This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/iksolver/intern/TNT/vec.h
2002-10-30 02:07:20 +00:00

532 lines
9.8 KiB
C++

/**
* $Id$
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
/*
*
* Template Numerical Toolkit (TNT): Linear Algebra Module
*
* Mathematical and Computational Sciences Division
* National Institute of Technology,
* Gaithersburg, MD USA
*
*
* This software was developed at the National Institute of Standards and
* Technology (NIST) by employees of the Federal Government in the course
* of their official duties. Pursuant to title 17 Section 105 of the
* United States Code, this software is not subject to copyright protection
* and is in the public domain. The Template Numerical Toolkit (TNT) is
* an experimental system. NIST assumes no responsibility whatsoever for
* its use by other parties, and makes no guarantees, expressed or implied,
* about its quality, reliability, or any other characteristic.
*
* BETA VERSION INCOMPLETE AND SUBJECT TO CHANGE
* see http://math.nist.gov/tnt for latest updates.
*
*/
// Basic TNT numerical vector (0-based [i] AND 1-based (i) indexing )
//
#ifndef VEC_H
#define VEC_H
#include "subscript.h"
#include <stdlib.h>
#include <assert.h>
#include <iostream>
#include <strstream>
namespace TNT
{
template <class T>
class Vector
{
public:
typedef Subscript size_type;
typedef T value_type;
typedef T element_type;
typedef T* pointer;
typedef T* iterator;
typedef T& reference;
typedef const T* const_iterator;
typedef const T& const_reference;
Subscript lbound() const { return 1;}
protected:
T* v_;
T* vm1_; // pointer adjustment for optimzied 1-offset indexing
Subscript n_;
// internal helper function to create the array
// of row pointers
void initialize(Subscript N)
{
// adjust pointers so that they are 1-offset:
// v_[] is the internal contiguous array, it is still 0-offset
//
assert(v_ == NULL);
v_ = new T[N];
assert(v_ != NULL);
vm1_ = v_-1;
n_ = N;
}
void copy(const T* v)
{
Subscript N = n_;
Subscript i;
#ifdef TNT_UNROLL_LOOPS
Subscript Nmod4 = N & 3;
Subscript N4 = N - Nmod4;
for (i=0; i<N4; i+=4)
{
v_[i] = v[i];
v_[i+1] = v[i+1];
v_[i+2] = v[i+2];
v_[i+3] = v[i+3];
}
for (i=N4; i< N; i++)
v_[i] = v[i];
#else
for (i=0; i< N; i++)
v_[i] = v[i];
#endif
}
void set(const T& val)
{
Subscript N = n_;
Subscript i;
#ifdef TNT_UNROLL_LOOPS
Subscript Nmod4 = N & 3;
Subscript N4 = N - Nmod4;
for (i=0; i<N4; i+=4)
{
v_[i] = val;
v_[i+1] = val;
v_[i+2] = val;
v_[i+3] = val;
}
for (i=N4; i< N; i++)
v_[i] = val;
#else
for (i=0; i< N; i++)
v_[i] = val;
#endif
}
void destroy()
{
/* do nothing, if no memory has been previously allocated */
if (v_ == NULL) return ;
/* if we are here, then matrix was previously allocated */
delete [] (v_);
v_ = NULL;
vm1_ = NULL;
}
public:
// access
iterator begin() { return v_;}
iterator end() { return v_ + n_; }
const iterator begin() const { return v_;}
const iterator end() const { return v_ + n_; }
// destructor
~Vector()
{
destroy();
}
// constructors
Vector() : v_(0), vm1_(0), n_(0) {};
Vector(const Vector<T> &A) : v_(0), vm1_(0), n_(0)
{
initialize(A.n_);
copy(A.v_);
}
Vector(Subscript N, const T& value = T()) : v_(0), vm1_(0), n_(0)
{
initialize(N);
set(value);
}
Vector(Subscript N, const T* v) : v_(0), vm1_(0), n_(0)
{
initialize(N);
copy(v);
}
Vector(Subscript N, char *s) : v_(0), vm1_(0), n_(0)
{
initialize(N);
std::istrstream ins(s);
Subscript i;
for (i=0; i<N; i++)
ins >> v_[i];
}
// methods
//
Vector<T>& newsize(Subscript N)
{
if (n_ == N) return *this;
destroy();
initialize(N);
return *this;
}
// assignments
//
Vector<T>& operator=(const Vector<T> &A)
{
if (v_ == A.v_)
return *this;
if (n_ == A.n_) // no need to re-alloc
copy(A.v_);
else
{
destroy();
initialize(A.n_);
copy(A.v_);
}
return *this;
}
Vector<T>& operator=(const T& scalar)
{
set(scalar);
return *this;
}
inline Subscript dim() const
{
return n_;
}
inline Subscript size() const
{
return n_;
}
inline reference operator()(Subscript i)
{
#ifdef TNT_BOUNDS_CHECK
assert(1<=i);
assert(i <= n_) ;
#endif
return vm1_[i];
}
inline const_reference operator() (Subscript i) const
{
#ifdef TNT_BOUNDS_CHECK
assert(1<=i);
assert(i <= n_) ;
#endif
return vm1_[i];
}
inline reference operator[](Subscript i)
{
#ifdef TNT_BOUNDS_CHECK
assert(0<=i);
assert(i < n_) ;
#endif
return v_[i];
}
inline const_reference operator[](Subscript i) const
{
#ifdef TNT_BOUNDS_CHECK
assert(0<=i) ;
assert(i < n_) ;
#endif
return v_[i];
}
};
/* *************************** I/O ********************************/
template <class T>
std::ostream& operator<<(std::ostream &s, const Vector<T> &A)
{
Subscript N=A.dim();
s << N << endl;
for (Subscript i=0; i<N; i++)
s << A[i] << " " << endl;
s << endl;
return s;
}
template <class T>
std::istream & operator>>(std::istream &s, Vector<T> &A)
{
Subscript N;
s >> N;
if ( !(N == A.size() ))
{
A.newsize(N);
}
for (Subscript i=0; i<N; i++)
s >> A[i];
return s;
}
// *******************[ basic matrix algorithms ]***************************
template <class T>
Vector<T> operator+(const Vector<T> &A,
const Vector<T> &B)
{
Subscript N = A.dim();
assert(N==B.dim());
Vector<T> tmp(N);
Subscript i;
for (i=0; i<N; i++)
tmp[i] = A[i] + B[i];
return tmp;
}
template <class T>
Vector<T> operator-(const Vector<T> &A,
const Vector<T> &B)
{
Subscript N = A.dim();
assert(N==B.dim());
Vector<T> tmp(N);
Subscript i;
for (i=0; i<N; i++)
tmp[i] = A[i] - B[i];
return tmp;
}
template <class T>
Vector<T> operator*(const Vector<T> &A,
const Vector<T> &B)
{
Subscript N = A.dim();
assert(N==B.dim());
Vector<T> tmp(N);
Subscript i;
for (i=0; i<N; i++)
tmp[i] = A[i] * B[i];
return tmp;
}
template <class T>
Vector<T> operator*(const Vector<T> &A,
const T &B)
{
Subscript N = A.dim();
Vector<T> tmp(N);
Subscript i;
for (i=0; i<N; i++)
tmp[i] = A[i] * B;
return tmp;
}
template <class T>
T dot_prod(const Vector<T> &A, const Vector<T> &B)
{
Subscript N = A.dim();
assert(N == B.dim());
Subscript i;
T sum = 0;
for (i=0; i<N; i++)
sum += A[i] * B[i];
return sum;
}
// inplace versions of the above template functions
// A = A + B
template <class T>
void vectoradd(
Vector<T> &A,
const Vector<T> &B)
{
const Subscript N = A.dim();
assert(N==B.dim());
Subscript i;
for (i=0; i<N; i++)
A[i] += B[i];
}
// same with seperate output vector
template <class T>
void vectoradd(
Vector<T> &C,
const Vector<T> &A,
const Vector<T> &B)
{
const Subscript N = A.dim();
assert(N==B.dim());
Subscript i;
for (i=0; i<N; i++)
C[i] = A[i] + B[i];
}
// A = A - B
template <class T>
void vectorsub(
Vector<T> &A,
const Vector<T> &B)
{
const Subscript N = A.dim();
assert(N==B.dim());
Subscript i;
for (i=0; i<N; i++)
A[i] -= B[i];
}
template <class T>
void vectorsub(
Vector<T> &C,
const Vector<T> &A,
const Vector<T> &B)
{
const Subscript N = A.dim();
assert(N==B.dim());
Subscript i;
for (i=0; i<N; i++)
C[i] = A[i] - B[i];
}
template <class T>
void vectorscale(
Vector<T> &C,
const Vector<T> &A,
const T &B)
{
const Subscript N = A.dim();
Subscript i;
for (i=0; i<N; i++)
C[i] = A[i] * B;
}
template <class T>
void vectorscale(
Vector<T> &A,
const T &B)
{
const Subscript N = A.dim();
Subscript i;
for (i=0; i<N; i++)
A[i] *= B;
}
} /* namespace TNT */
#endif // VEC_H