This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/operators/bmo_connect.c

492 lines
14 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Joseph Eagar.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/bmesh/operators/bmo_connect.c
* \ingroup bmesh
*/
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_array.h"
#include "BLI_utildefines.h"
#include "bmesh.h"
#include "intern/bmesh_operators_private.h" /* own include */
#define VERT_INPUT 1
#define EDGE_OUT 1
#define FACE_NEW 2
#define EDGE_MARK 4
#define EDGE_DONE 8
void bmo_connectverts_exec(BMesh *bm, BMOperator *op)
{
BMIter iter, liter;
BMFace *f, *nf;
BMLoop **loops = NULL, *lastl = NULL;
BLI_array_declare(loops);
BMLoop *l, *nl;
BMVert **verts = NULL;
BLI_array_declare(verts);
int i;
BMO_slot_buffer_flag_enable(bm, op, "verts", BM_VERT, VERT_INPUT);
for (f = BM_iter_new(&iter, bm, BM_FACES_OF_MESH, NULL); f; f = BM_iter_step(&iter)) {
BLI_array_empty(loops);
BLI_array_empty(verts);
if (BMO_elem_flag_test(bm, f, FACE_NEW)) {
continue;
}
l = BM_iter_new(&liter, bm, BM_LOOPS_OF_FACE, f);
lastl = NULL;
for ( ; l; l = BM_iter_step(&liter)) {
if (BMO_elem_flag_test(bm, l->v, VERT_INPUT)) {
if (!lastl) {
lastl = l;
continue;
}
if (lastl != l->prev && lastl != l->next) {
BLI_array_grow_one(loops);
loops[BLI_array_count(loops) - 1] = lastl;
BLI_array_grow_one(loops);
loops[BLI_array_count(loops) - 1] = l;
}
lastl = l;
}
}
if (BLI_array_count(loops) == 0) {
continue;
}
if (BLI_array_count(loops) > 2) {
BLI_array_grow_one(loops);
loops[BLI_array_count(loops) - 1] = loops[BLI_array_count(loops) - 2];
BLI_array_grow_one(loops);
loops[BLI_array_count(loops) - 1] = loops[0];
}
BM_face_legal_splits(bm, f, (BMLoop *(*)[2])loops, BLI_array_count(loops) / 2);
for (i = 0; i < BLI_array_count(loops) / 2; i++) {
if (loops[i * 2] == NULL) {
continue;
}
BLI_array_grow_one(verts);
verts[BLI_array_count(verts) - 1] = loops[i * 2]->v;
BLI_array_grow_one(verts);
verts[BLI_array_count(verts) - 1] = loops[i * 2 + 1]->v;
}
for (i = 0; i < BLI_array_count(verts) / 2; i++) {
nf = BM_face_split(bm, f, verts[i * 2], verts[i * 2 + 1], &nl, NULL, FALSE);
f = nf;
if (!nl || !nf) {
BMO_error_raise(bm, op, BMERR_CONNECTVERT_FAILED, NULL);
BLI_array_free(loops);
return;
}
BMO_elem_flag_enable(bm, nf, FACE_NEW);
BMO_elem_flag_enable(bm, nl->e, EDGE_OUT);
}
}
BMO_slot_buffer_from_enabled_flag(bm, op, "edgeout", BM_EDGE, EDGE_OUT);
BLI_array_free(loops);
BLI_array_free(verts);
}
static BMVert *get_outer_vert(BMesh *bm, BMEdge *e)
{
BMIter iter;
BMEdge *e2;
int i;
i = 0;
BM_ITER_ELEM (e2, &iter, e->v1, BM_EDGES_OF_VERT) {
if (BMO_elem_flag_test(bm, e2, EDGE_MARK)) {
i++;
}
}
return (i == 2) ? e->v2 : e->v1;
}
/* Clamp x to the interval {0..len-1}, with wrap-around */
static int clamp_index(const int x, const int len)
{
if (x >= 0) {
return x % len;
}
else {
int r = len - (-x % len);
if (r == len)
return len - 1;
else
return r;
}
}
/* There probably is a better way to swap BLI_arrays, or if there
* isn't there should be... */
#define ARRAY_SWAP(elemtype, arr1, arr2) \
{ \
int i; \
elemtype *arr_tmp = NULL; \
BLI_array_declare(arr_tmp); \
for (i = 0; i < BLI_array_count(arr1); i++) { \
BLI_array_append(arr_tmp, arr1[i]); \
} \
BLI_array_empty(arr1); \
for (i = 0; i < BLI_array_count(arr2); i++) { \
BLI_array_append(arr1, arr2[i]); \
} \
BLI_array_empty(arr2); \
for (i = 0; i < BLI_array_count(arr_tmp); i++) { \
BLI_array_append(arr2, arr_tmp[i]); \
} \
BLI_array_free(arr_tmp); \
} (void)0
/* get the 2 loops matching 2 verts.
* first attempt to get the face corners that use the edge defined by v1 & v2,
* if that fails just get any loop thats on the vert (the first one) */
static void bm_vert_loop_pair(BMesh *bm, BMVert *v1, BMVert *v2, BMLoop **l1, BMLoop **l2)
{
BMIter liter;
BMLoop *l;
if ((v1->e && v1->e->l) &&
(v2->e && v2->e->l))
{
BM_ITER_ELEM (l, &liter, v1, BM_LOOPS_OF_VERT) {
if (l->prev->v == v2) {
*l1 = l;
*l2 = l->prev;
return;
}
else if (l->next->v == v2) {
*l1 = l;
*l2 = l->next;
return;
}
}
}
/* fallback to _any_ loop */
*l1 = BM_iter_at_index(bm, BM_LOOPS_OF_VERT, v1, 0);
*l2 = BM_iter_at_index(bm, BM_LOOPS_OF_VERT, v2, 0);
}
void bmo_bridge_loops_exec(BMesh *bm, BMOperator *op)
{
BMEdge **ee1 = NULL, **ee2 = NULL;
BMVert **vv1 = NULL, **vv2 = NULL;
BLI_array_declare(ee1);
BLI_array_declare(ee2);
BLI_array_declare(vv1);
BLI_array_declare(vv2);
BMOIter siter;
BMIter iter;
BMEdge *e, *nexte;
int c = 0, cl1 = 0, cl2 = 0;
BMO_slot_buffer_flag_enable(bm, op, "edges", BM_EDGE, EDGE_MARK);
BMO_ITER (e, &siter, bm, op, "edges", BM_EDGE) {
if (!BMO_elem_flag_test(bm, e, EDGE_DONE)) {
BMVert *v, *ov;
/* BMEdge *e2, *e3, *oe = e; */ /* UNUSED */
BMEdge *e2, *e3;
if (c > 2) {
BMO_error_raise(bm, op, BMERR_INVALID_SELECTION, "Select only two edge loops");
goto cleanup;
}
e2 = e;
v = e->v1;
do {
v = BM_edge_other_vert(e2, v);
nexte = NULL;
BM_ITER_ELEM (e3, &iter, v, BM_EDGES_OF_VERT) {
if (e3 != e2 && BMO_elem_flag_test(bm, e3, EDGE_MARK)) {
if (nexte == NULL) {
nexte = e3;
}
else {
/* edges do not form a loop: there is a disk
* with more than two marked edges. */
BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
"Selection must only contain edges from two edge loops");
goto cleanup;
}
}
}
if (nexte)
e2 = nexte;
} while (nexte && e2 != e);
if (!e2)
e2 = e;
e = e2;
ov = v;
do {
if (c == 0) {
BLI_array_append(ee1, e2);
BLI_array_append(vv1, v);
}
else {
BLI_array_append(ee2, e2);
BLI_array_append(vv2, v);
}
BMO_elem_flag_enable(bm, e2, EDGE_DONE);
v = BM_edge_other_vert(e2, v);
BM_ITER_ELEM (e3, &iter, v, BM_EDGES_OF_VERT) {
if (e3 != e2 && BMO_elem_flag_test(bm, e3, EDGE_MARK) && !BMO_elem_flag_test(bm, e3, EDGE_DONE)) {
break;
}
}
if (e3)
e2 = e3;
} while (e3 && e2 != e);
if (v && !e3) {
if (c == 0) {
if (BLI_array_count(vv1) && v == vv1[BLI_array_count(vv1) - 1]) {
printf("%s: internal state waning *TODO DESCRIPTION!*\n", __func__);
}
BLI_array_append(vv1, v);
}
else {
BLI_array_append(vv2, v);
}
}
/* test for connected loops, and set cl1 or cl2 if so */
if (v == ov) {
if (c == 0) {
cl1 = 1;
}
else {
cl2 = 1;
}
}
c++;
}
}
if (ee1 && ee2) {
int i, j;
BMVert *v1, *v2, *v3, *v4;
int starti = 0, dir1 = 1, wdir = 0, lenv1, lenv2;
/* Simplify code below by avoiding the (!cl1 && cl2) case */
if (!cl1 && cl2) {
SWAP(int, cl1, cl2);
ARRAY_SWAP(BMVert *, vv1, vv2);
ARRAY_SWAP(BMEdge *, ee1, ee2);
}
lenv1 = lenv2 = BLI_array_count(vv1);
/* Below code assumes vv1/vv2 each have at least two verts. should always be
* a safe assumption, since ee1/ee2 are non-empty and an edge has two verts. */
BLI_assert((lenv1 > 1) && (lenv2 > 1));
/* BMESH_TODO: Would be nice to handle cases where the edge loops
* have different edge counts by generating triangles & quads for
* the bridge instead of quads only. */
if (BLI_array_count(ee1) != BLI_array_count(ee2)) {
BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
"Selected loops must have equal edge counts");
goto cleanup;
}
j = 0;
if (vv1[0] == vv1[lenv1 - 1]) {
lenv1--;
}
if (vv2[0] == vv2[lenv2 - 1]) {
lenv2--;
}
/* Find starting point and winding direction for two unclosed loops */
if (!cl1 && !cl2) {
/* First point of loop 1 */
v1 = get_outer_vert(bm, ee1[0]);
/* Last point of loop 1 */
v2 = get_outer_vert(bm, ee1[clamp_index(-1, BLI_array_count(ee1))]);
/* First point of loop 2 */
v3 = get_outer_vert(bm, ee2[0]);
/* Last point of loop 2 */
v4 = get_outer_vert(bm, ee2[clamp_index(-1, BLI_array_count(ee2))]);
/* If v1 is a better match for v4 than v3, AND v2 is a better match
* for v3 than v4, the loops are in opposite directions, so reverse
* the order of reads from vv1. We can avoid sqrt for comparison */
if (len_squared_v3v3(v1->co, v3->co) > len_squared_v3v3(v1->co, v4->co) &&
len_squared_v3v3(v2->co, v4->co) > len_squared_v3v3(v2->co, v3->co))
{
dir1 = -1;
starti = clamp_index(-1, lenv1);
}
}
/* Find the shortest distance from a vert in vv1 to vv2[0]. Use that
* vertex in vv1 as a starting point in the first loop, while starting
* from vv2[0] in the second loop. This is a simplistic attempt to get
* a better edge-to-edge match between the two loops. */
if (cl1) {
int previ, nexti;
float min = 1e32;
/* BMESH_TODO: Would be nice to do a more thorough analysis of all
* the vertices in both loops to find a more accurate match for the
* starting point and winding direction of the bridge generation. */
for (i = 0; i < BLI_array_count(vv1); i++) {
if (len_v3v3(vv1[i]->co, vv2[0]->co) < min) {
min = len_v3v3(vv1[i]->co, vv2[0]->co);
starti = i;
}
}
/* Reverse iteration order for the first loop if the distance of
* the (starti - 1) vert from vv1 is a better match for vv2[1] than
* the (starti + 1) vert.
*
* This is not always going to be right, but it will work better in
* the average case.
*/
previ = clamp_index(starti - 1, lenv1);
nexti = clamp_index(starti + 1, lenv1);
/* avoid sqrt for comparison */
if (len_squared_v3v3(vv1[nexti]->co, vv2[1]->co) > len_squared_v3v3(vv1[previ]->co, vv2[1]->co)) {
/* reverse direction for reading vv1 (1 is forward, -1 is backward) */
dir1 = -1;
}
}
/* Vert rough attempt to determine proper winding for the bridge quads:
* just uses the first loop it finds for any of the edges of ee2 or ee1 */
if (wdir == 0) {
for (i = 0; i < BLI_array_count(ee2); i++) {
if (ee2[i]->l) {
wdir = (ee2[i]->l->v == vv2[i]) ? (-1) : (1);
break;
}
}
}
if (wdir == 0) {
for (i = 0; i < BLI_array_count(ee1); i++) {
j = clamp_index((i * dir1) + starti, BLI_array_count(ee1));
if (ee1[j]->l && ee2[j]->l) {
wdir = (ee2[j]->l->v == vv2[j]) ? (1) : (-1);
break;
}
}
}
/* Generate the bridge quads */
for (i = 0; i < BLI_array_count(ee1) && i < BLI_array_count(ee2); i++) {
BMFace *f;
BMLoop *l_1 = NULL;
BMLoop *l_2 = NULL;
BMLoop *l_1_next = NULL;
BMLoop *l_2_next = NULL;
BMLoop *l_iter;
BMFace *f_example;
int i1, i1next, i2, i2next;
i1 = clamp_index(i * dir1 + starti, lenv1);
i1next = clamp_index((i + 1) * dir1 + starti, lenv1);
i2 = i;
i2next = clamp_index(i + 1, lenv2);
if (vv1[i1] == vv1[i1next]) {
continue;
}
if (wdir < 0) {
SWAP(int, i1, i1next);
SWAP(int, i2, i2next);
}
/* get loop data - before making the face */
bm_vert_loop_pair(bm, vv1[i1], vv2[i2], &l_1, &l_2);
bm_vert_loop_pair(bm, vv1[i1next], vv2[i2next], &l_1_next, &l_2_next);
/* copy if loop data if its is missing on one ring */
if (l_1 && l_1_next == NULL) l_1_next = l_1;
if (l_1_next && l_1 == NULL) l_1 = l_1_next;
if (l_2 && l_2_next == NULL) l_2_next = l_2;
if (l_2_next && l_2 == NULL) l_2 = l_2_next;
f_example = l_1 ? l_1->f : (l_2 ? l_2->f : NULL);
f = BM_face_create_quad_tri(bm,
vv1[i1],
vv2[i2],
vv2[i2next],
vv1[i1next],
f_example, TRUE);
if (!f || f->len != 4) {
fprintf(stderr, "%s: in bridge! (bmesh internal error)\n", __func__);
}
else {
l_iter = BM_FACE_FIRST_LOOP(f);
if (l_1) BM_elem_attrs_copy(bm, bm, l_1, l_iter); l_iter = l_iter->next;
if (l_2) BM_elem_attrs_copy(bm, bm, l_2, l_iter); l_iter = l_iter->next;
if (l_2_next) BM_elem_attrs_copy(bm, bm, l_2_next, l_iter); l_iter = l_iter->next;
if (l_1_next) BM_elem_attrs_copy(bm, bm, l_1_next, l_iter);
}
}
}
cleanup:
BLI_array_free(ee1);
BLI_array_free(ee2);
BLI_array_free(vv1);
BLI_array_free(vv2);
}