2356 lines
50 KiB
C
2356 lines
50 KiB
C
|
|
/* formules voor blender
|
|
*
|
|
* sort of cleaned up mar-01 nzc
|
|
*
|
|
* Functions here get counterparts with MTC prefixes. Basically, we phase
|
|
* out the calls here in favour of fully prototyped versions.
|
|
*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/* ************************ FUNKTIES **************************** */
|
|
|
|
#include <math.h>
|
|
#include <sys/types.h>
|
|
#include <string.h>
|
|
#include <float.h>
|
|
|
|
#ifdef __sun__
|
|
#include <strings.h>
|
|
#endif
|
|
|
|
#if !defined(__sgi) && !defined(WIN32)
|
|
#include <sys/time.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include "BLI_arithb.h"
|
|
|
|
/* A few small defines. Keep'em local! */
|
|
#define SMALL_NUMBER 1.e-8
|
|
#define ABS(x) ((x) < 0 ? -(x) : (x))
|
|
#define SWAP(type, a, b) { type sw_ap; sw_ap=(a); (a)=(b); (b)=sw_ap; }
|
|
|
|
|
|
#if defined(WIN32) || defined(__APPLE__)
|
|
#include <stdlib.h>
|
|
#define M_PI 3.14159265358979323846
|
|
#define M_SQRT2 1.41421356237309504880
|
|
|
|
#endif /* defined(WIN32) || defined(__APPLE__) */
|
|
|
|
|
|
float saacos(float fac)
|
|
{
|
|
if(fac<= -1.0f) return (float)M_PI;
|
|
else if(fac>=1.0f) return 0.0;
|
|
else return (float)acos(fac);
|
|
}
|
|
|
|
float sasqrt(float fac)
|
|
{
|
|
if(fac<=0.0) return 0.0;
|
|
return (float)sqrt(fac);
|
|
}
|
|
|
|
float Normalise(float *n)
|
|
{
|
|
float d;
|
|
|
|
d= n[0]*n[0]+n[1]*n[1]+n[2]*n[2];
|
|
/* FLT_EPSILON is too large! A larger value causes normalise errors in a scaled down utah teapot */
|
|
if(d>0.0000000000001) {
|
|
d= (float)sqrt(d);
|
|
|
|
n[0]/=d;
|
|
n[1]/=d;
|
|
n[2]/=d;
|
|
} else {
|
|
n[0]=n[1]=n[2]= 0.0;
|
|
d= 0.0;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
void Crossf(float *c, const float *a, const float *b)
|
|
{
|
|
c[0] = a[1] * b[2] - a[2] * b[1];
|
|
c[1] = a[2] * b[0] - a[0] * b[2];
|
|
c[2] = a[0] * b[1] - a[1] * b[0];
|
|
}
|
|
|
|
float Inpf(const float *v1, const float *v2)
|
|
{
|
|
return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2];
|
|
}
|
|
|
|
void Mat3Transp(float mat[][3])
|
|
{
|
|
float t;
|
|
|
|
t = mat[0][1] ;
|
|
mat[0][1] = mat[1][0] ;
|
|
mat[1][0] = t;
|
|
t = mat[0][2] ;
|
|
mat[0][2] = mat[2][0] ;
|
|
mat[2][0] = t;
|
|
t = mat[1][2] ;
|
|
mat[1][2] = mat[2][1] ;
|
|
mat[2][1] = t;
|
|
}
|
|
|
|
void Mat4Transp(float mat[][4])
|
|
{
|
|
float t;
|
|
|
|
t = mat[0][1] ;
|
|
mat[0][1] = mat[1][0] ;
|
|
mat[1][0] = t;
|
|
t = mat[0][2] ;
|
|
mat[0][2] = mat[2][0] ;
|
|
mat[2][0] = t;
|
|
t = mat[0][3] ;
|
|
mat[0][3] = mat[3][0] ;
|
|
mat[3][0] = t;
|
|
|
|
t = mat[1][2] ;
|
|
mat[1][2] = mat[2][1] ;
|
|
mat[2][1] = t;
|
|
t = mat[1][3] ;
|
|
mat[1][3] = mat[3][1] ;
|
|
mat[3][1] = t;
|
|
|
|
t = mat[2][3] ;
|
|
mat[2][3] = mat[3][2] ;
|
|
mat[3][2] = t;
|
|
}
|
|
|
|
|
|
/*
|
|
* invertmat -
|
|
* computes the inverse of mat and puts it in inverse. Returns
|
|
* TRUE on success (i.e. can always find a pivot) and FALSE on failure.
|
|
* Uses Gaussian Elimination with partial (maximal column) pivoting.
|
|
*
|
|
* Mark Segal - 1992
|
|
*/
|
|
|
|
int Mat4Invert(float inverse[][4], const float mat[][4])
|
|
{
|
|
int i, j, k;
|
|
double temp;
|
|
float tempmat[4][4];
|
|
float max;
|
|
int maxj;
|
|
|
|
/* Set inverse to identity */
|
|
for (i=0; i<4; i++)
|
|
for (j=0; j<4; j++)
|
|
inverse[i][j] = 0;
|
|
for (i=0; i<4; i++)
|
|
inverse[i][i] = 1;
|
|
|
|
/* Copy original matrix so we don't mess it up */
|
|
for(i = 0; i < 4; i++)
|
|
for(j = 0; j <4; j++)
|
|
tempmat[i][j] = mat[i][j];
|
|
|
|
for(i = 0; i < 4; i++) {
|
|
/* Look for row with max pivot */
|
|
max = ABS(tempmat[i][i]);
|
|
maxj = i;
|
|
for(j = i + 1; j < 4; j++) {
|
|
if(ABS(tempmat[j][i]) > max) {
|
|
max = ABS(tempmat[j][i]);
|
|
maxj = j;
|
|
}
|
|
}
|
|
/* Swap rows if necessary */
|
|
if (maxj != i) {
|
|
for( k = 0; k < 4; k++) {
|
|
SWAP(float, tempmat[i][k], tempmat[maxj][k]);
|
|
SWAP(float, inverse[i][k], inverse[maxj][k]);
|
|
}
|
|
}
|
|
|
|
temp = tempmat[i][i];
|
|
if (temp == 0)
|
|
return 0; /* No non-zero pivot */
|
|
for(k = 0; k < 4; k++) {
|
|
tempmat[i][k] = (float)(tempmat[i][k]/temp);
|
|
inverse[i][k] = (float)(inverse[i][k]/temp);
|
|
}
|
|
for(j = 0; j < 4; j++) {
|
|
if(j != i) {
|
|
temp = tempmat[j][i];
|
|
for(k = 0; k < 4; k++) {
|
|
tempmat[j][k] -= (float)(tempmat[i][k]*temp);
|
|
inverse[j][k] -= (float)(inverse[i][k]*temp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
#ifdef TEST_ACTIVE
|
|
void Mat4InvertSimp(float inverse[][4], const float mat[][4])
|
|
{
|
|
/* alleen HOEK bewarende Matrices */
|
|
/* gebaseerd op GG IV pag 205 */
|
|
float scale;
|
|
|
|
scale= mat[0][0]*mat[0][0] + mat[1][0]*mat[1][0] + mat[2][0]*mat[2][0];
|
|
if(scale==0.0) return;
|
|
|
|
scale= 1.0/scale;
|
|
|
|
/* transpose en scale */
|
|
inverse[0][0]= scale*mat[0][0];
|
|
inverse[1][0]= scale*mat[0][1];
|
|
inverse[2][0]= scale*mat[0][2];
|
|
inverse[0][1]= scale*mat[1][0];
|
|
inverse[1][1]= scale*mat[1][1];
|
|
inverse[2][1]= scale*mat[1][2];
|
|
inverse[0][2]= scale*mat[2][0];
|
|
inverse[1][2]= scale*mat[2][1];
|
|
inverse[2][2]= scale*mat[2][2];
|
|
|
|
inverse[3][0]= -(inverse[0][0]*mat[3][0] + inverse[1][0]*mat[3][1] + inverse[2][0]*mat[3][2]);
|
|
inverse[3][1]= -(inverse[0][1]*mat[3][0] + inverse[1][1]*mat[3][1] + inverse[2][1]*mat[3][2]);
|
|
inverse[3][2]= -(inverse[0][2]*mat[3][0] + inverse[1][2]*mat[3][1] + inverse[2][2]*mat[3][2]);
|
|
|
|
inverse[0][3]= inverse[1][3]= inverse[2][3]= 0.0;
|
|
inverse[3][3]= 1.0;
|
|
}
|
|
#endif
|
|
/* struct Matrix4; */
|
|
|
|
#ifdef TEST_ACTIVE
|
|
/* this seems to be unused.. */
|
|
|
|
void Mat4Inv(float *m1, const float *m2)
|
|
{
|
|
|
|
/* This gets me into trouble: */
|
|
float mat1[3][3], mat2[3][3];
|
|
|
|
/* void Mat3Inv(); */
|
|
/* void Mat3CpyMat4(); */
|
|
/* void Mat4CpyMat3(); */
|
|
|
|
Mat3CpyMat4((float*)mat2,m2);
|
|
Mat3Inv((float*)mat1, (float*) mat2);
|
|
Mat4CpyMat3(m1, mat1);
|
|
|
|
}
|
|
#endif
|
|
|
|
|
|
float Det2x2(float a,float b,float c,float d)
|
|
{
|
|
|
|
return a*d - b*c;
|
|
}
|
|
|
|
|
|
|
|
float Det3x3(float a1, float a2, float a3,
|
|
float b1, float b2, float b3,
|
|
float c1, float c2, float c3 )
|
|
{
|
|
float ans;
|
|
|
|
ans = a1 * Det2x2( b2, b3, c2, c3 )
|
|
- b1 * Det2x2( a2, a3, c2, c3 )
|
|
+ c1 * Det2x2( a2, a3, b2, b3 );
|
|
|
|
return ans;
|
|
}
|
|
|
|
float Det4x4(const float m[][4])
|
|
{
|
|
float ans;
|
|
float a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4,d1,d2,d3,d4;
|
|
|
|
a1= m[0][0];
|
|
b1= m[0][1];
|
|
c1= m[0][2];
|
|
d1= m[0][3];
|
|
|
|
a2= m[1][0];
|
|
b2= m[1][1];
|
|
c2= m[1][2];
|
|
d2= m[1][3];
|
|
|
|
a3= m[2][0];
|
|
b3= m[2][1];
|
|
c3= m[2][2];
|
|
d3= m[2][3];
|
|
|
|
a4= m[3][0];
|
|
b4= m[3][1];
|
|
c4= m[3][2];
|
|
d4= m[3][3];
|
|
|
|
ans = a1 * Det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4)
|
|
- b1 * Det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4)
|
|
+ c1 * Det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4)
|
|
- d1 * Det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
|
|
|
|
return ans;
|
|
}
|
|
|
|
|
|
void Mat4Adj(float out[][4], const float in[][4]) /* out = ADJ(in) */
|
|
{
|
|
float a1, a2, a3, a4, b1, b2, b3, b4;
|
|
float c1, c2, c3, c4, d1, d2, d3, d4;
|
|
|
|
a1= in[0][0];
|
|
b1= in[0][1];
|
|
c1= in[0][2];
|
|
d1= in[0][3];
|
|
|
|
a2= in[1][0];
|
|
b2= in[1][1];
|
|
c2= in[1][2];
|
|
d2= in[1][3];
|
|
|
|
a3= in[2][0];
|
|
b3= in[2][1];
|
|
c3= in[2][2];
|
|
d3= in[2][3];
|
|
|
|
a4= in[3][0];
|
|
b4= in[3][1];
|
|
c4= in[3][2];
|
|
d4= in[3][3];
|
|
|
|
|
|
out[0][0] = Det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4);
|
|
out[1][0] = - Det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4);
|
|
out[2][0] = Det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4);
|
|
out[3][0] = - Det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
|
|
|
|
out[0][1] = - Det3x3( b1, b3, b4, c1, c3, c4, d1, d3, d4);
|
|
out[1][1] = Det3x3( a1, a3, a4, c1, c3, c4, d1, d3, d4);
|
|
out[2][1] = - Det3x3( a1, a3, a4, b1, b3, b4, d1, d3, d4);
|
|
out[3][1] = Det3x3( a1, a3, a4, b1, b3, b4, c1, c3, c4);
|
|
|
|
out[0][2] = Det3x3( b1, b2, b4, c1, c2, c4, d1, d2, d4);
|
|
out[1][2] = - Det3x3( a1, a2, a4, c1, c2, c4, d1, d2, d4);
|
|
out[2][2] = Det3x3( a1, a2, a4, b1, b2, b4, d1, d2, d4);
|
|
out[3][2] = - Det3x3( a1, a2, a4, b1, b2, b4, c1, c2, c4);
|
|
|
|
out[0][3] = - Det3x3( b1, b2, b3, c1, c2, c3, d1, d2, d3);
|
|
out[1][3] = Det3x3( a1, a2, a3, c1, c2, c3, d1, d2, d3);
|
|
out[2][3] = - Det3x3( a1, a2, a3, b1, b2, b3, d1, d2, d3);
|
|
out[3][3] = Det3x3( a1, a2, a3, b1, b2, b3, c1, c2, c3);
|
|
}
|
|
|
|
void Mat4InvGG(float out[][4], const float in[][4]) /* van Graphic Gems I, out= INV(in) */
|
|
{
|
|
int i, j;
|
|
float det;
|
|
|
|
/* calculate the adjoint matrix */
|
|
|
|
Mat4Adj(out,in);
|
|
|
|
det = Det4x4(out);
|
|
|
|
if ( fabs( det ) < SMALL_NUMBER) {
|
|
return;
|
|
}
|
|
|
|
/* scale the adjoint matrix to get the inverse */
|
|
|
|
for (i=0; i<4; i++)
|
|
for(j=0; j<4; j++)
|
|
out[i][j] = out[i][j] / det;
|
|
|
|
/* de laatste factor is niet altijd 1. Hierdoor moet eigenlijk nog gedeeld worden */
|
|
}
|
|
|
|
|
|
void Mat3Inv(float m1[][3], const float m2[][3])
|
|
{
|
|
short a,b;
|
|
float det;
|
|
|
|
/* eerst adjoint */
|
|
Mat3Adj(m1,m2);
|
|
|
|
/* dan det oude mat! */
|
|
det= m2[0][0]* (m2[1][1]*m2[2][2] - m2[1][2]*m2[2][1])
|
|
-m2[1][0]* (m2[0][1]*m2[2][2] - m2[0][2]*m2[2][1])
|
|
+m2[2][0]* (m2[0][1]*m2[1][2] - m2[0][2]*m2[1][1]);
|
|
|
|
if(det==0) det=1;
|
|
det= 1/det;
|
|
for(a=0;a<3;a++) {
|
|
for(b=0;b<3;b++) {
|
|
m1[a][b]*=det;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Mat3Adj(float m1[][3], const float m[][3])
|
|
{
|
|
m1[0][0]=m[1][1]*m[2][2]-m[1][2]*m[2][1];
|
|
m1[0][1]= -m[0][1]*m[2][2]+m[0][2]*m[2][1];
|
|
m1[0][2]=m[0][1]*m[1][2]-m[0][2]*m[1][1];
|
|
|
|
m1[1][0]= -m[1][0]*m[2][2]+m[1][2]*m[2][0];
|
|
m1[1][1]=m[0][0]*m[2][2]-m[0][2]*m[2][0];
|
|
m1[1][2]= -m[0][0]*m[1][2]+m[0][2]*m[1][0];
|
|
|
|
m1[2][0]=m[1][0]*m[2][1]-m[1][1]*m[2][0];
|
|
m1[2][1]= -m[0][0]*m[2][1]+m[0][1]*m[2][0];
|
|
m1[2][2]=m[0][0]*m[1][1]-m[0][1]*m[1][0];
|
|
}
|
|
|
|
void Mat4MulMat4(float m1[][4], const float m2[][4], const float m3[][4])
|
|
{
|
|
/* matrix product: m1[j][k] = m2[j][i].m3[i][k] */
|
|
|
|
m1[0][0] = m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0] + m2[0][3]*m3[3][0];
|
|
m1[0][1] = m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1] + m2[0][3]*m3[3][1];
|
|
m1[0][2] = m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2] + m2[0][3]*m3[3][2];
|
|
m1[0][3] = m2[0][0]*m3[0][3] + m2[0][1]*m3[1][3] + m2[0][2]*m3[2][3] + m2[0][3]*m3[3][3];
|
|
|
|
m1[1][0] = m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0] + m2[1][3]*m3[3][0];
|
|
m1[1][1] = m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1] + m2[1][3]*m3[3][1];
|
|
m1[1][2] = m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2] + m2[1][3]*m3[3][2];
|
|
m1[1][3] = m2[1][0]*m3[0][3] + m2[1][1]*m3[1][3] + m2[1][2]*m3[2][3] + m2[1][3]*m3[3][3];
|
|
|
|
m1[2][0] = m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0] + m2[2][3]*m3[3][0];
|
|
m1[2][1] = m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1] + m2[2][3]*m3[3][1];
|
|
m1[2][2] = m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2] + m2[2][3]*m3[3][2];
|
|
m1[2][3] = m2[2][0]*m3[0][3] + m2[2][1]*m3[1][3] + m2[2][2]*m3[2][3] + m2[2][3]*m3[3][3];
|
|
|
|
m1[3][0] = m2[3][0]*m3[0][0] + m2[3][1]*m3[1][0] + m2[3][2]*m3[2][0] + m2[3][3]*m3[3][0];
|
|
m1[3][1] = m2[3][0]*m3[0][1] + m2[3][1]*m3[1][1] + m2[3][2]*m3[2][1] + m2[3][3]*m3[3][1];
|
|
m1[3][2] = m2[3][0]*m3[0][2] + m2[3][1]*m3[1][2] + m2[3][2]*m3[2][2] + m2[3][3]*m3[3][2];
|
|
m1[3][3] = m2[3][0]*m3[0][3] + m2[3][1]*m3[1][3] + m2[3][2]*m3[2][3] + m2[3][3]*m3[3][3];
|
|
|
|
}
|
|
#ifdef TEST_ACTIVE
|
|
void subMat4MulMat4(float *m1, const float *m2, const float *m3)
|
|
{
|
|
|
|
m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
|
|
m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
|
|
m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
|
|
m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
|
|
m1+=4;
|
|
m2+=4;
|
|
m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
|
|
m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
|
|
m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
|
|
m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
|
|
m1+=4;
|
|
m2+=4;
|
|
m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
|
|
m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
|
|
m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
|
|
m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
|
|
}
|
|
#endif
|
|
|
|
#ifndef TEST_ACTIVE
|
|
void Mat3MulMat3(float m1[][3], const float m3[][3], const float m2[][3])
|
|
#else
|
|
void Mat3MulMat3(float *m1, const float *m3, const float *m2)
|
|
#endif
|
|
{
|
|
/* m1[i][j] = m2[i][k]*m3[k][j], args are flipped! */
|
|
#ifndef TEST_ACTIVE
|
|
m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
|
|
m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
|
|
m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
|
|
|
|
m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
|
|
m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
|
|
m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
|
|
|
|
m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
|
|
m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
|
|
m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
|
|
#else
|
|
m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
|
|
m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
|
|
m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
|
|
m1+=3;
|
|
m2+=3;
|
|
m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
|
|
m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
|
|
m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
|
|
m1+=3;
|
|
m2+=3;
|
|
m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
|
|
m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
|
|
m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
|
|
#endif
|
|
} /* end of void Mat3MulMat3(float m1[][3], float m3[][3], float m2[][3]) */
|
|
|
|
void Mat4MulMat43(float (*m1)[4], const float (*m3)[4], const float (*m2)[3])
|
|
{
|
|
m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
|
|
m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
|
|
m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
|
|
m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
|
|
m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
|
|
m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
|
|
m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
|
|
m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
|
|
m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
|
|
}
|
|
/* m1 = m2 * m3, ignore the elements on the 4th row/column of m3*/
|
|
void Mat3IsMat3MulMat4(float m1[][3], const float m2[][3], const float m3[][4])
|
|
{
|
|
/* m1[i][j] = m2[i][k] * m3[k][j] */
|
|
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] +m2[0][2] * m3[2][0];
|
|
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] +m2[0][2] * m3[2][1];
|
|
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] +m2[0][2] * m3[2][2];
|
|
|
|
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] +m2[1][2] * m3[2][0];
|
|
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] +m2[1][2] * m3[2][1];
|
|
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] +m2[1][2] * m3[2][2];
|
|
|
|
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] +m2[2][2] * m3[2][0];
|
|
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] +m2[2][2] * m3[2][1];
|
|
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] +m2[2][2] * m3[2][2];
|
|
}
|
|
|
|
|
|
|
|
void Mat4MulMat34(float (*m1)[4], const float (*m3)[3], const float (*m2)[4])
|
|
{
|
|
m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
|
|
m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
|
|
m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
|
|
m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
|
|
m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
|
|
m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
|
|
m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
|
|
m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
|
|
m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
|
|
}
|
|
|
|
void Mat4CpyMat4(float m1[][4], const float m2[][4])
|
|
{
|
|
memcpy(m1, m2, 4*4*sizeof(float));
|
|
}
|
|
|
|
void Mat4SwapMat4(float *m1, float *m2)
|
|
{
|
|
float t;
|
|
int i;
|
|
|
|
for(i=0;i<16;i++) {
|
|
t= *m1;
|
|
*m1= *m2;
|
|
*m2= t;
|
|
m1++;
|
|
m2++;
|
|
}
|
|
}
|
|
|
|
typedef float Mat3Row[3];
|
|
typedef float Mat4Row[4];
|
|
|
|
#ifdef TEST_ACTIVE
|
|
void Mat3CpyMat4(float *m1p, const float *m2p)
|
|
#else
|
|
void Mat3CpyMat4(float m1[][3], const float m2[][4])
|
|
#endif
|
|
{
|
|
#ifdef TEST_ACTIVE
|
|
int i, j;
|
|
Mat3Row *m1= (Mat3Row *)m1p;
|
|
Mat4Row *m2= (Mat4Row *)m2p;
|
|
for ( i = 0; i++; i < 3) {
|
|
for (j = 0; j++; j < 3) {
|
|
m1p[3*i + j] = m2p[4*i + j];
|
|
}
|
|
}
|
|
#endif
|
|
m1[0][0]= m2[0][0];
|
|
m1[0][1]= m2[0][1];
|
|
m1[0][2]= m2[0][2];
|
|
|
|
m1[1][0]= m2[1][0];
|
|
m1[1][1]= m2[1][1];
|
|
m1[1][2]= m2[1][2];
|
|
|
|
m1[2][0]= m2[2][0];
|
|
m1[2][1]= m2[2][1];
|
|
m1[2][2]= m2[2][2];
|
|
}
|
|
|
|
/* Butched. See .h for comment */
|
|
/* void Mat4CpyMat3(float m1[][4], float m2[][3]) */
|
|
#ifdef TEST_ACTIVE
|
|
void Mat4CpyMat3(float* m1, const float *m2)
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++) {
|
|
m1[(4*i)] = m2[(3*i)];
|
|
m1[(4*i) + 1]= m2[(3*i) + 1];
|
|
m1[(4*i) + 2]= m2[(3*i) + 2];
|
|
m1[(4*i) + 3]= 0.0;
|
|
i++;
|
|
}
|
|
|
|
m1[12]=m1[13]= m1[14]= 0.0;
|
|
m1[15]= 1.0;
|
|
}
|
|
#else
|
|
|
|
void Mat4CpyMat3(float m1[][4], const float m2[][3]) /* no clear */
|
|
{
|
|
m1[0][0]= m2[0][0];
|
|
m1[0][1]= m2[0][1];
|
|
m1[0][2]= m2[0][2];
|
|
|
|
m1[1][0]= m2[1][0];
|
|
m1[1][1]= m2[1][1];
|
|
m1[1][2]= m2[1][2];
|
|
|
|
m1[2][0]= m2[2][0];
|
|
m1[2][1]= m2[2][1];
|
|
m1[2][2]= m2[2][2];
|
|
|
|
/* Reevan's Bugfix */
|
|
m1[0][3]=0.0F;
|
|
m1[1][3]=0.0F;
|
|
m1[2][3]=0.0F;
|
|
|
|
m1[3][0]=0.0F;
|
|
m1[3][1]=0.0F;
|
|
m1[3][2]=0.0F;
|
|
m1[3][3]=1.0F;
|
|
|
|
|
|
}
|
|
#endif
|
|
|
|
void Mat3CpyMat3(float m1[][3], const float m2[][3])
|
|
{
|
|
/* destination comes first: */
|
|
memcpy(&m1[0], &m2[0], 9*sizeof(float));
|
|
}
|
|
|
|
void Mat3MulSerie(float answ[][3],
|
|
const float m1[][3], const float m2[][3], const float m3[][3],
|
|
const float m4[][3], const float m5[][3], const float m6[][3],
|
|
const float m7[][3], const float m8[][3])
|
|
{
|
|
float temp[3][3];
|
|
|
|
if(m1==0 || m2==0) return;
|
|
|
|
|
|
Mat3MulMat3(answ, m2, m1);
|
|
if(m3) {
|
|
Mat3MulMat3(temp, m3, answ);
|
|
if(m4) {
|
|
Mat3MulMat3(answ, m4, temp);
|
|
if(m5) {
|
|
Mat3MulMat3(temp, m5, answ);
|
|
if(m6) {
|
|
Mat3MulMat3(answ, m6, temp);
|
|
if(m7) {
|
|
Mat3MulMat3(temp, m7, answ);
|
|
if(m8) {
|
|
Mat3MulMat3(answ, m8, temp);
|
|
}
|
|
else Mat3CpyMat3(answ, temp);
|
|
}
|
|
}
|
|
else Mat3CpyMat3(answ, temp);
|
|
}
|
|
}
|
|
else Mat3CpyMat3(answ, temp);
|
|
}
|
|
}
|
|
|
|
void Mat4MulSerie(float answ[][4], const float m1[][4],
|
|
const float m2[][4], const float m3[][4], const float m4[][4],
|
|
const float m5[][4], const float m6[][4], const float m7[][4],
|
|
const float m8[][4])
|
|
{
|
|
float temp[4][4];
|
|
|
|
if(m1==0 || m2==0) return;
|
|
|
|
Mat4MulMat4(answ, m2, m1);
|
|
if(m3) {
|
|
Mat4MulMat4(temp, m3, answ);
|
|
if(m4) {
|
|
Mat4MulMat4(answ, m4, temp);
|
|
if(m5) {
|
|
Mat4MulMat4(temp, m5, answ);
|
|
if(m6) {
|
|
Mat4MulMat4(answ, m6, temp);
|
|
if(m7) {
|
|
Mat4MulMat4(temp, m7, answ);
|
|
if(m8) {
|
|
Mat4MulMat4(answ, m8, temp);
|
|
}
|
|
else Mat4CpyMat4(answ, temp);
|
|
}
|
|
}
|
|
else Mat4CpyMat4(answ, temp);
|
|
}
|
|
}
|
|
else Mat4CpyMat4(answ, temp);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void Mat4Clr(float *m)
|
|
{
|
|
memset(m, 0, 4*4*sizeof(float));
|
|
}
|
|
|
|
void Mat3Clr(float *m)
|
|
{
|
|
memset(m, 0, 3*3*sizeof(float));
|
|
}
|
|
|
|
void Mat4One(float m[][4])
|
|
{
|
|
|
|
m[0][0]= m[1][1]= m[2][2]= m[3][3]= 1.0;
|
|
m[0][1]= m[0][2]= m[0][3]= 0.0;
|
|
m[1][0]= m[1][2]= m[1][3]= 0.0;
|
|
m[2][0]= m[2][1]= m[2][3]= 0.0;
|
|
m[3][0]= m[3][1]= m[3][2]= 0.0;
|
|
}
|
|
|
|
void Mat3One(float m[][3])
|
|
{
|
|
|
|
m[0][0]= m[1][1]= m[2][2]= 1.0;
|
|
m[0][1]= m[0][2]= 0.0;
|
|
m[1][0]= m[1][2]= 0.0;
|
|
m[2][0]= m[2][1]= 0.0;
|
|
}
|
|
|
|
void Mat4MulVec(const float mat[][4], int *vec)
|
|
{
|
|
int x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
vec[0]=(int)(x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0]);
|
|
vec[1]=(int)(x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1]);
|
|
vec[2]=(int)(x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2]);
|
|
}
|
|
|
|
void Mat4MulVecfl(const float mat[][4], float *vec)
|
|
{
|
|
float x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
vec[0]=x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0];
|
|
vec[1]=x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1];
|
|
vec[2]=x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2];
|
|
}
|
|
|
|
void VecMat4MulVecfl(float *in, const float mat[][4], const float *vec)
|
|
{
|
|
float x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
in[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0];
|
|
in[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1];
|
|
in[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2];
|
|
}
|
|
|
|
void Mat4Mul3Vecfl(const float mat[][4], float *vec)
|
|
{
|
|
float x,y;
|
|
|
|
x= vec[0];
|
|
y= vec[1];
|
|
vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
|
|
vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
|
|
vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
|
|
}
|
|
|
|
void Mat4MulVec4fl(const float mat[][4], float *vec)
|
|
{
|
|
float x,y,z;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
z= vec[2];
|
|
vec[0]=x*mat[0][0] + y*mat[1][0] + z*mat[2][0] + mat[3][0]*vec[3];
|
|
vec[1]=x*mat[0][1] + y*mat[1][1] + z*mat[2][1] + mat[3][1]*vec[3];
|
|
vec[2]=x*mat[0][2] + y*mat[1][2] + z*mat[2][2] + mat[3][2]*vec[3];
|
|
vec[3]=x*mat[0][3] + y*mat[1][3] + z*mat[2][3] + mat[3][3]*vec[3];
|
|
}
|
|
|
|
void Mat3MulVec(const float mat[][3], int *vec)
|
|
{
|
|
int x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
vec[0]= (int)(x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2]);
|
|
vec[1]= (int)(x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2]);
|
|
vec[2]= (int)(x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2]);
|
|
}
|
|
|
|
void Mat3MulVecfl(const float mat[][3], float *vec)
|
|
{
|
|
float x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
|
|
vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
|
|
vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
|
|
}
|
|
|
|
void Mat3MulVecd(const float mat[][3], double *vec)
|
|
{
|
|
double x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
|
|
vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
|
|
vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
|
|
}
|
|
|
|
void Mat3TransMulVecfl(const float mat[][3], float *vec)
|
|
{
|
|
float x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
vec[0]= x*mat[0][0] + y*mat[0][1] + mat[0][2]*vec[2];
|
|
vec[1]= x*mat[1][0] + y*mat[1][1] + mat[1][2]*vec[2];
|
|
vec[2]= x*mat[2][0] + y*mat[2][1] + mat[2][2]*vec[2];
|
|
}
|
|
|
|
void Mat3MulFloat(float *m, float f)
|
|
{
|
|
int i;
|
|
|
|
for(i=0;i<9;i++) m[i]*=f;
|
|
}
|
|
|
|
void Mat4MulFloat(float *m, float f)
|
|
{
|
|
int i;
|
|
|
|
for(i=0;i<12;i++) m[i]*=f; /* tot 12 tellen: zonder vector */
|
|
}
|
|
|
|
|
|
void Mat4MulFloat3(float *m, float f) /* alleen de scale component */
|
|
{
|
|
int i,j;
|
|
|
|
for(i=0; i<3; i++) {
|
|
for(j=0; j<3; j++) {
|
|
|
|
m[4*i+j] *= f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VecStar(float mat[][3], const float *vec)
|
|
{
|
|
|
|
mat[0][0]= mat[1][1]= mat[2][2]= 0.0;
|
|
mat[0][1]= -vec[2];
|
|
mat[0][2]= vec[1];
|
|
mat[1][0]= vec[2];
|
|
mat[1][2]= -vec[0];
|
|
mat[2][0]= -vec[1];
|
|
mat[2][1]= vec[0];
|
|
|
|
}
|
|
#ifdef TEST_ACTIVE
|
|
short EenheidsMat(float mat[][3])
|
|
{
|
|
|
|
if(mat[0][0]==1.0 && mat[0][1]==0.0 && mat[0][2]==0.0)
|
|
if(mat[1][0]==0.0 && mat[1][1]==1.0 && mat[1][2]==0.0)
|
|
if(mat[2][0]==0.0 && mat[2][1]==0.0 && mat[2][2]==1.0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int FloatCompare(const float *v1, const float *v2, float limit)
|
|
{
|
|
|
|
if( fabs(v1[0]-v2[0])<limit ) {
|
|
if( fabs(v1[1]-v2[1])<limit ) {
|
|
if( fabs(v1[2]-v2[2])<limit ) return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void printmatrix4(const char *str, const float m[][4])
|
|
{
|
|
printf("%s\n", str);
|
|
printf("%f %f %f %f\n",m[0][0],m[0][1],m[0][2],m[0][3]);
|
|
printf("%f %f %f %f\n",m[1][0],m[1][1],m[1][2],m[1][3]);
|
|
printf("%f %f %f %f\n",m[2][0],m[2][1],m[2][2],m[2][3]);
|
|
printf("%f %f %f %f\n",m[3][0],m[3][1],m[3][2],m[3][3]);
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
void printmatrix3(const char *str, const float m[][3])
|
|
{
|
|
printf("%s\n", str);
|
|
printf("%f %f %f\n",m[0][0],m[0][1],m[0][2]);
|
|
printf("%f %f %f\n",m[1][0],m[1][1],m[1][2]);
|
|
printf("%f %f %f\n",m[2][0],m[2][1],m[2][2]);
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
/* **************** QUATERNIONS ********** */
|
|
|
|
|
|
void QuatMul(float *q, const float *q1, const float *q2)
|
|
{
|
|
float t0,t1,t2;
|
|
|
|
t0= q1[0]*q2[0]-q1[1]*q2[1]-q1[2]*q2[2]-q1[3]*q2[3];
|
|
t1= q1[0]*q2[1]+q1[1]*q2[0]+q1[2]*q2[3]-q1[3]*q2[2];
|
|
t2= q1[0]*q2[2]+q1[2]*q2[0]+q1[3]*q2[1]-q1[1]*q2[3];
|
|
q[3]= q1[0]*q2[3]+q1[3]*q2[0]+q1[1]*q2[2]-q1[2]*q2[1];
|
|
q[0]=t0;
|
|
q[1]=t1;
|
|
q[2]=t2;
|
|
}
|
|
|
|
void QuatSub(float *q, const float *q1, float *q2)
|
|
{
|
|
q2[0]= -q2[0];
|
|
QuatMul(q, q1, q2);
|
|
q2[0]= -q2[0];
|
|
}
|
|
|
|
|
|
void QuatToMat3(const float *q, float m[][3])
|
|
{
|
|
double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc;
|
|
|
|
q0= M_SQRT2 * q[0];
|
|
q1= M_SQRT2 * q[1];
|
|
q2= M_SQRT2 * q[2];
|
|
q3= M_SQRT2 * q[3];
|
|
|
|
qda= q0*q1;
|
|
qdb= q0*q2;
|
|
qdc= q0*q3;
|
|
qaa= q1*q1;
|
|
qab= q1*q2;
|
|
qac= q1*q3;
|
|
qbb= q2*q2;
|
|
qbc= q2*q3;
|
|
qcc= q3*q3;
|
|
|
|
m[0][0]= (float)(1.0-qbb-qcc);
|
|
m[0][1]= (float)(qdc+qab);
|
|
m[0][2]= (float)(-qdb+qac);
|
|
|
|
m[1][0]= (float)(-qdc+qab);
|
|
m[1][1]= (float)(1.0-qaa-qcc);
|
|
m[1][2]= (float)(qda+qbc);
|
|
|
|
m[2][0]= (float)(qdb+qac);
|
|
m[2][1]= (float)(-qda+qbc);
|
|
m[2][2]= (float)(1.0-qaa-qbb);
|
|
}
|
|
|
|
|
|
void QuatToMat4(const float *q, float m[][4])
|
|
{
|
|
double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc;
|
|
|
|
q0= M_SQRT2 * q[0];
|
|
q1= M_SQRT2 * q[1];
|
|
q2= M_SQRT2 * q[2];
|
|
q3= M_SQRT2 * q[3];
|
|
|
|
qda= q0*q1;
|
|
qdb= q0*q2;
|
|
qdc= q0*q3;
|
|
qaa= q1*q1;
|
|
qab= q1*q2;
|
|
qac= q1*q3;
|
|
qbb= q2*q2;
|
|
qbc= q2*q3;
|
|
qcc= q3*q3;
|
|
|
|
m[0][0]= (float)(1.0-qbb-qcc);
|
|
m[0][1]= (float)(qdc+qab);
|
|
m[0][2]= (float)(-qdb+qac);
|
|
m[0][3]= 0.0f;
|
|
|
|
m[1][0]= (float)(-qdc+qab);
|
|
m[1][1]= (float)(1.0-qaa-qcc);
|
|
m[1][2]= (float)(qda+qbc);
|
|
m[1][3]= 0.0f;
|
|
|
|
m[2][0]= (float)(qdb+qac);
|
|
m[2][1]= (float)(-qda+qbc);
|
|
m[2][2]= (float)(1.0-qaa-qbb);
|
|
m[2][3]= 0.0f;
|
|
|
|
m[3][0]= m[3][1]= m[3][2]= 0.0f;
|
|
m[3][3]= 1.0f;
|
|
}
|
|
|
|
void Mat3ToQuat(const float wmat[][3], float *q) /* uit Sig.Proc.85 pag 253 */
|
|
{
|
|
double tr, s;
|
|
float mat[3][3];
|
|
|
|
/* voor de netheid: op kopie werken */
|
|
Mat3CpyMat3(mat, wmat);
|
|
Mat3Ortho(mat); /* dit moet EN op eind NormalQuat */
|
|
|
|
tr= 0.25*(1.0+mat[0][0]+mat[1][1]+mat[2][2]);
|
|
|
|
if(tr>FLT_EPSILON) {
|
|
s= sqrt( tr);
|
|
q[0]= (float)s;
|
|
s*= 4.0;
|
|
q[1]= (float)((mat[1][2]-mat[2][1])/s);
|
|
q[2]= (float)((mat[2][0]-mat[0][2])/s);
|
|
q[3]= (float)((mat[0][1]-mat[1][0])/s);
|
|
}
|
|
else {
|
|
q[0]= 0.0f;
|
|
s= -0.5*(mat[1][1]+mat[2][2]);
|
|
|
|
if(s>FLT_EPSILON) {
|
|
s= sqrt(s);
|
|
q[1]= (float)s;
|
|
q[2]= (float)(mat[0][1]/(2*s));
|
|
q[3]= (float)(mat[0][2]/(2*s));
|
|
}
|
|
else {
|
|
q[1]= 0.0f;
|
|
s= 0.5*(1.0-mat[2][2]);
|
|
|
|
if(s>FLT_EPSILON) {
|
|
s= sqrt(s);
|
|
q[2]= (float)s;
|
|
q[3]= (float)(mat[1][2]/(2*s));
|
|
}
|
|
else {
|
|
q[2]= 0.0f;
|
|
q[3]= 1.0f;
|
|
}
|
|
}
|
|
}
|
|
NormalQuat(q);
|
|
}
|
|
|
|
void Mat3ToQuat_is_ok(const float wmat[][3], float *q)
|
|
{
|
|
float mat[3][3], matr[3][3], matn[3][3], q1[4], q2[4], hoek, si, co, nor[3];
|
|
|
|
/* voor de netheid: op kopie werken */
|
|
Mat3CpyMat3(mat, wmat);
|
|
Mat3Ortho(mat);
|
|
|
|
/* roteer z-as matrix op z-as */
|
|
|
|
nor[0] = mat[2][1]; /* uitprodukt met (0,0,1) */
|
|
nor[1] = -mat[2][0];
|
|
nor[2] = 0.0;
|
|
Normalise(nor);
|
|
|
|
co= mat[2][2];
|
|
hoek= 0.5f*saacos(co);
|
|
|
|
co= (float)cos(hoek);
|
|
si= (float)sin(hoek);
|
|
q1[0]= co;
|
|
q1[1]= -nor[0]*si; /* hier negatief, waarom is een raadsel */
|
|
q1[2]= -nor[1]*si;
|
|
q1[3]= -nor[2]*si;
|
|
|
|
/* roteer x-as van mat terug volgens inverse q1 */
|
|
QuatToMat3(q1, matr);
|
|
Mat3Inv(matn, matr);
|
|
Mat3MulVecfl(matn, mat[0]);
|
|
|
|
/* en zet de x-asssen gelijk */
|
|
hoek= (float)(0.5*atan2(mat[0][1], mat[0][0]));
|
|
|
|
co= (float)cos(hoek);
|
|
si= (float)sin(hoek);
|
|
q2[0]= co;
|
|
q2[1]= 0.0f;
|
|
q2[2]= 0.0f;
|
|
q2[3]= si;
|
|
|
|
QuatMul(q, q1, q2);
|
|
}
|
|
|
|
|
|
void Mat4ToQuat(const float m[][4], float *q)
|
|
{
|
|
float mat[3][3];
|
|
|
|
Mat3CpyMat4(mat, m);
|
|
Mat3ToQuat(mat, q);
|
|
|
|
}
|
|
|
|
void QuatOne(float *q)
|
|
{
|
|
q[0]= q[2]= q[3]= 0.0;
|
|
q[1]= 1.0;
|
|
}
|
|
|
|
void NormalQuat(float *q)
|
|
{
|
|
float len;
|
|
|
|
len= (float)sqrt(q[0]*q[0]+q[1]*q[1]+q[2]*q[2]+q[3]*q[3]);
|
|
if(len!=0.0) {
|
|
q[0]/= len;
|
|
q[1]/= len;
|
|
q[2]/= len;
|
|
q[3]/= len;
|
|
} else {
|
|
q[1]= 1.0f;
|
|
q[0]= q[2]= q[3]= 0.0f;
|
|
}
|
|
}
|
|
|
|
float *vectoquat(const float *vec, short axis, short upflag)
|
|
{
|
|
static float q1[4];
|
|
float q2[4], nor[3], *fp, mat[3][3], hoek, si, co, x2, y2, z2, len1;
|
|
|
|
/* eerst roteer naar as */
|
|
if(axis>2) {
|
|
x2= vec[0] ; y2= vec[1] ; z2= vec[2];
|
|
axis-= 3;
|
|
}
|
|
else {
|
|
x2= -vec[0] ; y2= -vec[1] ; z2= -vec[2];
|
|
}
|
|
|
|
q1[0]=1.0;
|
|
q1[1]=q1[2]=q1[3]= 0.0;
|
|
|
|
len1= (float)sqrt(x2*x2+y2*y2+z2*z2);
|
|
if(len1 == 0.0) return(q1);
|
|
|
|
/* nasty! I need a good routine for this...
|
|
* problem is a rotation of an Y axis to the negative Y-axis for example.
|
|
*/
|
|
|
|
if(axis==0) { /* x-as */
|
|
nor[0]= 0.0;
|
|
nor[1]= -z2;
|
|
nor[2]= y2;
|
|
|
|
if( fabs(y2)+fabs(z2)<0.0001 ) {
|
|
nor[1]= 1.0;
|
|
}
|
|
|
|
co= x2;
|
|
}
|
|
else if(axis==1) { /* y-as */
|
|
nor[0]= z2;
|
|
nor[1]= 0.0;
|
|
nor[2]= -x2;
|
|
|
|
if( fabs(x2)+fabs(z2)<0.0001 ) {
|
|
nor[2]= 1.0;
|
|
}
|
|
|
|
co= y2;
|
|
}
|
|
else { /* z-as */
|
|
nor[0]= -y2;
|
|
nor[1]= x2;
|
|
nor[2]= 0.0;
|
|
|
|
if( fabs(x2)+fabs(y2)<0.0001 ) {
|
|
nor[0]= 1.0;
|
|
}
|
|
|
|
co= z2;
|
|
}
|
|
co/= len1;
|
|
|
|
Normalise(nor);
|
|
|
|
hoek= 0.5f*saacos(co);
|
|
si= (float)sin(hoek);
|
|
q1[0]= (float)cos(hoek);
|
|
q1[1]= nor[0]*si;
|
|
q1[2]= nor[1]*si;
|
|
q1[3]= nor[2]*si;
|
|
|
|
if(axis!=upflag) {
|
|
QuatToMat3(q1, mat);
|
|
|
|
fp= mat[2];
|
|
if(axis==0) {
|
|
if(upflag==1) hoek= (float)(0.5*atan2(fp[2], fp[1]));
|
|
else hoek= (float)(-0.5*atan2(fp[1], fp[2]));
|
|
}
|
|
else if(axis==1) {
|
|
if(upflag==0) hoek= (float)(-0.5*atan2(fp[2], fp[0]));
|
|
else hoek= (float)(0.5*atan2(fp[0], fp[2]));
|
|
}
|
|
else {
|
|
if(upflag==0) hoek= (float)(0.5*atan2(-fp[1], -fp[0]));
|
|
else hoek= (float)(-0.5*atan2(-fp[0], -fp[1]));
|
|
}
|
|
|
|
co= (float)cos(hoek);
|
|
si= (float)(sin(hoek)/len1);
|
|
q2[0]= co;
|
|
q2[1]= x2*si;
|
|
q2[2]= y2*si;
|
|
q2[3]= z2*si;
|
|
|
|
QuatMul(q1,q2,q1);
|
|
}
|
|
|
|
return(q1);
|
|
}
|
|
|
|
void VecUpMat3old(const float *vec, float mat[][3], short axis)
|
|
{
|
|
float inp, up[3];
|
|
short cox = 0, coy = 0, coz = 0;
|
|
|
|
/* up varieeren heeft geen zin, is eigenlijk helemaal geen up!
|
|
*/
|
|
|
|
up[0]= 0.0;
|
|
up[1]= 0.0;
|
|
up[2]= 1.0;
|
|
|
|
if(axis==0) {
|
|
cox= 0; coy= 1; coz= 2; /* Y up Z tr */
|
|
}
|
|
if(axis==1) {
|
|
cox= 1; coy= 2; coz= 0; /* Z up X tr */
|
|
}
|
|
if(axis==2) {
|
|
cox= 2; coy= 0; coz= 1; /* X up Y tr */
|
|
}
|
|
if(axis==3) {
|
|
cox= 0; coy= 2; coz= 1; /* */
|
|
}
|
|
if(axis==4) {
|
|
cox= 1; coy= 0; coz= 2; /* */
|
|
}
|
|
if(axis==5) {
|
|
cox= 2; coy= 1; coz= 0; /* Y up X tr */
|
|
}
|
|
|
|
mat[coz][0]= vec[0];
|
|
mat[coz][1]= vec[1];
|
|
mat[coz][2]= vec[2];
|
|
Normalise((float *)mat[coz]);
|
|
|
|
inp= mat[coz][0]*up[0] + mat[coz][1]*up[1] + mat[coz][2]*up[2];
|
|
mat[coy][0]= up[0] - inp*mat[coz][0];
|
|
mat[coy][1]= up[1] - inp*mat[coz][1];
|
|
mat[coy][2]= up[2] - inp*mat[coz][2];
|
|
|
|
Normalise((float *)mat[coy]);
|
|
|
|
Crossf(mat[cox], mat[coy], mat[coz]);
|
|
|
|
}
|
|
|
|
void VecUpMat3(float *vec, float mat[][3], short axis)
|
|
{
|
|
float inp;
|
|
short cox = 0, coy = 0, coz = 0;
|
|
|
|
/* up varieeren heeft geen zin, is eigenlijk helemaal geen up!
|
|
* zie VecUpMat3old
|
|
*/
|
|
|
|
if(axis==0) {
|
|
cox= 0; coy= 1; coz= 2; /* Y up Z tr */
|
|
}
|
|
if(axis==1) {
|
|
cox= 1; coy= 2; coz= 0; /* Z up X tr */
|
|
}
|
|
if(axis==2) {
|
|
cox= 2; coy= 0; coz= 1; /* X up Y tr */
|
|
}
|
|
if(axis==3) {
|
|
cox= 0; coy= 1; coz= 2; /* Y op -Z tr */
|
|
vec[0]= -vec[0];
|
|
vec[1]= -vec[1];
|
|
vec[2]= -vec[2];
|
|
}
|
|
if(axis==4) {
|
|
cox= 1; coy= 0; coz= 2; /* */
|
|
}
|
|
if(axis==5) {
|
|
cox= 2; coy= 1; coz= 0; /* Y up X tr */
|
|
}
|
|
|
|
mat[coz][0]= vec[0];
|
|
mat[coz][1]= vec[1];
|
|
mat[coz][2]= vec[2];
|
|
Normalise((float *)mat[coz]);
|
|
|
|
inp= mat[coz][2];
|
|
mat[coy][0]= - inp*mat[coz][0];
|
|
mat[coy][1]= - inp*mat[coz][1];
|
|
mat[coy][2]= 1.0f - inp*mat[coz][2];
|
|
|
|
Normalise((float *)mat[coy]);
|
|
|
|
Crossf(mat[cox], mat[coy], mat[coz]);
|
|
|
|
}
|
|
|
|
|
|
/* **************** VIEW / PROJEKTIE ******************************** */
|
|
|
|
|
|
void i_ortho(
|
|
float left, float right,
|
|
float bottom, float top,
|
|
float nearClip, float farClip,
|
|
float matrix[][4]
|
|
){
|
|
float Xdelta, Ydelta, Zdelta;
|
|
|
|
Xdelta = right - left;
|
|
Ydelta = top - bottom;
|
|
Zdelta = farClip - nearClip;
|
|
if (Xdelta == 0.0 || Ydelta == 0.0 || Zdelta == 0.0) {
|
|
return;
|
|
}
|
|
Mat4One(matrix);
|
|
matrix[0][0] = 2.0f/Xdelta;
|
|
matrix[3][0] = -(right + left)/Xdelta;
|
|
matrix[1][1] = 2.0f/Ydelta;
|
|
matrix[3][1] = -(top + bottom)/Ydelta;
|
|
matrix[2][2] = -2.0f/Zdelta; /* note: negate Z */
|
|
matrix[3][2] = -(farClip + nearClip)/Zdelta;
|
|
}
|
|
|
|
void i_window(
|
|
float left, float right,
|
|
float bottom, float top,
|
|
float nearClip, float farClip,
|
|
float mat[][4]
|
|
){
|
|
float Xdelta, Ydelta, Zdelta;
|
|
|
|
Xdelta = right - left;
|
|
Ydelta = top - bottom;
|
|
Zdelta = farClip - nearClip;
|
|
|
|
if (Xdelta == 0.0 || Ydelta == 0.0 || Zdelta == 0.0) {
|
|
return;
|
|
}
|
|
mat[0][0] = nearClip * 2.0f/Xdelta;
|
|
mat[1][1] = nearClip * 2.0f/Ydelta;
|
|
mat[2][0] = (right + left)/Xdelta; /* note: negate Z */
|
|
mat[2][1] = (top + bottom)/Ydelta;
|
|
mat[2][2] = -(farClip + nearClip)/Zdelta;
|
|
mat[2][3] = -1.0f;
|
|
mat[3][2] = (-2.0f * nearClip * farClip)/Zdelta;
|
|
mat[0][1] = mat[0][2] = mat[0][3] =
|
|
mat[1][0] = mat[1][2] = mat[1][3] =
|
|
mat[3][0] = mat[3][1] = mat[3][3] = 0.0;
|
|
|
|
}
|
|
|
|
void i_translate(float Tx, float Ty, float Tz, float mat[][4])
|
|
{
|
|
mat[3][0] += (Tx*mat[0][0] + Ty*mat[1][0] + Tz*mat[2][0]);
|
|
mat[3][1] += (Tx*mat[0][1] + Ty*mat[1][1] + Tz*mat[2][1]);
|
|
mat[3][2] += (Tx*mat[0][2] + Ty*mat[1][2] + Tz*mat[2][2]);
|
|
}
|
|
|
|
void i_multmatrix(const float icand[][4], float Vm[][4])
|
|
{
|
|
int row, col;
|
|
float temp[4][4];
|
|
|
|
for(row=0 ; row<4 ; row++)
|
|
for(col=0 ; col<4 ; col++)
|
|
temp[row][col] = icand[row][0] * Vm[0][col]
|
|
+ icand[row][1] * Vm[1][col]
|
|
+ icand[row][2] * Vm[2][col]
|
|
+ icand[row][3] * Vm[3][col];
|
|
Mat4CpyMat4(Vm, temp);
|
|
}
|
|
|
|
void i_rotate(float angle, char axis, float mat[][4])
|
|
{
|
|
int col;
|
|
float temp[4];
|
|
float cosine, sine;
|
|
|
|
for(col=0; col<4 ; col++) /* init temp to zero matrix */
|
|
temp[col] = 0;
|
|
|
|
angle = (float)(angle*(3.1415926535/180.0));
|
|
cosine = (float)cos(angle);
|
|
sine = (float)sin(angle);
|
|
switch(axis){
|
|
case 'x':
|
|
case 'X':
|
|
for(col=0 ; col<4 ; col++)
|
|
temp[col] = cosine*mat[1][col] + sine*mat[2][col];
|
|
for(col=0 ; col<4 ; col++) {
|
|
mat[2][col] = - sine*mat[1][col] + cosine*mat[2][col];
|
|
mat[1][col] = temp[col];
|
|
}
|
|
break;
|
|
|
|
case 'y':
|
|
case 'Y':
|
|
for(col=0 ; col<4 ; col++)
|
|
temp[col] = cosine*mat[0][col] - sine*mat[2][col];
|
|
for(col=0 ; col<4 ; col++) {
|
|
mat[2][col] = sine*mat[0][col] + cosine*mat[2][col];
|
|
mat[0][col] = temp[col];
|
|
}
|
|
break;
|
|
|
|
case 'z':
|
|
case 'Z':
|
|
for(col=0 ; col<4 ; col++)
|
|
temp[col] = cosine*mat[0][col] + sine*mat[1][col];
|
|
for(col=0 ; col<4 ; col++) {
|
|
mat[1][col] = - sine*mat[0][col] + cosine*mat[1][col];
|
|
mat[0][col] = temp[col];
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void i_polarview(float dist, float azimuth, float incidence, float twist, float Vm[][4])
|
|
{
|
|
|
|
Mat4One(Vm);
|
|
|
|
i_translate(0.0, 0.0, -dist, Vm);
|
|
i_rotate(-twist,'z', Vm);
|
|
i_rotate(-incidence,'x', Vm);
|
|
i_rotate(-azimuth,'z', Vm);
|
|
}
|
|
|
|
void i_lookat(float vx, float vy, float vz, float px, float py, float pz, float twist, float mat[][4])
|
|
{
|
|
float sine, cosine, hyp, hyp1, dx, dy, dz;
|
|
float mat1[4][4];
|
|
|
|
Mat4One(mat);
|
|
Mat4One(mat1);
|
|
|
|
i_rotate(-twist,'z', mat);
|
|
|
|
dx = px - vx;
|
|
dy = py - vy;
|
|
dz = pz - vz;
|
|
hyp = dx * dx + dz * dz; /* hyp squared */
|
|
hyp1 = (float)sqrt(dy*dy + hyp);
|
|
hyp = (float)sqrt(hyp); /* the real hyp */
|
|
|
|
if (hyp1 != 0.0) { /* rotate X */
|
|
sine = -dy / hyp1;
|
|
cosine = hyp /hyp1;
|
|
} else {
|
|
sine = 0;
|
|
cosine = 1.0f;
|
|
}
|
|
mat1[1][1] = cosine;
|
|
mat1[1][2] = sine;
|
|
mat1[2][1] = -sine;
|
|
mat1[2][2] = cosine;
|
|
|
|
i_multmatrix(mat1, mat);
|
|
|
|
mat1[1][1] = mat1[2][2] = 1.0f; /* be careful here to reinit */
|
|
mat1[1][2] = mat1[2][1] = 0.0; /* those modified by the last */
|
|
|
|
/* paragraph */
|
|
if (hyp != 0.0f) { /* rotate Y */
|
|
sine = dx / hyp;
|
|
cosine = -dz / hyp;
|
|
} else {
|
|
sine = 0;
|
|
cosine = 1.0f;
|
|
}
|
|
mat1[0][0] = cosine;
|
|
mat1[0][2] = -sine;
|
|
mat1[2][0] = sine;
|
|
mat1[2][2] = cosine;
|
|
|
|
i_multmatrix(mat1, mat);
|
|
i_translate(-vx,-vy,-vz, mat); /* translate viewpoint to origin */
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* ************************************************ */
|
|
|
|
void Mat3Ortho(float mat[][3])
|
|
{
|
|
Normalise(mat[0]);
|
|
Normalise(mat[1]);
|
|
Normalise(mat[2]);
|
|
}
|
|
|
|
void Mat4Ortho(float mat[][4])
|
|
{
|
|
float len;
|
|
|
|
len= Normalise(mat[0]);
|
|
if(len!=0.0) mat[0][3]/= len;
|
|
len= Normalise(mat[1]);
|
|
if(len!=0.0) mat[1][3]/= len;
|
|
len= Normalise(mat[2]);
|
|
if(len!=0.0) mat[2][3]/= len;
|
|
}
|
|
|
|
void VecCopyf(float *v1, const float *v2)
|
|
{
|
|
|
|
v1[0]= v2[0];
|
|
v1[1]= v2[1];
|
|
v1[2]= v2[2];
|
|
}
|
|
|
|
int VecLen(const int *v1, const int *v2)
|
|
{
|
|
float x,y,z;
|
|
|
|
x=(float)(v1[0]-v2[0]);
|
|
y=(float)(v1[1]-v2[1]);
|
|
z=(float)(v1[2]-v2[2]);
|
|
return (int)floor(sqrt(x*x+y*y+z*z));
|
|
}
|
|
|
|
float VecLenf(const float *v1, const float *v2)
|
|
{
|
|
float x,y,z;
|
|
|
|
x=v1[0]-v2[0];
|
|
y=v1[1]-v2[1];
|
|
z=v1[2]-v2[2];
|
|
return (float)sqrt(x*x+y*y+z*z);
|
|
}
|
|
|
|
void VecAddf(float *v, const float *v1, const float *v2)
|
|
{
|
|
v[0]= v1[0]+ v2[0];
|
|
v[1]= v1[1]+ v2[1];
|
|
v[2]= v1[2]+ v2[2];
|
|
}
|
|
|
|
void VecSubf(float *v, const float *v1, const float *v2)
|
|
{
|
|
v[0]= v1[0]- v2[0];
|
|
v[1]= v1[1]- v2[1];
|
|
v[2]= v1[2]- v2[2];
|
|
}
|
|
|
|
void VecMidf(float *v, const float *v1, const float *v2)
|
|
{
|
|
v[0]= 0.5f*(v1[0]+ v2[0]);
|
|
v[1]= 0.5f*(v1[1]+ v2[1]);
|
|
v[2]= 0.5f*(v1[2]+ v2[2]);
|
|
}
|
|
|
|
void VecMulf(float *v1, float f)
|
|
{
|
|
|
|
v1[0]*= f;
|
|
v1[1]*= f;
|
|
v1[2]*= f;
|
|
}
|
|
|
|
int VecCompare(const float *v1, const float *v2, float limit)
|
|
{
|
|
if( fabs(v1[0]-v2[0])<limit )
|
|
if( fabs(v1[1]-v2[1])<limit )
|
|
if( fabs(v1[2]-v2[2])<limit ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
void CalcNormShort(const short *v1, const short *v2, const short *v3, float *n) /* is ook uitprodukt */
|
|
{
|
|
float n1[3],n2[3];
|
|
|
|
n1[0]= (float)(v1[0]-v2[0]);
|
|
n2[0]= (float)(v2[0]-v3[0]);
|
|
n1[1]= (float)(v1[1]-v2[1]);
|
|
n2[1]= (float)(v2[1]-v3[1]);
|
|
n1[2]= (float)(v1[2]-v2[2]);
|
|
n2[2]= (float)(v2[2]-v3[2]);
|
|
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
|
|
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
|
|
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
|
|
Normalise(n);
|
|
}
|
|
|
|
void CalcNormLong(const int* v1, const int*v2, const int*v3, float *n)
|
|
{
|
|
float n1[3],n2[3];
|
|
|
|
n1[0]= (float)(v1[0]-v2[0]);
|
|
n2[0]= (float)(v2[0]-v3[0]);
|
|
n1[1]= (float)(v1[1]-v2[1]);
|
|
n2[1]= (float)(v2[1]-v3[1]);
|
|
n1[2]= (float)(v1[2]-v2[2]);
|
|
n2[2]= (float)(v2[2]-v3[2]);
|
|
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
|
|
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
|
|
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
|
|
Normalise(n);
|
|
}
|
|
|
|
float CalcNormFloat(const float *v1, const float *v2, const float *v3, float *n)
|
|
{
|
|
float n1[3],n2[3];
|
|
|
|
n1[0]= v1[0]-v2[0];
|
|
n2[0]= v2[0]-v3[0];
|
|
n1[1]= v1[1]-v2[1];
|
|
n2[1]= v2[1]-v3[1];
|
|
n1[2]= v1[2]-v2[2];
|
|
n2[2]= v2[2]-v3[2];
|
|
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
|
|
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
|
|
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
|
|
return Normalise(n);
|
|
}
|
|
|
|
float CalcNormFloat4(const float *v1, const float *v2, const float *v3, const float *v4, float *n)
|
|
{
|
|
/* real cross! */
|
|
float n1[3],n2[3];
|
|
|
|
n1[0]= v1[0]-v3[0];
|
|
n1[1]= v1[1]-v3[1];
|
|
n1[2]= v1[2]-v3[2];
|
|
|
|
n2[0]= v2[0]-v4[0];
|
|
n2[1]= v2[1]-v4[1];
|
|
n2[2]= v2[2]-v4[2];
|
|
|
|
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
|
|
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
|
|
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
|
|
|
|
return Normalise(n);
|
|
}
|
|
|
|
|
|
void CalcCent3f(float *cent, const float *v1, const float *v2, const float *v3)
|
|
{
|
|
|
|
cent[0]= 0.33333f*(v1[0]+v2[0]+v3[0]);
|
|
cent[1]= 0.33333f*(v1[1]+v2[1]+v3[1]);
|
|
cent[2]= 0.33333f*(v1[2]+v2[2]+v3[2]);
|
|
}
|
|
|
|
void CalcCent4f(float *cent, const float *v1, const float *v2, const float *v3, const float *v4)
|
|
{
|
|
|
|
cent[0]= 0.25f*(v1[0]+v2[0]+v3[0]+v4[0]);
|
|
cent[1]= 0.25f*(v1[1]+v2[1]+v3[1]+v4[1]);
|
|
cent[2]= 0.25f*(v1[2]+v2[2]+v3[2]+v4[2]);
|
|
}
|
|
|
|
float Sqrt3f(float f)
|
|
{
|
|
if(f==0.0) return 0;
|
|
if(f<0) return (float)(-exp(log(-f)/3));
|
|
else return (float)(exp(log(f)/3));
|
|
}
|
|
|
|
double Sqrt3d(double d)
|
|
{
|
|
if(d==0.0) return 0;
|
|
if(d<0) return -exp(log(-d)/3);
|
|
else return exp(log(d)/3);
|
|
}
|
|
/* afstand v1 tot lijn v2-v3 */
|
|
float DistVL2Dfl(const float *v1,const float *v2,const float *v3) /* met formule van Hesse :GEEN LIJNSTUK! */
|
|
{
|
|
float a[2],deler;
|
|
|
|
a[0]= v2[1]-v3[1];
|
|
a[1]= v3[0]-v2[0];
|
|
deler= (float)sqrt(a[0]*a[0]+a[1]*a[1]);
|
|
if(deler== 0.0f) return 0;
|
|
|
|
return (float)(fabs((v1[0]-v2[0])*a[0]+(v1[1]-v2[1])*a[1])/deler);
|
|
|
|
}
|
|
|
|
float PdistVL2Dfl(const float *v1,const float *v2,const float *v3) /* PointDist: WEL LIJNSTUK */
|
|
{
|
|
float labda, rc[2], pt[2], len;
|
|
|
|
rc[0]= v3[0]-v2[0];
|
|
rc[1]= v3[1]-v2[1];
|
|
len= rc[0]*rc[0]+ rc[1]*rc[1];
|
|
if(len==0.0) {
|
|
rc[0]= v1[0]-v2[0];
|
|
rc[1]= v1[1]-v2[1];
|
|
return (float)(sqrt(rc[0]*rc[0]+ rc[1]*rc[1]));
|
|
}
|
|
|
|
labda= ( rc[0]*(v1[0]-v2[0]) + rc[1]*(v1[1]-v2[1]) )/len;
|
|
if(labda<=0.0) {
|
|
pt[0]= v2[0];
|
|
pt[1]= v2[1];
|
|
}
|
|
else if(labda>=1.0) {
|
|
pt[0]= v3[0];
|
|
pt[1]= v3[1];
|
|
}
|
|
else {
|
|
pt[0]= labda*rc[0]+v2[0];
|
|
pt[1]= labda*rc[1]+v2[1];
|
|
}
|
|
|
|
rc[0]= pt[0]-v1[0];
|
|
rc[1]= pt[1]-v1[1];
|
|
return (float)sqrt(rc[0]*rc[0]+ rc[1]*rc[1]);
|
|
}
|
|
|
|
float AreaF2Dfl(const float *v1,const float *v2,const float *v3)
|
|
{
|
|
return (float)(0.5*fabs( (v1[0]-v2[0])*(v2[1]-v3[1]) + (v1[1]-v2[1])*(v3[0]-v2[0]) ));
|
|
}
|
|
|
|
|
|
float AreaQ3Dfl(const float *v1,const float *v2,const float *v3, const float *v4) /* only convex Quadrilaterals */
|
|
{
|
|
float len, vec1[3], vec2[3], n[3];
|
|
|
|
VecSubf(vec1, v2, v1);
|
|
VecSubf(vec2, v4, v1);
|
|
Crossf(n, vec1, vec2);
|
|
len= Normalise(n);
|
|
|
|
VecSubf(vec1, v4, v3);
|
|
VecSubf(vec2, v2, v3);
|
|
Crossf(n, vec1, vec2);
|
|
len+= Normalise(n);
|
|
|
|
return (len/2.0f);
|
|
}
|
|
|
|
float AreaT3Dfl(const float *v1,const float *v2,const float *v3) /* Triangles */
|
|
{
|
|
float len, vec1[3], vec2[3], n[3];
|
|
|
|
VecSubf(vec1, v3, v2);
|
|
VecSubf(vec2, v1, v2);
|
|
Crossf(n, vec1, vec2);
|
|
len= Normalise(n);
|
|
|
|
return (len/2.0f);
|
|
}
|
|
|
|
#define MAX2(x,y) ( (x)>(y) ? (x) : (y) )
|
|
#define MAX3(x,y,z) MAX2( MAX2((x),(y)) , (z) )
|
|
|
|
|
|
float AreaPoly3Dfl(int nr, const float *verts, const float *normal)
|
|
{
|
|
float x, y, z, area, max;
|
|
const float *cur, *prev;
|
|
int a, px=0, py=1;
|
|
|
|
/* first: find dominant axis: 0==X, 1==Y, 2==Z */
|
|
x= (float)fabs(normal[0]);
|
|
y= (float)fabs(normal[1]);
|
|
z= (float)fabs(normal[2]);
|
|
max = MAX3(x, y, z);
|
|
if(max==y) py=2;
|
|
else if(max==x) {
|
|
px=1;
|
|
py= 2;
|
|
}
|
|
|
|
/* The Trapezium Area Rule */
|
|
prev= verts+3*(nr-1);
|
|
cur= verts;
|
|
area= 0;
|
|
for(a=0; a<nr; a++) {
|
|
area+= (cur[px]-prev[px])*(cur[py]+prev[py]);
|
|
prev= cur;
|
|
cur+=3;
|
|
}
|
|
|
|
return (float)fabs(0.5*area/max);
|
|
}
|
|
|
|
void MinMax3(float *min, float *max, const float *vec)
|
|
{
|
|
if(min[0]>vec[0]) min[0]= vec[0];
|
|
if(min[1]>vec[1]) min[1]= vec[1];
|
|
if(min[2]>vec[2]) min[2]= vec[2];
|
|
|
|
if(max[0]<vec[0]) max[0]= vec[0];
|
|
if(max[1]<vec[1]) max[1]= vec[1];
|
|
if(max[2]<vec[2]) max[2]= vec[2];
|
|
}
|
|
|
|
/* ************ EULER *************** */
|
|
|
|
void EulToMat3(const float *eul, float mat[][3])
|
|
{
|
|
double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
|
|
|
|
ci = cos(eul[0]);
|
|
cj = cos(eul[1]);
|
|
ch = cos(eul[2]);
|
|
si = sin(eul[0]);
|
|
sj = sin(eul[1]);
|
|
sh = sin(eul[2]);
|
|
cc = ci*ch;
|
|
cs = ci*sh;
|
|
sc = si*ch;
|
|
ss = si*sh;
|
|
|
|
mat[0][0] = (float)(cj*ch);
|
|
mat[1][0] = (float)(sj*sc-cs);
|
|
mat[2][0] = (float)(sj*cc+ss);
|
|
mat[0][1] = (float)(cj*sh);
|
|
mat[1][1] = (float)(sj*ss+cc);
|
|
mat[2][1] = (float)(sj*cs-sc);
|
|
mat[0][2] = (float)-sj;
|
|
mat[1][2] = (float)(cj*si);
|
|
mat[2][2] = (float)(cj*ci);
|
|
|
|
}
|
|
|
|
void EulToMat4(const float *eul,float mat[][4])
|
|
{
|
|
double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
|
|
|
|
ci = cos(eul[0]);
|
|
cj = cos(eul[1]);
|
|
ch = cos(eul[2]);
|
|
si = sin(eul[0]);
|
|
sj = sin(eul[1]);
|
|
sh = sin(eul[2]);
|
|
cc = ci*ch;
|
|
cs = ci*sh;
|
|
sc = si*ch;
|
|
ss = si*sh;
|
|
|
|
mat[0][0] = (float)(cj*ch);
|
|
mat[1][0] = (float)(sj*sc-cs);
|
|
mat[2][0] = (float)(sj*cc+ss);
|
|
mat[0][1] = (float)(cj*sh);
|
|
mat[1][1] = (float)(sj*ss+cc);
|
|
mat[2][1] = (float)(sj*cs-sc);
|
|
mat[0][2] = (float)-sj;
|
|
mat[1][2] = (float)(cj*si);
|
|
mat[2][2] = (float)(cj*ci);
|
|
|
|
|
|
mat[3][0]= mat[3][1]= mat[3][2]= mat[0][3]= mat[1][3]= mat[2][3]= 0.0f;
|
|
mat[3][3]= 1.0f;
|
|
}
|
|
|
|
|
|
void Mat3ToEul(
|
|
const float tmat[][3], float *eul
|
|
){
|
|
float cy, quat[4], mat[3][3];
|
|
|
|
Mat3ToQuat(tmat, quat);
|
|
QuatToMat3(quat, mat);
|
|
Mat3CpyMat3(mat, tmat);
|
|
Mat3Ortho(mat);
|
|
|
|
cy = (float)sqrt(mat[0][0]*mat[0][0] + mat[0][1]*mat[0][1]);
|
|
|
|
if (cy > 16.0*FLT_EPSILON) {
|
|
eul[0] = (float)atan2(mat[1][2], mat[2][2]);
|
|
eul[1] = (float)atan2(-mat[0][2], cy);
|
|
eul[2] = (float)atan2(mat[0][1], mat[0][0]);
|
|
} else {
|
|
eul[0] = (float)atan2(-mat[2][1], mat[1][1]);
|
|
eul[1] = (float)atan2(-mat[0][2], cy);
|
|
eul[2] = 0.0f;
|
|
}
|
|
}
|
|
|
|
void Mat3ToEuln(const float tmat[][3], float *eul)
|
|
{
|
|
float sin1, cos1, sin2, cos2, sin3, cos3;
|
|
|
|
sin1 = -tmat[2][0];
|
|
cos1 = (float)sqrt(1 - sin1*sin1);
|
|
|
|
if ( fabs(cos1) > FLT_EPSILON ) {
|
|
sin2 = tmat[2][1] / cos1;
|
|
cos2 = tmat[2][2] / cos1;
|
|
sin3 = tmat[1][0] / cos1;
|
|
cos3 = tmat[0][0] / cos1;
|
|
}
|
|
else {
|
|
sin2 = -tmat[1][2];
|
|
cos2 = tmat[1][1];
|
|
sin3 = 0.0;
|
|
cos3 = 1.0;
|
|
}
|
|
|
|
eul[0] = (float)atan2(sin3, cos3);
|
|
eul[1] = (float)atan2(sin1, cos1);
|
|
eul[2] = (float)atan2(sin2, cos2);
|
|
|
|
}
|
|
|
|
|
|
void QuatToEul(const float *quat, float *eul)
|
|
{
|
|
float mat[3][3];
|
|
|
|
QuatToMat3(quat, mat);
|
|
Mat3ToEul(mat, eul);
|
|
}
|
|
|
|
void QuatToSpher(const float *quat, float *sph)
|
|
/* Not working 100% yet I don't think... */
|
|
{
|
|
float tx, ty, tz;
|
|
float qw, qx, qy, qz;
|
|
float cos_theta;
|
|
float sin_theta;
|
|
|
|
qx = quat[0];
|
|
qy = quat[1];
|
|
qz = quat[2];
|
|
qw = quat[3];
|
|
|
|
cos_theta = qw;
|
|
sin_theta = (float)sqrt(1.0 - cos_theta * cos_theta);
|
|
|
|
if (fabs(sin_theta) < 0.0005)
|
|
sin_theta = 1.0;
|
|
|
|
tx = qx / sin_theta;
|
|
ty = qy / sin_theta;
|
|
tz = qz / sin_theta;
|
|
|
|
/* Lattitude */
|
|
sph[0] = -(float)asin(ty);
|
|
|
|
/* Longitude */
|
|
if (tx*tx + tz*tz <0.0005)
|
|
sph[1] = 0.0;
|
|
else
|
|
sph[1] = (float)atan2(tx, tz);
|
|
|
|
if (sph[1] < 0.0)
|
|
sph[1] +=(float)(M_PI*2);
|
|
|
|
/* Roll */
|
|
sph[2] = (float)(acos(cos_theta) * 2.0) ;
|
|
}
|
|
|
|
void Mat3ToSpher (const float *mat3, float *sph)
|
|
{
|
|
float quat[4];
|
|
|
|
Mat3ToQuat(mat3, quat);
|
|
QuatToSpher(quat, sph);
|
|
}
|
|
|
|
|
|
void EulToQuat(const float *eul, float *quat)
|
|
{
|
|
float ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
|
|
|
|
ti = eul[0]*0.5f; tj = eul[1]*0.5f; th = eul[2]*0.5f;
|
|
ci = (float)cos(ti); cj = (float)cos(tj); ch = (float)cos(th);
|
|
si = (float)sin(ti); sj = (float)sin(tj); sh = (float)sin(th);
|
|
cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh;
|
|
|
|
quat[0] = cj*cc + sj*ss;
|
|
quat[1] = cj*sc - sj*cs;
|
|
quat[2] = cj*ss + sj*cc;
|
|
quat[3] = cj*cs - sj*sc;
|
|
}
|
|
|
|
void VecRotToMat3(const float *vec, float phi, float mat[][3])
|
|
{
|
|
/* rotation of phi radials around vec */
|
|
float vx, vx2, vy, vy2, vz, vz2, co, si;
|
|
|
|
vx= vec[0];
|
|
vy= vec[1];
|
|
vz= vec[2];
|
|
vx2= vx*vx;
|
|
vy2= vy*vy;
|
|
vz2= vz*vz;
|
|
co= (float)cos(phi);
|
|
si= (float)sin(phi);
|
|
|
|
mat[0][0]= vx2+co*(1.0f-vx2);
|
|
mat[0][1]= vx*vy*(1.0f-co)+vz*si;
|
|
mat[0][2]= vz*vx*(1.0f-co)-vy*si;
|
|
mat[1][0]= vx*vy*(1.0f-co)-vz*si;
|
|
mat[1][1]= vy2+co*(1.0f-vy2);
|
|
mat[1][2]= vy*vz*(1.0f-co)+vx*si;
|
|
mat[2][0]= vz*vx*(1.0f-co)+vy*si;
|
|
mat[2][1]= vy*vz*(1.0f-co)-vx*si;
|
|
mat[2][2]= vz2+co*(1.0f-vz2);
|
|
|
|
}
|
|
|
|
void VecRotToQuat(const float *vec, float phi, float *quat)
|
|
{
|
|
/* rotation of phi radials around vec */
|
|
float si;
|
|
|
|
quat[1]= vec[0];
|
|
quat[2]= vec[1];
|
|
quat[3]= vec[2];
|
|
|
|
if( Normalise(quat+1) == 0.0) {
|
|
QuatOne(quat);
|
|
}
|
|
else {
|
|
quat[0]= (float)cos( phi/2.0 );
|
|
si= (float)sin( phi/2.0 );
|
|
quat[1] *= si;
|
|
quat[2] *= si;
|
|
quat[3] *= si;
|
|
}
|
|
}
|
|
|
|
void euler_rot(float *beul, float ang, char axis)
|
|
{
|
|
float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
|
|
|
|
eul[0]= eul[1]= eul[2]= 0.0;
|
|
if(axis=='x') eul[0]= ang;
|
|
else if(axis=='y') eul[1]= ang;
|
|
else eul[2]= ang;
|
|
|
|
EulToMat3(eul, mat1);
|
|
EulToMat3(beul, mat2);
|
|
|
|
Mat3MulMat3(totmat, mat2, mat1);
|
|
|
|
Mat3ToEul(totmat, beul);
|
|
|
|
}
|
|
|
|
|
|
|
|
void SizeToMat3(const float *size, float mat[][3])
|
|
{
|
|
mat[0][0]= size[0];
|
|
mat[0][1]= 0.0;
|
|
mat[0][2]= 0.0;
|
|
mat[1][1]= size[1];
|
|
mat[1][0]= 0.0;
|
|
mat[1][2]= 0.0;
|
|
mat[2][2]= size[2];
|
|
mat[2][1]= 0.0;
|
|
mat[2][0]= 0.0;
|
|
}
|
|
|
|
void Mat3ToSize(const float mat[][3], float *size)
|
|
{
|
|
float vec[3];
|
|
|
|
|
|
VecCopyf(vec, mat[0]);
|
|
size[0]= Normalise(vec);
|
|
VecCopyf(vec, mat[1]);
|
|
size[1]= Normalise(vec);
|
|
VecCopyf(vec, mat[2]);
|
|
size[2]= Normalise(vec);
|
|
|
|
}
|
|
|
|
void Mat4ToSize(const float mat[][4], float *size)
|
|
{
|
|
float vec[3];
|
|
|
|
|
|
VecCopyf(vec, mat[0]);
|
|
size[0]= Normalise(vec);
|
|
VecCopyf(vec, mat[1]);
|
|
size[1]= Normalise(vec);
|
|
VecCopyf(vec, mat[2]);
|
|
size[2]= Normalise(vec);
|
|
}
|
|
|
|
/* ************* SPECIALS ******************* */
|
|
|
|
void triatoquat(const float *v1, const float *v2, const float *v3, float *quat)
|
|
{
|
|
/* denkbeeldige x-as, y-as driehoek wordt geroteerd */
|
|
float vec[3], q1[4], q2[4], n[3], si, co, hoek, mat[3][3], imat[3][3];
|
|
|
|
/* eerst z-as op vlaknormaal */
|
|
CalcNormFloat(v1, v2, v3, vec);
|
|
|
|
n[0]= vec[1];
|
|
n[1]= -vec[0];
|
|
n[2]= 0.0;
|
|
Normalise(n);
|
|
|
|
if(n[0]==0.0 && n[1]==0.0) n[0]= 1.0;
|
|
|
|
hoek= -0.5f*saacos(vec[2]);
|
|
co= (float)cos(hoek);
|
|
si= (float)sin(hoek);
|
|
q1[0]= co;
|
|
q1[1]= n[0]*si;
|
|
q1[2]= n[1]*si;
|
|
q1[3]= 0.0f;
|
|
|
|
/* v1-v2 lijn terug roteren */
|
|
QuatToMat3(q1, mat);
|
|
Mat3Inv(imat, mat);
|
|
VecSubf(vec, v2, v1);
|
|
Mat3MulVecfl(imat, vec);
|
|
|
|
/* welke hoek maakt deze lijn met x-as? */
|
|
vec[2]= 0.0;
|
|
Normalise(vec);
|
|
|
|
hoek= (float)(0.5*atan2(vec[1], vec[0]));
|
|
co= (float)cos(hoek);
|
|
si= (float)sin(hoek);
|
|
q2[0]= co;
|
|
q2[1]= 0.0f;
|
|
q2[2]= 0.0f;
|
|
q2[3]= si;
|
|
|
|
QuatMul(quat, q1, q2);
|
|
}
|
|
|
|
void MinMaxRGB(short c[])
|
|
{
|
|
if(c[0]>255) c[0]=255;
|
|
else if(c[0]<0) c[0]=0;
|
|
if(c[1]>255) c[1]=255;
|
|
else if(c[1]<0) c[1]=0;
|
|
if(c[2]>255) c[2]=255;
|
|
else if(c[2]<0) c[2]=0;
|
|
}
|
|
|
|
void hsv_to_rgb(float h, float s, float v, float *r, float *g, float *b)
|
|
{
|
|
int i;
|
|
float f, p, q, t;
|
|
|
|
h *= 360.0f;
|
|
|
|
if(s==0 && 0) {
|
|
*r = v;
|
|
*g = v;
|
|
*b = v;
|
|
}
|
|
else {
|
|
if(h==360) h = 0;
|
|
|
|
h /= 60;
|
|
i = (int)floor(h);
|
|
f = h - i;
|
|
p = v*(1.0f-s);
|
|
q = v*(1.0f-(s*f));
|
|
t = v*(1.0f-(s*(1.0f-f)));
|
|
|
|
switch (i) {
|
|
case 0 :
|
|
*r = v;
|
|
*g = t;
|
|
*b = p;
|
|
break;
|
|
case 1 :
|
|
*r = q;
|
|
*g = v;
|
|
*b = p;
|
|
break;
|
|
case 2 :
|
|
*r = p;
|
|
*g = v;
|
|
*b = t;
|
|
break;
|
|
case 3 :
|
|
*r = p;
|
|
*g = q;
|
|
*b = v;
|
|
break;
|
|
case 4 :
|
|
*r = t;
|
|
*g = p;
|
|
*b = v;
|
|
break;
|
|
case 5 :
|
|
*r = v;
|
|
*g = p;
|
|
*b = q;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void rgb_to_hsv(float r, float g, float b, float *lh, float *ls, float *lv)
|
|
{
|
|
float h, s, v;
|
|
float cmax, cmin, cdelta;
|
|
float rc, gc, bc;
|
|
|
|
cmax = r;
|
|
cmin = r;
|
|
cmax = (g>cmax ? g:cmax);
|
|
cmin = (g<cmin ? g:cmin);
|
|
cmax = (b>cmax ? b:cmax);
|
|
cmin = (b<cmin ? b:cmin);
|
|
|
|
v = cmax; /* value */
|
|
if (cmax!=0.0)
|
|
s = (cmax - cmin)/cmax;
|
|
else {
|
|
s = 0.0;
|
|
h = 0.0;
|
|
}
|
|
if (s == 0.0)
|
|
h = -1.0;
|
|
else {
|
|
cdelta = cmax-cmin;
|
|
rc = (cmax-r)/cdelta;
|
|
gc = (cmax-g)/cdelta;
|
|
bc = (cmax-b)/cdelta;
|
|
if (r==cmax)
|
|
h = bc-gc;
|
|
else
|
|
if (g==cmax)
|
|
h = 2.0f+rc-bc;
|
|
else
|
|
h = 4.0f+gc-rc;
|
|
h = h*60.0f;
|
|
if (h<0.0f)
|
|
h += 360.0f;
|
|
}
|
|
|
|
*ls = s;
|
|
*lh = h/360.0f;
|
|
if( *lh < 0.0) *lh= 0.0;
|
|
*lv = v;
|
|
}
|
|
|
|
/* Bij afspraak is cpack een getal dat als 0xFFaa66 of zo kan worden uitgedrukt. Is dus gevoelig voor endian.
|
|
* Met deze define wordt het altijd goed afgebeeld
|
|
*/
|
|
|
|
unsigned int hsv_to_cpack(float h, float s, float v)
|
|
{
|
|
short r, g, b;
|
|
float rf, gf, bf;
|
|
unsigned int col;
|
|
|
|
hsv_to_rgb(h, s, v, &rf, &gf, &bf);
|
|
|
|
r= (short)(rf*255.0f);
|
|
g= (short)(gf*255.0f);
|
|
b= (short)(bf*255.0f);
|
|
|
|
col= ( r + (g*256) + (b*256*256) );
|
|
return col;
|
|
}
|
|
|
|
|
|
unsigned int rgb_to_cpack(float r, float g, float b)
|
|
{
|
|
int ir, ig, ib;
|
|
|
|
ir= (int)floor(255.0*r);
|
|
if(ir<0) ir= 0; else if(ir>255) ir= 255;
|
|
ig= (int)floor(255.0*g);
|
|
if(ig<0) ig= 0; else if(ig>255) ig= 255;
|
|
ib= (int)floor(255.0*b);
|
|
if(ib<0) ib= 0; else if(ib>255) ib= 255;
|
|
|
|
return (ir+ (ig*256) + (ib*256*256));
|
|
}
|
|
|
|
void cpack_to_rgb(unsigned int col, float *r, float *g, float *b)
|
|
{
|
|
|
|
*r= (float)((col)&0xFF);
|
|
*r /= 255.0f;
|
|
|
|
*g= (float)(((col)>>8)&0xFF);
|
|
*g /= 255.0f;
|
|
|
|
*b= (float)(((col)>>16)&0xFF);
|
|
*b /= 255.0f;
|
|
}
|