** I/O ********************************/
template <class T>
std::ostream& operator<<(std::ostream &s, const Fortran_Matrix<T> &A)
{
Subscript M=A.num_rows();
Subscript N=A.num_cols();
s << M << " " << N << "\n";
for (Subscript i=1; i<=M; i++)
{
for (Subscript j=1; j<=N; j++)
{
s << A(i,j) << " ";
}
s << "\n";
}
return s;
}
template <class T>
std::istream& operator>>(std::istream &s, Fortran_Matrix<T> &A)
{
Subscript M, N;
s >> M >> N;
if ( !(M == A.num_rows() && N == A.num_cols()))
{
A.newsize(M,N);
}
for (Subscript i=1; i<=M; i++)
for (Subscript j=1; j<=N; j++)
{
s >> A(i,j);
}
return s;
}
// *******************[ basic matrix algorithms ]***************************
template <class T>
Fortran_Matrix<T> operator+(const Fortran_Matrix<T> &A,
const Fortran_Matrix<T> &B)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
assert(M==B.num_rows());
assert(N==B.num_cols());
Fortran_Matrix<T> tmp(M,N);
Subscript i,j;
for (i=1; i<=M; i++)
for (j=1; j<=N; j++)
tmp(i,j) = A(i,j) + B(i,j);
return tmp;
}
template <class T>
Fortran_Matrix<T> operator-(const Fortran_Matrix<T> &A,
const Fortran_Matrix<T> &B)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
assert(M==B.num_rows());
assert(N==B.num_cols());
Fortran_Matrix<T> tmp(M,N);
Subscript i,j;
for (i=1; i<=M; i++)
for (j=1; j<=N; j++)
tmp(i,j) = A(i,j) - B(i,j);
return tmp;
}
// element-wise multiplication (use matmult() below for matrix
// multiplication in the linear algebra sense.)
//
//
template <class T>
Fortran_Matrix<T> mult_element(const Fortran_Matrix<T> &A,
const Fortran_Matrix<T> &B)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
assert(M==B.num_rows());
assert(N==B.num_cols());
Fortran_Matrix<T> tmp(M,N);
Subscript i,j;
for (i=1; i<=M; i++)
for (j=1; j<=N; j++)
tmp(i,j) = A(i,j) * B(i,j);
return tmp;
}
template <class T>
Fortran_Matrix<T> transpose(const Fortran_Matrix<T> &A)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Fortran_Matrix<T> S(N,M);
Subscript i, j;
for (i=1; i<=M; i++)
for (j=1; j<=N; j++)
S(j,i) = A(i,j);
return S;
}
template <class T>
inline Fortran_Matrix<T> matmult(const Fortran_Matrix<T> &A,
const Fortran_Matrix<T> &B)
{
#ifdef TNT_BOUNDS_CHECK
assert(A.num_cols() == B.num_rows());
#endif
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Subscript K = B.num_cols();
Fortran_Matrix<T> tmp(M,K);
T sum;
for (Subscript i=1; i<=M; i++)
for (Subscript k=1; k<=K; k++)
{
sum = 0;
for (Subscript j=1; j<=N; j++)
sum = sum + A(i,j) * B(j,k);
tmp(i,k) = sum;
}
return tmp;
}
template <class T>
inline Fortran_Matrix<T> operator*(const Fortran_Matrix<T> &A,
const Fortran_Matrix<T> &B)
{
return matmult(A,B);
}
template <class T>
inline int matmult(Fortran_Matrix<T>& C, const Fortran_Matrix<T> &A,
const Fortran_Matrix<T> &B)
{
assert(A.num_cols() == B.num_rows());
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Subscript K = B.num_cols();
C.newsize(M,K); // adjust shape of C, if necessary
T sum;
const T* row_i;
const T* col_k;
for (Subscript i=1; i<=M; i++)
{
for (Subscript k=1; k<=K; k++)
{
row_i = &A(i,1);
col_k = &B(1,k);
sum = 0;
for (Subscript j=1; j<=N; j++)
{
sum += *row_i * *col_k;
row_i += M;
col_k ++;
}
C(i,k) = sum;
}
}
return 0;
}
template <class T>
Vector<T> matmult(const Fortran_Matrix<T> &A, const Vector<T> &x)
{
#ifdef TNT_BOUNDS_CHECK
assert(A.num_cols() == x.dim());
#endif
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Vector<T> tmp(M);
T sum;
for (Subscript i=1; i<=M; i++)
{
sum = 0;
for (Subscript j=1; j<=N; j++)
sum = sum + A(i,j) * x(j);
tmp(i) = sum;
}
return tmp;
}
template <class T>
inline Vector<T> operator*(const Fortran_Matrix<T> &A, const Vector<T> &x)
{
return matmult(A,x);
}
template <class T>
inline Fortran_Matrix<T> operator*(const Fortran_Matrix<T> &A, const T &x)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Subscript MN = M*N;
Fortran_Matrix<T> res(M,N);
const T* a = A.begin();
T* t = res.begin();
T* tend = res.end();
for (t=res.begin(); t < tend; t++, a++)
*t = *a * x;
return res;
}
} // namespace TNT
#endif // FMAT_H