This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/texture_image.c
2021-02-09 10:42:00 +11:00

2027 lines
55 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup render
*/
#include <fcntl.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#ifndef WIN32
# include <unistd.h>
#else
# include <io.h>
#endif
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "DNA_image_types.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
#include "BKE_image.h"
#include "RE_texture.h"
#include "render_types.h"
#include "texture_common.h"
static void boxsample(ImBuf *ibuf,
float minx,
float miny,
float maxx,
float maxy,
TexResult *texres,
const short imaprepeat,
const short imapextend);
/* *********** IMAGEWRAPPING ****************** */
/* x and y have to be checked for image size */
static void ibuf_get_color(float col[4], struct ImBuf *ibuf, int x, int y)
{
int ofs = y * ibuf->x + x;
if (ibuf->rect_float) {
if (ibuf->channels == 4) {
const float *fp = ibuf->rect_float + 4 * ofs;
copy_v4_v4(col, fp);
}
else if (ibuf->channels == 3) {
const float *fp = ibuf->rect_float + 3 * ofs;
copy_v3_v3(col, fp);
col[3] = 1.0f;
}
else {
const float *fp = ibuf->rect_float + ofs;
col[0] = col[1] = col[2] = col[3] = *fp;
}
}
else {
const char *rect = (char *)(ibuf->rect + ofs);
col[0] = ((float)rect[0]) * (1.0f / 255.0f);
col[1] = ((float)rect[1]) * (1.0f / 255.0f);
col[2] = ((float)rect[2]) * (1.0f / 255.0f);
col[3] = ((float)rect[3]) * (1.0f / 255.0f);
/* bytes are internally straight, however render pipeline seems to expect premul */
col[0] *= col[3];
col[1] *= col[3];
col[2] *= col[3];
}
}
int imagewrap(Tex *tex,
Image *ima,
const float texvec[3],
TexResult *texres,
struct ImagePool *pool,
const bool skip_load_image)
{
float fx, fy, val1, val2, val3;
int x, y, retval;
int xi, yi; /* original values */
texres->tin = texres->ta = texres->tr = texres->tg = texres->tb = 0.0f;
/* we need to set retval OK, otherwise texture code generates normals itself... */
retval = texres->nor ? (TEX_RGB | TEX_NOR) : TEX_RGB;
/* quick tests */
if (ima == NULL) {
return retval;
}
/* hack for icon render */
if (skip_load_image && !BKE_image_has_loaded_ibuf(ima)) {
return retval;
}
ImageUser *iuser = &tex->iuser;
ImageUser local_iuser;
if (ima->source == IMA_SRC_TILED) {
/* tex->iuser might be shared by threads, so create a local copy. */
local_iuser = tex->iuser;
iuser = &local_iuser;
float new_uv[2];
iuser->tile = BKE_image_get_tile_from_pos(ima, texvec, new_uv, NULL);
fx = new_uv[0];
fy = new_uv[1];
}
else {
fx = texvec[0];
fy = texvec[1];
}
ImBuf *ibuf = BKE_image_pool_acquire_ibuf(ima, iuser, pool);
ima->flag |= IMA_USED_FOR_RENDER;
if (ibuf == NULL || (ibuf->rect == NULL && ibuf->rect_float == NULL)) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
return retval;
}
/* setup mapping */
if (tex->imaflag & TEX_IMAROT) {
SWAP(float, fx, fy);
}
if (tex->extend == TEX_CHECKER) {
int xs, ys;
xs = (int)floor(fx);
ys = (int)floor(fy);
fx -= xs;
fy -= ys;
if ((tex->flag & TEX_CHECKER_ODD) == 0) {
if ((xs + ys) & 1) {
/* pass */
}
else {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
if ((tex->flag & TEX_CHECKER_EVEN) == 0) {
if ((xs + ys) & 1) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
/* scale around center, (0.5, 0.5) */
if (tex->checkerdist < 1.0f) {
fx = (fx - 0.5f) / (1.0f - tex->checkerdist) + 0.5f;
fy = (fy - 0.5f) / (1.0f - tex->checkerdist) + 0.5f;
}
}
x = xi = (int)floorf(fx * ibuf->x);
y = yi = (int)floorf(fy * ibuf->y);
if (tex->extend == TEX_CLIPCUBE) {
if (x < 0 || y < 0 || x >= ibuf->x || y >= ibuf->y || texvec[2] < -1.0f || texvec[2] > 1.0f) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else if (ELEM(tex->extend, TEX_CLIP, TEX_CHECKER)) {
if (x < 0 || y < 0 || x >= ibuf->x || y >= ibuf->y) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else {
if (tex->extend == TEX_EXTEND) {
if (x >= ibuf->x) {
x = ibuf->x - 1;
}
else if (x < 0) {
x = 0;
}
}
else {
x = x % ibuf->x;
if (x < 0) {
x += ibuf->x;
}
}
if (tex->extend == TEX_EXTEND) {
if (y >= ibuf->y) {
y = ibuf->y - 1;
}
else if (y < 0) {
y = 0;
}
}
else {
y = y % ibuf->y;
if (y < 0) {
y += ibuf->y;
}
}
}
/* Keep this before interpolation T29761. */
if (ima) {
if ((tex->imaflag & TEX_USEALPHA) && (ima->alpha_mode != IMA_ALPHA_IGNORE)) {
if ((tex->imaflag & TEX_CALCALPHA) == 0) {
texres->talpha = true;
}
}
}
/* interpolate */
if (tex->imaflag & TEX_INTERPOL) {
float filterx, filtery;
filterx = (0.5f * tex->filtersize) / ibuf->x;
filtery = (0.5f * tex->filtersize) / ibuf->y;
/* Important that this value is wrapped T27782.
* this applies the modifications made by the checks above,
* back to the floating point values */
fx -= (float)(xi - x) / (float)ibuf->x;
fy -= (float)(yi - y) / (float)ibuf->y;
boxsample(ibuf,
fx - filterx,
fy - filtery,
fx + filterx,
fy + filtery,
texres,
(tex->extend == TEX_REPEAT),
(tex->extend == TEX_EXTEND));
}
else { /* no filtering */
ibuf_get_color(&texres->tr, ibuf, x, y);
}
if (texres->nor) {
if (tex->imaflag & TEX_NORMALMAP) {
/* Normal from color:
* The invert of the red channel is to make
* the normal map compliant with the outside world.
* It needs to be done because in Blender
* the normal used in the renderer points inward. It is generated
* this way in calc_vertexnormals(). Should this ever change
* this negate must be removed. */
texres->nor[0] = -2.0f * (texres->tr - 0.5f);
texres->nor[1] = 2.0f * (texres->tg - 0.5f);
texres->nor[2] = 2.0f * (texres->tb - 0.5f);
}
else {
/* bump: take three samples */
val1 = texres->tr + texres->tg + texres->tb;
if (x < ibuf->x - 1) {
float col[4];
ibuf_get_color(col, ibuf, x + 1, y);
val2 = (col[0] + col[1] + col[2]);
}
else {
val2 = val1;
}
if (y < ibuf->y - 1) {
float col[4];
ibuf_get_color(col, ibuf, x, y + 1);
val3 = (col[0] + col[1] + col[2]);
}
else {
val3 = val1;
}
/* do not mix up x and y here! */
texres->nor[0] = (val1 - val2);
texres->nor[1] = (val1 - val3);
}
}
if (texres->talpha) {
texres->tin = texres->ta;
}
else if (tex->imaflag & TEX_CALCALPHA) {
texres->ta = texres->tin = max_fff(texres->tr, texres->tg, texres->tb);
}
else {
texres->ta = texres->tin = 1.0;
}
if (tex->flag & TEX_NEGALPHA) {
texres->ta = 1.0f - texres->ta;
}
/* de-premul, this is being pre-multiplied in shade_input_do_shade()
* do not de-premul for generated alpha, it is already in straight */
if (texres->ta != 1.0f && texres->ta > 1e-4f && !(tex->imaflag & TEX_CALCALPHA)) {
fx = 1.0f / texres->ta;
texres->tr *= fx;
texres->tg *= fx;
texres->tb *= fx;
}
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
BRICONTRGB;
return retval;
}
static void clipx_rctf_swap(rctf *stack, short *count, float x1, float x2)
{
rctf *rf, *newrct;
short a;
a = *count;
rf = stack;
for (; a > 0; a--) {
if (rf->xmin < x1) {
if (rf->xmax < x1) {
rf->xmin += (x2 - x1);
rf->xmax += (x2 - x1);
}
else {
if (rf->xmax > x2) {
rf->xmax = x2;
}
newrct = stack + *count;
(*count)++;
newrct->xmax = x2;
newrct->xmin = rf->xmin + (x2 - x1);
newrct->ymin = rf->ymin;
newrct->ymax = rf->ymax;
if (newrct->xmin == newrct->xmax) {
(*count)--;
}
rf->xmin = x1;
}
}
else if (rf->xmax > x2) {
if (rf->xmin > x2) {
rf->xmin -= (x2 - x1);
rf->xmax -= (x2 - x1);
}
else {
if (rf->xmin < x1) {
rf->xmin = x1;
}
newrct = stack + *count;
(*count)++;
newrct->xmin = x1;
newrct->xmax = rf->xmax - (x2 - x1);
newrct->ymin = rf->ymin;
newrct->ymax = rf->ymax;
if (newrct->xmin == newrct->xmax) {
(*count)--;
}
rf->xmax = x2;
}
}
rf++;
}
}
static void clipy_rctf_swap(rctf *stack, short *count, float y1, float y2)
{
rctf *rf, *newrct;
short a;
a = *count;
rf = stack;
for (; a > 0; a--) {
if (rf->ymin < y1) {
if (rf->ymax < y1) {
rf->ymin += (y2 - y1);
rf->ymax += (y2 - y1);
}
else {
if (rf->ymax > y2) {
rf->ymax = y2;
}
newrct = stack + *count;
(*count)++;
newrct->ymax = y2;
newrct->ymin = rf->ymin + (y2 - y1);
newrct->xmin = rf->xmin;
newrct->xmax = rf->xmax;
if (newrct->ymin == newrct->ymax) {
(*count)--;
}
rf->ymin = y1;
}
}
else if (rf->ymax > y2) {
if (rf->ymin > y2) {
rf->ymin -= (y2 - y1);
rf->ymax -= (y2 - y1);
}
else {
if (rf->ymin < y1) {
rf->ymin = y1;
}
newrct = stack + *count;
(*count)++;
newrct->ymin = y1;
newrct->ymax = rf->ymax - (y2 - y1);
newrct->xmin = rf->xmin;
newrct->xmax = rf->xmax;
if (newrct->ymin == newrct->ymax) {
(*count)--;
}
rf->ymax = y2;
}
}
rf++;
}
}
static float square_rctf(rctf *rf)
{
float x, y;
x = BLI_rctf_size_x(rf);
y = BLI_rctf_size_y(rf);
return x * y;
}
static float clipx_rctf(rctf *rf, float x1, float x2)
{
float size;
size = BLI_rctf_size_x(rf);
if (rf->xmin < x1) {
rf->xmin = x1;
}
if (rf->xmax > x2) {
rf->xmax = x2;
}
if (rf->xmin > rf->xmax) {
rf->xmin = rf->xmax;
return 0.0;
}
if (size != 0.0f) {
return BLI_rctf_size_x(rf) / size;
}
return 1.0;
}
static float clipy_rctf(rctf *rf, float y1, float y2)
{
float size;
size = BLI_rctf_size_y(rf);
if (rf->ymin < y1) {
rf->ymin = y1;
}
if (rf->ymax > y2) {
rf->ymax = y2;
}
if (rf->ymin > rf->ymax) {
rf->ymin = rf->ymax;
return 0.0;
}
if (size != 0.0f) {
return BLI_rctf_size_y(rf) / size;
}
return 1.0;
}
static void boxsampleclip(struct ImBuf *ibuf, rctf *rf, TexResult *texres)
{
/* Sample box, is clipped already, and minx etc. have been set at ibuf size.
* Enlarge with anti-aliased edges of the pixels. */
float muly, mulx, div, col[4];
int x, y, startx, endx, starty, endy;
startx = (int)floor(rf->xmin);
endx = (int)floor(rf->xmax);
starty = (int)floor(rf->ymin);
endy = (int)floor(rf->ymax);
if (startx < 0) {
startx = 0;
}
if (starty < 0) {
starty = 0;
}
if (endx >= ibuf->x) {
endx = ibuf->x - 1;
}
if (endy >= ibuf->y) {
endy = ibuf->y - 1;
}
if (starty == endy && startx == endx) {
ibuf_get_color(&texres->tr, ibuf, startx, starty);
}
else {
div = texres->tr = texres->tg = texres->tb = texres->ta = 0.0;
for (y = starty; y <= endy; y++) {
muly = 1.0;
if (starty == endy) {
/* pass */
}
else {
if (y == starty) {
muly = 1.0f - (rf->ymin - y);
}
if (y == endy) {
muly = (rf->ymax - y);
}
}
if (startx == endx) {
mulx = muly;
ibuf_get_color(col, ibuf, startx, y);
texres->ta += mulx * col[3];
texres->tr += mulx * col[0];
texres->tg += mulx * col[1];
texres->tb += mulx * col[2];
div += mulx;
}
else {
for (x = startx; x <= endx; x++) {
mulx = muly;
if (x == startx) {
mulx *= 1.0f - (rf->xmin - x);
}
if (x == endx) {
mulx *= (rf->xmax - x);
}
ibuf_get_color(col, ibuf, x, y);
if (mulx == 1.0f) {
texres->ta += col[3];
texres->tr += col[0];
texres->tg += col[1];
texres->tb += col[2];
div += 1.0f;
}
else {
texres->ta += mulx * col[3];
texres->tr += mulx * col[0];
texres->tg += mulx * col[1];
texres->tb += mulx * col[2];
div += mulx;
}
}
}
}
if (div != 0.0f) {
div = 1.0f / div;
texres->tb *= div;
texres->tg *= div;
texres->tr *= div;
texres->ta *= div;
}
else {
texres->tr = texres->tg = texres->tb = texres->ta = 0.0f;
}
}
}
static void boxsample(ImBuf *ibuf,
float minx,
float miny,
float maxx,
float maxy,
TexResult *texres,
const short imaprepeat,
const short imapextend)
{
/* Sample box, performs clip. minx etc are in range 0.0 - 1.0 .
* Enlarge with anti-aliased edges of pixels.
* If variable 'imaprepeat' has been set, the
* clipped-away parts are sampled as well.
*/
/* note: actually minx etc isn't in the proper range...
* this due to filter size and offset vectors for bump */
/* note: talpha must be initialized */
/* note: even when 'imaprepeat' is set, this can only repeat once in any direction.
* the point which min/max is derived from is assumed to be wrapped */
TexResult texr;
rctf *rf, stack[8];
float opp, tot, alphaclip = 1.0;
short count = 1;
rf = stack;
rf->xmin = minx * (ibuf->x);
rf->xmax = maxx * (ibuf->x);
rf->ymin = miny * (ibuf->y);
rf->ymax = maxy * (ibuf->y);
texr.talpha = texres->talpha; /* is read by boxsample_clip */
if (imapextend) {
CLAMP(rf->xmin, 0.0f, ibuf->x - 1);
CLAMP(rf->xmax, 0.0f, ibuf->x - 1);
}
else if (imaprepeat) {
clipx_rctf_swap(stack, &count, 0.0, (float)(ibuf->x));
}
else {
alphaclip = clipx_rctf(rf, 0.0, (float)(ibuf->x));
if (alphaclip <= 0.0f) {
texres->tr = texres->tb = texres->tg = texres->ta = 0.0;
return;
}
}
if (imapextend) {
CLAMP(rf->ymin, 0.0f, ibuf->y - 1);
CLAMP(rf->ymax, 0.0f, ibuf->y - 1);
}
else if (imaprepeat) {
clipy_rctf_swap(stack, &count, 0.0, (float)(ibuf->y));
}
else {
alphaclip *= clipy_rctf(rf, 0.0, (float)(ibuf->y));
if (alphaclip <= 0.0f) {
texres->tr = texres->tb = texres->tg = texres->ta = 0.0;
return;
}
}
if (count > 1) {
tot = texres->tr = texres->tb = texres->tg = texres->ta = 0.0;
while (count--) {
boxsampleclip(ibuf, rf, &texr);
opp = square_rctf(rf);
tot += opp;
texres->tr += opp * texr.tr;
texres->tg += opp * texr.tg;
texres->tb += opp * texr.tb;
if (texres->talpha) {
texres->ta += opp * texr.ta;
}
rf++;
}
if (tot != 0.0f) {
texres->tr /= tot;
texres->tg /= tot;
texres->tb /= tot;
if (texres->talpha) {
texres->ta /= tot;
}
}
}
else {
boxsampleclip(ibuf, rf, texres);
}
if (texres->talpha == 0) {
texres->ta = 1.0;
}
if (alphaclip != 1.0f) {
/* premul it all */
texres->tr *= alphaclip;
texres->tg *= alphaclip;
texres->tb *= alphaclip;
texres->ta *= alphaclip;
}
}
/* -------------------------------------------------------------------- */
/* from here, some functions only used for the new filtering */
/* anisotropic filters, data struct used instead of long line of (possibly unused) func args */
typedef struct afdata_t {
float dxt[2], dyt[2];
int intpol, extflag;
/* feline only */
float majrad, minrad, theta;
int iProbes;
float dusc, dvsc;
} afdata_t;
/* this only used here to make it easier to pass extend flags as single int */
enum { TXC_XMIR = 1, TXC_YMIR, TXC_REPT, TXC_EXTD };
/**
* Similar to `ibuf_get_color()` but clips/wraps coords according to repeat/extend flags
* returns true if out of range in clip-mode.
*/
static int ibuf_get_color_clip(float col[4], ImBuf *ibuf, int x, int y, int extflag)
{
int clip = 0;
switch (extflag) {
case TXC_XMIR: /* y rep */
x %= 2 * ibuf->x;
x += x < 0 ? 2 * ibuf->x : 0;
x = x >= ibuf->x ? 2 * ibuf->x - x - 1 : x;
y %= ibuf->y;
y += y < 0 ? ibuf->y : 0;
break;
case TXC_YMIR: /* x rep */
x %= ibuf->x;
x += x < 0 ? ibuf->x : 0;
y %= 2 * ibuf->y;
y += y < 0 ? 2 * ibuf->y : 0;
y = y >= ibuf->y ? 2 * ibuf->y - y - 1 : y;
break;
case TXC_EXTD:
x = (x < 0) ? 0 : ((x >= ibuf->x) ? (ibuf->x - 1) : x);
y = (y < 0) ? 0 : ((y >= ibuf->y) ? (ibuf->y - 1) : y);
break;
case TXC_REPT:
x %= ibuf->x;
x += (x < 0) ? ibuf->x : 0;
y %= ibuf->y;
y += (y < 0) ? ibuf->y : 0;
break;
default: { /* as extend, if clipped, set alpha to 0.0 */
if (x < 0) {
x = 0;
} /* TXF alpha: clip = 1; } */
if (x >= ibuf->x) {
x = ibuf->x - 1;
} /* TXF alpha: clip = 1; } */
if (y < 0) {
y = 0;
} /* TXF alpha: clip = 1; } */
if (y >= ibuf->y) {
y = ibuf->y - 1;
} /* TXF alpha: clip = 1; } */
}
}
if (ibuf->rect_float) {
const float *fp = ibuf->rect_float + (x + y * ibuf->x) * ibuf->channels;
if (ibuf->channels == 1) {
col[0] = col[1] = col[2] = col[3] = *fp;
}
else {
col[0] = fp[0];
col[1] = fp[1];
col[2] = fp[2];
col[3] = clip ? 0.0f : (ibuf->channels == 4 ? fp[3] : 1.0f);
}
}
else {
const char *rect = (char *)(ibuf->rect + x + y * ibuf->x);
float inv_alpha_fac = (1.0f / 255.0f) * rect[3] * (1.0f / 255.0f);
col[0] = rect[0] * inv_alpha_fac;
col[1] = rect[1] * inv_alpha_fac;
col[2] = rect[2] * inv_alpha_fac;
col[3] = clip ? 0.0f : rect[3] * (1.0f / 255.0f);
}
return clip;
}
/* as above + bilerp */
static int ibuf_get_color_clip_bilerp(
float col[4], ImBuf *ibuf, float u, float v, int intpol, int extflag)
{
if (intpol) {
float c00[4], c01[4], c10[4], c11[4];
const float ufl = floorf(u -= 0.5f), vfl = floorf(v -= 0.5f);
const float uf = u - ufl, vf = v - vfl;
const float w00 = (1.0f - uf) * (1.0f - vf), w10 = uf * (1.0f - vf), w01 = (1.0f - uf) * vf,
w11 = uf * vf;
const int x1 = (int)ufl, y1 = (int)vfl, x2 = x1 + 1, y2 = y1 + 1;
int clip = ibuf_get_color_clip(c00, ibuf, x1, y1, extflag);
clip |= ibuf_get_color_clip(c10, ibuf, x2, y1, extflag);
clip |= ibuf_get_color_clip(c01, ibuf, x1, y2, extflag);
clip |= ibuf_get_color_clip(c11, ibuf, x2, y2, extflag);
col[0] = w00 * c00[0] + w10 * c10[0] + w01 * c01[0] + w11 * c11[0];
col[1] = w00 * c00[1] + w10 * c10[1] + w01 * c01[1] + w11 * c11[1];
col[2] = w00 * c00[2] + w10 * c10[2] + w01 * c01[2] + w11 * c11[2];
col[3] = clip ? 0.0f : w00 * c00[3] + w10 * c10[3] + w01 * c01[3] + w11 * c11[3];
return clip;
}
return ibuf_get_color_clip(col, ibuf, (int)u, (int)v, extflag);
}
static void area_sample(TexResult *texr, ImBuf *ibuf, float fx, float fy, afdata_t *AFD)
{
int xs, ys, clip = 0;
float tc[4], xsd, ysd, cw = 0.0f;
const float ux = ibuf->x * AFD->dxt[0], uy = ibuf->y * AFD->dxt[1];
const float vx = ibuf->x * AFD->dyt[0], vy = ibuf->y * AFD->dyt[1];
int xsam = (int)(0.5f * sqrtf(ux * ux + uy * uy) + 0.5f);
int ysam = (int)(0.5f * sqrtf(vx * vx + vy * vy) + 0.5f);
const int minsam = AFD->intpol ? 2 : 4;
xsam = CLAMPIS(xsam, minsam, ibuf->x * 2);
ysam = CLAMPIS(ysam, minsam, ibuf->y * 2);
xsd = 1.0f / xsam;
ysd = 1.0f / ysam;
texr->tr = texr->tg = texr->tb = texr->ta = 0.0f;
for (ys = 0; ys < ysam; ys++) {
for (xs = 0; xs < xsam; xs++) {
const float su = (xs + ((ys & 1) + 0.5f) * 0.5f) * xsd - 0.5f;
const float sv = (ys + ((xs & 1) + 0.5f) * 0.5f) * ysd - 0.5f;
const float pu = fx + su * AFD->dxt[0] + sv * AFD->dyt[0];
const float pv = fy + su * AFD->dxt[1] + sv * AFD->dyt[1];
const int out = ibuf_get_color_clip_bilerp(
tc, ibuf, pu * ibuf->x, pv * ibuf->y, AFD->intpol, AFD->extflag);
clip |= out;
cw += out ? 0.0f : 1.0f;
texr->tr += tc[0];
texr->tg += tc[1];
texr->tb += tc[2];
texr->ta += texr->talpha ? tc[3] : 0.0f;
}
}
xsd *= ysd;
texr->tr *= xsd;
texr->tg *= xsd;
texr->tb *= xsd;
/* clipping can be ignored if alpha used, texr->ta already includes filtered edge */
texr->ta = texr->talpha ? texr->ta * xsd : (clip ? cw * xsd : 1.0f);
}
typedef struct ReadEWAData {
ImBuf *ibuf;
afdata_t *AFD;
} ReadEWAData;
static void ewa_read_pixel_cb(void *userdata, int x, int y, float result[4])
{
ReadEWAData *data = (ReadEWAData *)userdata;
ibuf_get_color_clip(result, data->ibuf, x, y, data->AFD->extflag);
}
static void ewa_eval(TexResult *texr, ImBuf *ibuf, float fx, float fy, afdata_t *AFD)
{
ReadEWAData data;
const float uv[2] = {fx, fy};
data.ibuf = ibuf;
data.AFD = AFD;
BLI_ewa_filter(ibuf->x,
ibuf->y,
AFD->intpol != 0,
texr->talpha,
uv,
AFD->dxt,
AFD->dyt,
ewa_read_pixel_cb,
&data,
&texr->tr);
}
static void feline_eval(TexResult *texr, ImBuf *ibuf, float fx, float fy, afdata_t *AFD)
{
const int maxn = AFD->iProbes - 1;
const float ll = ((AFD->majrad == AFD->minrad) ? 2.0f * AFD->majrad :
2.0f * (AFD->majrad - AFD->minrad)) /
(maxn ? (float)maxn : 1.0f);
float du = maxn ? cosf(AFD->theta) * ll : 0.0f;
float dv = maxn ? sinf(AFD->theta) * ll : 0.0f;
/* const float D = -0.5f*(du*du + dv*dv) / (AFD->majrad*AFD->majrad); */
const float D = (EWA_MAXIDX + 1) * 0.25f * (du * du + dv * dv) / (AFD->majrad * AFD->majrad);
float d; /* TXF alpha: cw = 0.0f; */
int n; /* TXF alpha: clip = 0; */
/* have to use same scaling for du/dv here as for Ux/Vx/Uy/Vy (*after* D calc.) */
du *= AFD->dusc;
dv *= AFD->dvsc;
d = texr->tr = texr->tb = texr->tg = texr->ta = 0.0f;
for (n = -maxn; n <= maxn; n += 2) {
float tc[4];
const float hn = n * 0.5f;
const float u = fx + hn * du, v = fy + hn * dv;
/* Can use ewa table here too. */
#if 0
const float wt = expf(n * n * D);
#else
const float wt = EWA_WTS[(int)(n * n * D)];
#endif
/*const int out =*/ibuf_get_color_clip_bilerp(
tc, ibuf, ibuf->x * u, ibuf->y * v, AFD->intpol, AFD->extflag);
/* TXF alpha: clip |= out;
* TXF alpha: cw += out ? 0.0f : wt; */
texr->tr += tc[0] * wt;
texr->tg += tc[1] * wt;
texr->tb += tc[2] * wt;
texr->ta += texr->talpha ? tc[3] * wt : 0.0f;
d += wt;
}
d = 1.0f / d;
texr->tr *= d;
texr->tg *= d;
texr->tb *= d;
/* clipping can be ignored if alpha used, texr->ta already includes filtered edge */
texr->ta = texr->talpha ? texr->ta * d : 1.0f; // TXF alpha: (clip ? cw*d : 1.0f);
}
#undef EWA_MAXIDX
static void alpha_clip_aniso(
ImBuf *ibuf, float minx, float miny, float maxx, float maxy, int extflag, TexResult *texres)
{
float alphaclip;
rctf rf;
/* TXF alpha: we're doing the same alpha-clip here as box-sample, but I'm doubting
* if this is actually correct for the all the filtering algorithms .. */
if (!(extflag == TXC_REPT || extflag == TXC_EXTD)) {
rf.xmin = minx * (ibuf->x);
rf.xmax = maxx * (ibuf->x);
rf.ymin = miny * (ibuf->y);
rf.ymax = maxy * (ibuf->y);
alphaclip = clipx_rctf(&rf, 0.0, (float)(ibuf->x));
alphaclip *= clipy_rctf(&rf, 0.0, (float)(ibuf->y));
alphaclip = max_ff(alphaclip, 0.0f);
if (alphaclip != 1.0f) {
/* premul it all */
texres->tr *= alphaclip;
texres->tg *= alphaclip;
texres->tb *= alphaclip;
texres->ta *= alphaclip;
}
}
}
static void image_mipmap_test(Tex *tex, ImBuf *ibuf)
{
if (tex->imaflag & TEX_MIPMAP) {
if (ibuf->mipmap[0] && (ibuf->userflags & IB_MIPMAP_INVALID)) {
BLI_thread_lock(LOCK_IMAGE);
if (ibuf->userflags & IB_MIPMAP_INVALID) {
IMB_remakemipmap(ibuf, tex->imaflag & TEX_GAUSS_MIP);
ibuf->userflags &= ~IB_MIPMAP_INVALID;
}
BLI_thread_unlock(LOCK_IMAGE);
}
if (ibuf->mipmap[0] == NULL) {
BLI_thread_lock(LOCK_IMAGE);
if (ibuf->mipmap[0] == NULL) {
IMB_makemipmap(ibuf, tex->imaflag & TEX_GAUSS_MIP);
}
BLI_thread_unlock(LOCK_IMAGE);
}
/* if no mipmap could be made, fall back on non-mipmap render */
if (ibuf->mipmap[0] == NULL) {
tex->imaflag &= ~TEX_MIPMAP;
}
}
}
static int imagewraposa_aniso(Tex *tex,
Image *ima,
ImBuf *ibuf,
const float texvec[3],
float dxt[2],
float dyt[2],
TexResult *texres,
struct ImagePool *pool,
const bool skip_load_image)
{
TexResult texr;
float fx, fy, minx, maxx, miny, maxy;
float maxd, val1, val2, val3;
int curmap, retval, intpol, extflag = 0;
afdata_t AFD;
void (*filterfunc)(TexResult *, ImBuf *, float, float, afdata_t *);
switch (tex->texfilter) {
case TXF_EWA:
filterfunc = ewa_eval;
break;
case TXF_FELINE:
filterfunc = feline_eval;
break;
case TXF_AREA:
default:
filterfunc = area_sample;
}
texres->tin = texres->ta = texres->tr = texres->tg = texres->tb = 0.0f;
/* we need to set retval OK, otherwise texture code generates normals itself... */
retval = texres->nor ? (TEX_RGB | TEX_NOR) : TEX_RGB;
/* quick tests */
if (ibuf == NULL && ima == NULL) {
return retval;
}
if (ima) { /* hack for icon render */
if (skip_load_image && !BKE_image_has_loaded_ibuf(ima)) {
return retval;
}
ibuf = BKE_image_pool_acquire_ibuf(ima, &tex->iuser, pool);
}
if ((ibuf == NULL) || ((ibuf->rect == NULL) && (ibuf->rect_float == NULL))) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
if (ima) {
ima->flag |= IMA_USED_FOR_RENDER;
}
/* mipmap test */
image_mipmap_test(tex, ibuf);
if (ima) {
if ((tex->imaflag & TEX_USEALPHA) && (ima->alpha_mode != IMA_ALPHA_IGNORE)) {
if ((tex->imaflag & TEX_CALCALPHA) == 0) {
texres->talpha = 1;
}
}
}
texr.talpha = texres->talpha;
if (tex->imaflag & TEX_IMAROT) {
fy = texvec[0];
fx = texvec[1];
}
else {
fx = texvec[0];
fy = texvec[1];
}
/* pixel coordinates */
minx = min_fff(dxt[0], dyt[0], dxt[0] + dyt[0]);
maxx = max_fff(dxt[0], dyt[0], dxt[0] + dyt[0]);
miny = min_fff(dxt[1], dyt[1], dxt[1] + dyt[1]);
maxy = max_fff(dxt[1], dyt[1], dxt[1] + dyt[1]);
/* tex_sharper has been removed */
minx = (maxx - minx) * 0.5f;
miny = (maxy - miny) * 0.5f;
if (tex->imaflag & TEX_FILTER_MIN) {
/* Make sure the filtersize is minimal in pixels
* (normal, ref map can have miniature pixel dx/dy). */
const float addval = (0.5f * tex->filtersize) / (float)MIN2(ibuf->x, ibuf->y);
if (addval > minx) {
minx = addval;
}
if (addval > miny) {
miny = addval;
}
}
else if (tex->filtersize != 1.0f) {
minx *= tex->filtersize;
miny *= tex->filtersize;
dxt[0] *= tex->filtersize;
dxt[1] *= tex->filtersize;
dyt[0] *= tex->filtersize;
dyt[1] *= tex->filtersize;
}
if (tex->imaflag & TEX_IMAROT) {
float t;
SWAP(float, minx, miny);
/* must rotate dxt/dyt 90 deg
* yet another blender problem is that swapping X/Y axes (or any tex projection switches)
* should do something similar, but it doesn't, it only swaps coords,
* so filter area will be incorrect in those cases. */
t = dxt[0];
dxt[0] = dxt[1];
dxt[1] = -t;
t = dyt[0];
dyt[0] = dyt[1];
dyt[1] = -t;
}
/* side faces of unit-cube */
minx = (minx > 0.25f) ? 0.25f : ((minx < 1e-5f) ? 1e-5f : minx);
miny = (miny > 0.25f) ? 0.25f : ((miny < 1e-5f) ? 1e-5f : miny);
/* repeat and clip */
if (tex->extend == TEX_REPEAT) {
if ((tex->flag & (TEX_REPEAT_XMIR | TEX_REPEAT_YMIR)) == (TEX_REPEAT_XMIR | TEX_REPEAT_YMIR)) {
extflag = TXC_EXTD;
}
else if (tex->flag & TEX_REPEAT_XMIR) {
extflag = TXC_XMIR;
}
else if (tex->flag & TEX_REPEAT_YMIR) {
extflag = TXC_YMIR;
}
else {
extflag = TXC_REPT;
}
}
else if (tex->extend == TEX_EXTEND) {
extflag = TXC_EXTD;
}
if (tex->extend == TEX_CHECKER) {
int xs = (int)floorf(fx), ys = (int)floorf(fy);
/* both checkers available, no boundary exceptions, checkerdist will eat aliasing */
if ((tex->flag & TEX_CHECKER_ODD) && (tex->flag & TEX_CHECKER_EVEN)) {
fx -= xs;
fy -= ys;
}
else if ((tex->flag & TEX_CHECKER_ODD) == 0 && (tex->flag & TEX_CHECKER_EVEN) == 0) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
else {
int xs1 = (int)floorf(fx - minx);
int ys1 = (int)floorf(fy - miny);
int xs2 = (int)floorf(fx + minx);
int ys2 = (int)floorf(fy + miny);
if ((xs1 != xs2) || (ys1 != ys2)) {
if (tex->flag & TEX_CHECKER_ODD) {
fx -= ((xs1 + ys) & 1) ? xs2 : xs1;
fy -= ((ys1 + xs) & 1) ? ys2 : ys1;
}
if (tex->flag & TEX_CHECKER_EVEN) {
fx -= ((xs1 + ys) & 1) ? xs1 : xs2;
fy -= ((ys1 + xs) & 1) ? ys1 : ys2;
}
}
else {
if ((tex->flag & TEX_CHECKER_ODD) == 0 && ((xs + ys) & 1) == 0) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
if ((tex->flag & TEX_CHECKER_EVEN) == 0 && (xs + ys) & 1) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
fx -= xs;
fy -= ys;
}
}
/* scale around center, (0.5, 0.5) */
if (tex->checkerdist < 1.0f) {
const float omcd = 1.0f / (1.0f - tex->checkerdist);
fx = (fx - 0.5f) * omcd + 0.5f;
fy = (fy - 0.5f) * omcd + 0.5f;
minx *= omcd;
miny *= omcd;
}
}
if (tex->extend == TEX_CLIPCUBE) {
if ((fx + minx) < 0.0f || (fy + miny) < 0.0f || (fx - minx) > 1.0f || (fy - miny) > 1.0f ||
texvec[2] < -1.0f || texvec[2] > 1.0f) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else if (ELEM(tex->extend, TEX_CLIP, TEX_CHECKER)) {
if ((fx + minx) < 0.0f || (fy + miny) < 0.0f || (fx - minx) > 1.0f || (fy - miny) > 1.0f) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else {
if (tex->extend == TEX_EXTEND) {
fx = (fx > 1.0f) ? 1.0f : ((fx < 0.0f) ? 0.0f : fx);
fy = (fy > 1.0f) ? 1.0f : ((fy < 0.0f) ? 0.0f : fy);
}
else {
fx -= floorf(fx);
fy -= floorf(fy);
}
}
intpol = tex->imaflag & TEX_INTERPOL;
/* struct common data */
copy_v2_v2(AFD.dxt, dxt);
copy_v2_v2(AFD.dyt, dyt);
AFD.intpol = intpol;
AFD.extflag = extflag;
/* brecht: added stupid clamping here, large dx/dy can give very large
* filter sizes which take ages to render, it may be better to do this
* more intelligently later in the code .. probably it's not noticeable */
if (AFD.dxt[0] * AFD.dxt[0] + AFD.dxt[1] * AFD.dxt[1] > 2.0f * 2.0f) {
mul_v2_fl(AFD.dxt, 2.0f / len_v2(AFD.dxt));
}
if (AFD.dyt[0] * AFD.dyt[0] + AFD.dyt[1] * AFD.dyt[1] > 2.0f * 2.0f) {
mul_v2_fl(AFD.dyt, 2.0f / len_v2(AFD.dyt));
}
/* choice: */
if (tex->imaflag & TEX_MIPMAP) {
ImBuf *previbuf, *curibuf;
float levf;
int maxlev;
ImBuf *mipmaps[IMB_MIPMAP_LEVELS + 1];
/* Modify ellipse minor axis if too eccentric, use for area sampling as well
* scaling `dxt/dyt` as done in PBRT is not the same
* (as in `ewa_eval()`, scale by `sqrt(ibuf->x)` to maximize precision). */
const float ff = sqrtf(ibuf->x), q = ibuf->y / ff;
const float Ux = dxt[0] * ff, Vx = dxt[1] * q, Uy = dyt[0] * ff, Vy = dyt[1] * q;
const float A = Vx * Vx + Vy * Vy;
const float B = -2.0f * (Ux * Vx + Uy * Vy);
const float C = Ux * Ux + Uy * Uy;
const float F = A * C - B * B * 0.25f;
float a, b, th, ecc;
BLI_ewa_imp2radangle(A, B, C, F, &a, &b, &th, &ecc);
if (tex->texfilter == TXF_FELINE) {
float fProbes;
a *= ff;
b *= ff;
a = max_ff(a, 1.0f);
b = max_ff(b, 1.0f);
fProbes = 2.0f * (a / b) - 1.0f;
AFD.iProbes = round_fl_to_int(fProbes);
AFD.iProbes = MIN2(AFD.iProbes, tex->afmax);
if (AFD.iProbes < fProbes) {
b = 2.0f * a / (float)(AFD.iProbes + 1);
}
AFD.majrad = a / ff;
AFD.minrad = b / ff;
AFD.theta = th;
AFD.dusc = 1.0f / ff;
AFD.dvsc = ff / (float)ibuf->y;
}
else { /* EWA & area */
if (ecc > (float)tex->afmax) {
b = a / (float)tex->afmax;
}
b *= ff;
}
maxd = max_ff(b, 1e-8f);
levf = ((float)M_LOG2E) * logf(maxd);
curmap = 0;
maxlev = 1;
mipmaps[0] = ibuf;
while (curmap < IMB_MIPMAP_LEVELS) {
mipmaps[curmap + 1] = ibuf->mipmap[curmap];
if (ibuf->mipmap[curmap]) {
maxlev++;
}
curmap++;
}
/* mipmap level */
if (levf < 0.0f) { /* original image only */
previbuf = curibuf = mipmaps[0];
levf = 0.0f;
}
else if (levf >= maxlev - 1) {
previbuf = curibuf = mipmaps[maxlev - 1];
levf = 0.0f;
if (tex->texfilter == TXF_FELINE) {
AFD.iProbes = 1;
}
}
else {
const int lev = isnan(levf) ? 0 : (int)levf;
curibuf = mipmaps[lev];
previbuf = mipmaps[lev + 1];
levf -= floorf(levf);
}
/* filter functions take care of interpolation themselves, no need to modify dxt/dyt here */
if (texres->nor && ((tex->imaflag & TEX_NORMALMAP) == 0)) {
/* color & normal */
filterfunc(texres, curibuf, fx, fy, &AFD);
val1 = texres->tr + texres->tg + texres->tb;
filterfunc(&texr, curibuf, fx + dxt[0], fy + dxt[1], &AFD);
val2 = texr.tr + texr.tg + texr.tb;
filterfunc(&texr, curibuf, fx + dyt[0], fy + dyt[1], &AFD);
val3 = texr.tr + texr.tg + texr.tb;
/* don't switch x or y! */
texres->nor[0] = val1 - val2;
texres->nor[1] = val1 - val3;
if (previbuf != curibuf) { /* interpolate */
filterfunc(&texr, previbuf, fx, fy, &AFD);
/* rgb */
texres->tr += levf * (texr.tr - texres->tr);
texres->tg += levf * (texr.tg - texres->tg);
texres->tb += levf * (texr.tb - texres->tb);
texres->ta += levf * (texr.ta - texres->ta);
/* normal */
val1 += levf * ((texr.tr + texr.tg + texr.tb) - val1);
filterfunc(&texr, previbuf, fx + dxt[0], fy + dxt[1], &AFD);
val2 += levf * ((texr.tr + texr.tg + texr.tb) - val2);
filterfunc(&texr, previbuf, fx + dyt[0], fy + dyt[1], &AFD);
val3 += levf * ((texr.tr + texr.tg + texr.tb) - val3);
texres->nor[0] = val1 - val2; /* vals have been interpolated above! */
texres->nor[1] = val1 - val3;
}
}
else { /* color */
filterfunc(texres, curibuf, fx, fy, &AFD);
if (previbuf != curibuf) { /* interpolate */
filterfunc(&texr, previbuf, fx, fy, &AFD);
texres->tr += levf * (texr.tr - texres->tr);
texres->tg += levf * (texr.tg - texres->tg);
texres->tb += levf * (texr.tb - texres->tb);
texres->ta += levf * (texr.ta - texres->ta);
}
if (tex->texfilter != TXF_EWA) {
alpha_clip_aniso(ibuf, fx - minx, fy - miny, fx + minx, fy + miny, extflag, texres);
}
}
}
else { /* no mipmap */
/* filter functions take care of interpolation themselves, no need to modify dxt/dyt here */
if (tex->texfilter == TXF_FELINE) {
const float ff = sqrtf(ibuf->x), q = ibuf->y / ff;
const float Ux = dxt[0] * ff, Vx = dxt[1] * q, Uy = dyt[0] * ff, Vy = dyt[1] * q;
const float A = Vx * Vx + Vy * Vy;
const float B = -2.0f * (Ux * Vx + Uy * Vy);
const float C = Ux * Ux + Uy * Uy;
const float F = A * C - B * B * 0.25f;
float a, b, th, ecc, fProbes;
BLI_ewa_imp2radangle(A, B, C, F, &a, &b, &th, &ecc);
a *= ff;
b *= ff;
a = max_ff(a, 1.0f);
b = max_ff(b, 1.0f);
fProbes = 2.0f * (a / b) - 1.0f;
/* no limit to number of Probes here */
AFD.iProbes = round_fl_to_int(fProbes);
if (AFD.iProbes < fProbes) {
b = 2.0f * a / (float)(AFD.iProbes + 1);
}
AFD.majrad = a / ff;
AFD.minrad = b / ff;
AFD.theta = th;
AFD.dusc = 1.0f / ff;
AFD.dvsc = ff / (float)ibuf->y;
}
if (texres->nor && ((tex->imaflag & TEX_NORMALMAP) == 0)) {
/* color & normal */
filterfunc(texres, ibuf, fx, fy, &AFD);
val1 = texres->tr + texres->tg + texres->tb;
filterfunc(&texr, ibuf, fx + dxt[0], fy + dxt[1], &AFD);
val2 = texr.tr + texr.tg + texr.tb;
filterfunc(&texr, ibuf, fx + dyt[0], fy + dyt[1], &AFD);
val3 = texr.tr + texr.tg + texr.tb;
/* don't switch x or y! */
texres->nor[0] = val1 - val2;
texres->nor[1] = val1 - val3;
}
else {
filterfunc(texres, ibuf, fx, fy, &AFD);
if (tex->texfilter != TXF_EWA) {
alpha_clip_aniso(ibuf, fx - minx, fy - miny, fx + minx, fy + miny, extflag, texres);
}
}
}
if (tex->imaflag & TEX_CALCALPHA) {
texres->ta = texres->tin = texres->ta * max_fff(texres->tr, texres->tg, texres->tb);
}
else {
texres->tin = texres->ta;
}
if (tex->flag & TEX_NEGALPHA) {
texres->ta = 1.0f - texres->ta;
}
if (texres->nor && (tex->imaflag & TEX_NORMALMAP)) { /* normal from color */
/* The invert of the red channel is to make
* the normal map compliant with the outside world.
* It needs to be done because in Blender
* the normal used in the renderer points inward. It is generated
* this way in calc_vertexnormals(). Should this ever change
* this negate must be removed. */
texres->nor[0] = -2.0f * (texres->tr - 0.5f);
texres->nor[1] = 2.0f * (texres->tg - 0.5f);
texres->nor[2] = 2.0f * (texres->tb - 0.5f);
}
/* de-premul, this is being pre-multiplied in shade_input_do_shade()
* TXF: this currently does not (yet?) work properly, destroys edge AA in clip/checker mode,
* so for now commented out also disabled in imagewraposa()
* to be able to compare results with blender's default texture filtering */
/* brecht: tried to fix this, see "TXF alpha" comments */
/* do not de-premul for generated alpha, it is already in straight */
if (texres->ta != 1.0f && texres->ta > 1e-4f && !(tex->imaflag & TEX_CALCALPHA)) {
fx = 1.0f / texres->ta;
texres->tr *= fx;
texres->tg *= fx;
texres->tb *= fx;
}
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
BRICONTRGB;
return retval;
}
int imagewraposa(Tex *tex,
Image *ima,
ImBuf *ibuf,
const float texvec[3],
const float DXT[2],
const float DYT[2],
TexResult *texres,
struct ImagePool *pool,
const bool skip_load_image)
{
TexResult texr;
float fx, fy, minx, maxx, miny, maxy, dx, dy, dxt[2], dyt[2];
float maxd, pixsize, val1, val2, val3;
int curmap, retval, imaprepeat, imapextend;
/* TXF: since dxt/dyt might be modified here and since they might be needed after imagewraposa()
* call, make a local copy here so that original vecs remain untouched. */
copy_v2_v2(dxt, DXT);
copy_v2_v2(dyt, DYT);
/* anisotropic filtering */
if (tex->texfilter != TXF_BOX) {
return imagewraposa_aniso(tex, ima, ibuf, texvec, dxt, dyt, texres, pool, skip_load_image);
}
texres->tin = texres->ta = texres->tr = texres->tg = texres->tb = 0.0f;
/* we need to set retval OK, otherwise texture code generates normals itself... */
retval = texres->nor ? (TEX_RGB | TEX_NOR) : TEX_RGB;
/* quick tests */
if (ibuf == NULL && ima == NULL) {
return retval;
}
if (ima) {
/* hack for icon render */
if (skip_load_image && !BKE_image_has_loaded_ibuf(ima)) {
return retval;
}
ibuf = BKE_image_pool_acquire_ibuf(ima, &tex->iuser, pool);
ima->flag |= IMA_USED_FOR_RENDER;
}
if (ibuf == NULL || (ibuf->rect == NULL && ibuf->rect_float == NULL)) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
/* mipmap test */
image_mipmap_test(tex, ibuf);
if (ima) {
if ((tex->imaflag & TEX_USEALPHA) && (ima->alpha_mode != IMA_ALPHA_IGNORE)) {
if ((tex->imaflag & TEX_CALCALPHA) == 0) {
texres->talpha = true;
}
}
}
texr.talpha = texres->talpha;
if (tex->imaflag & TEX_IMAROT) {
fy = texvec[0];
fx = texvec[1];
}
else {
fx = texvec[0];
fy = texvec[1];
}
/* pixel coordinates */
minx = min_fff(dxt[0], dyt[0], dxt[0] + dyt[0]);
maxx = max_fff(dxt[0], dyt[0], dxt[0] + dyt[0]);
miny = min_fff(dxt[1], dyt[1], dxt[1] + dyt[1]);
maxy = max_fff(dxt[1], dyt[1], dxt[1] + dyt[1]);
/* tex_sharper has been removed */
minx = (maxx - minx) / 2.0f;
miny = (maxy - miny) / 2.0f;
if (tex->imaflag & TEX_FILTER_MIN) {
/* Make sure the filtersize is minimal in pixels
* (normal, ref map can have miniature pixel dx/dy). */
float addval = (0.5f * tex->filtersize) / (float)MIN2(ibuf->x, ibuf->y);
if (addval > minx) {
minx = addval;
}
if (addval > miny) {
miny = addval;
}
}
else if (tex->filtersize != 1.0f) {
minx *= tex->filtersize;
miny *= tex->filtersize;
dxt[0] *= tex->filtersize;
dxt[1] *= tex->filtersize;
dyt[0] *= tex->filtersize;
dyt[1] *= tex->filtersize;
}
if (tex->imaflag & TEX_IMAROT) {
SWAP(float, minx, miny);
}
if (minx > 0.25f) {
minx = 0.25f;
}
else if (minx < 0.00001f) {
minx = 0.00001f; /* side faces of unit-cube */
}
if (miny > 0.25f) {
miny = 0.25f;
}
else if (miny < 0.00001f) {
miny = 0.00001f;
}
/* repeat and clip */
imaprepeat = (tex->extend == TEX_REPEAT);
imapextend = (tex->extend == TEX_EXTEND);
if (tex->extend == TEX_REPEAT) {
if (tex->flag & (TEX_REPEAT_XMIR | TEX_REPEAT_YMIR)) {
imaprepeat = 0;
imapextend = 1;
}
}
if (tex->extend == TEX_CHECKER) {
int xs, ys, xs1, ys1, xs2, ys2, boundary;
xs = (int)floor(fx);
ys = (int)floor(fy);
/* both checkers available, no boundary exceptions, checkerdist will eat aliasing */
if ((tex->flag & TEX_CHECKER_ODD) && (tex->flag & TEX_CHECKER_EVEN)) {
fx -= xs;
fy -= ys;
}
else if ((tex->flag & TEX_CHECKER_ODD) == 0 && (tex->flag & TEX_CHECKER_EVEN) == 0) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
else {
xs1 = (int)floor(fx - minx);
ys1 = (int)floor(fy - miny);
xs2 = (int)floor(fx + minx);
ys2 = (int)floor(fy + miny);
boundary = (xs1 != xs2) || (ys1 != ys2);
if (boundary == 0) {
if ((tex->flag & TEX_CHECKER_ODD) == 0) {
if ((xs + ys) & 1) {
/* pass */
}
else {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
if ((tex->flag & TEX_CHECKER_EVEN) == 0) {
if ((xs + ys) & 1) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
fx -= xs;
fy -= ys;
}
else {
if (tex->flag & TEX_CHECKER_ODD) {
if ((xs1 + ys) & 1) {
fx -= xs2;
}
else {
fx -= xs1;
}
if ((ys1 + xs) & 1) {
fy -= ys2;
}
else {
fy -= ys1;
}
}
if (tex->flag & TEX_CHECKER_EVEN) {
if ((xs1 + ys) & 1) {
fx -= xs1;
}
else {
fx -= xs2;
}
if ((ys1 + xs) & 1) {
fy -= ys1;
}
else {
fy -= ys2;
}
}
}
}
/* scale around center, (0.5, 0.5) */
if (tex->checkerdist < 1.0f) {
fx = (fx - 0.5f) / (1.0f - tex->checkerdist) + 0.5f;
fy = (fy - 0.5f) / (1.0f - tex->checkerdist) + 0.5f;
minx /= (1.0f - tex->checkerdist);
miny /= (1.0f - tex->checkerdist);
}
}
if (tex->extend == TEX_CLIPCUBE) {
if (fx + minx < 0.0f || fy + miny < 0.0f || fx - minx > 1.0f || fy - miny > 1.0f ||
texvec[2] < -1.0f || texvec[2] > 1.0f) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else if (ELEM(tex->extend, TEX_CLIP, TEX_CHECKER)) {
if (fx + minx < 0.0f || fy + miny < 0.0f || fx - minx > 1.0f || fy - miny > 1.0f) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else {
if (imapextend) {
if (fx > 1.0f) {
fx = 1.0f;
}
else if (fx < 0.0f) {
fx = 0.0f;
}
}
else {
if (fx > 1.0f) {
fx -= (int)(fx);
}
else if (fx < 0.0f) {
fx += 1 - (int)(fx);
}
}
if (imapextend) {
if (fy > 1.0f) {
fy = 1.0f;
}
else if (fy < 0.0f) {
fy = 0.0f;
}
}
else {
if (fy > 1.0f) {
fy -= (int)(fy);
}
else if (fy < 0.0f) {
fy += 1 - (int)(fy);
}
}
}
/* choice: */
if (tex->imaflag & TEX_MIPMAP) {
ImBuf *previbuf, *curibuf;
float bumpscale;
dx = minx;
dy = miny;
maxd = max_ff(dx, dy);
if (maxd > 0.5f) {
maxd = 0.5f;
}
pixsize = 1.0f / (float)MIN2(ibuf->x, ibuf->y);
bumpscale = pixsize / maxd;
if (bumpscale > 1.0f) {
bumpscale = 1.0f;
}
else {
bumpscale *= bumpscale;
}
curmap = 0;
previbuf = curibuf = ibuf;
while (curmap < IMB_MIPMAP_LEVELS && ibuf->mipmap[curmap]) {
if (maxd < pixsize) {
break;
}
previbuf = curibuf;
curibuf = ibuf->mipmap[curmap];
pixsize = 1.0f / (float)MIN2(curibuf->x, curibuf->y);
curmap++;
}
if (previbuf != curibuf || (tex->imaflag & TEX_INTERPOL)) {
/* sample at least 1 pixel */
if (minx < 0.5f / ibuf->x) {
minx = 0.5f / ibuf->x;
}
if (miny < 0.5f / ibuf->y) {
miny = 0.5f / ibuf->y;
}
}
if (texres->nor && (tex->imaflag & TEX_NORMALMAP) == 0) {
/* a bit extra filter */
// minx*= 1.35f;
// miny*= 1.35f;
boxsample(
curibuf, fx - minx, fy - miny, fx + minx, fy + miny, texres, imaprepeat, imapextend);
val1 = texres->tr + texres->tg + texres->tb;
boxsample(curibuf,
fx - minx + dxt[0],
fy - miny + dxt[1],
fx + minx + dxt[0],
fy + miny + dxt[1],
&texr,
imaprepeat,
imapextend);
val2 = texr.tr + texr.tg + texr.tb;
boxsample(curibuf,
fx - minx + dyt[0],
fy - miny + dyt[1],
fx + minx + dyt[0],
fy + miny + dyt[1],
&texr,
imaprepeat,
imapextend);
val3 = texr.tr + texr.tg + texr.tb;
/* don't switch x or y! */
texres->nor[0] = (val1 - val2);
texres->nor[1] = (val1 - val3);
if (previbuf != curibuf) { /* interpolate */
boxsample(
previbuf, fx - minx, fy - miny, fx + minx, fy + miny, &texr, imaprepeat, imapextend);
/* calc rgb */
dx = 2.0f * (pixsize - maxd) / pixsize;
if (dx >= 1.0f) {
texres->ta = texr.ta;
texres->tb = texr.tb;
texres->tg = texr.tg;
texres->tr = texr.tr;
}
else {
dy = 1.0f - dx;
texres->tb = dy * texres->tb + dx * texr.tb;
texres->tg = dy * texres->tg + dx * texr.tg;
texres->tr = dy * texres->tr + dx * texr.tr;
texres->ta = dy * texres->ta + dx * texr.ta;
}
val1 = dy * val1 + dx * (texr.tr + texr.tg + texr.tb);
boxsample(previbuf,
fx - minx + dxt[0],
fy - miny + dxt[1],
fx + minx + dxt[0],
fy + miny + dxt[1],
&texr,
imaprepeat,
imapextend);
val2 = dy * val2 + dx * (texr.tr + texr.tg + texr.tb);
boxsample(previbuf,
fx - minx + dyt[0],
fy - miny + dyt[1],
fx + minx + dyt[0],
fy + miny + dyt[1],
&texr,
imaprepeat,
imapextend);
val3 = dy * val3 + dx * (texr.tr + texr.tg + texr.tb);
texres->nor[0] = (val1 - val2); /* vals have been interpolated above! */
texres->nor[1] = (val1 - val3);
if (dx < 1.0f) {
dy = 1.0f - dx;
texres->tb = dy * texres->tb + dx * texr.tb;
texres->tg = dy * texres->tg + dx * texr.tg;
texres->tr = dy * texres->tr + dx * texr.tr;
texres->ta = dy * texres->ta + dx * texr.ta;
}
}
texres->nor[0] *= bumpscale;
texres->nor[1] *= bumpscale;
}
else {
maxx = fx + minx;
minx = fx - minx;
maxy = fy + miny;
miny = fy - miny;
boxsample(curibuf, minx, miny, maxx, maxy, texres, imaprepeat, imapextend);
if (previbuf != curibuf) { /* interpolate */
boxsample(previbuf, minx, miny, maxx, maxy, &texr, imaprepeat, imapextend);
fx = 2.0f * (pixsize - maxd) / pixsize;
if (fx >= 1.0f) {
texres->ta = texr.ta;
texres->tb = texr.tb;
texres->tg = texr.tg;
texres->tr = texr.tr;
}
else {
fy = 1.0f - fx;
texres->tb = fy * texres->tb + fx * texr.tb;
texres->tg = fy * texres->tg + fx * texr.tg;
texres->tr = fy * texres->tr + fx * texr.tr;
texres->ta = fy * texres->ta + fx * texr.ta;
}
}
}
}
else {
const int intpol = tex->imaflag & TEX_INTERPOL;
if (intpol) {
/* sample 1 pixel minimum */
if (minx < 0.5f / ibuf->x) {
minx = 0.5f / ibuf->x;
}
if (miny < 0.5f / ibuf->y) {
miny = 0.5f / ibuf->y;
}
}
if (texres->nor && (tex->imaflag & TEX_NORMALMAP) == 0) {
boxsample(ibuf, fx - minx, fy - miny, fx + minx, fy + miny, texres, imaprepeat, imapextend);
val1 = texres->tr + texres->tg + texres->tb;
boxsample(ibuf,
fx - minx + dxt[0],
fy - miny + dxt[1],
fx + minx + dxt[0],
fy + miny + dxt[1],
&texr,
imaprepeat,
imapextend);
val2 = texr.tr + texr.tg + texr.tb;
boxsample(ibuf,
fx - minx + dyt[0],
fy - miny + dyt[1],
fx + minx + dyt[0],
fy + miny + dyt[1],
&texr,
imaprepeat,
imapextend);
val3 = texr.tr + texr.tg + texr.tb;
/* don't switch x or y! */
texres->nor[0] = (val1 - val2);
texres->nor[1] = (val1 - val3);
}
else {
boxsample(ibuf, fx - minx, fy - miny, fx + minx, fy + miny, texres, imaprepeat, imapextend);
}
}
if (tex->imaflag & TEX_CALCALPHA) {
texres->ta = texres->tin = texres->ta * max_fff(texres->tr, texres->tg, texres->tb);
}
else {
texres->tin = texres->ta;
}
if (tex->flag & TEX_NEGALPHA) {
texres->ta = 1.0f - texres->ta;
}
if (texres->nor && (tex->imaflag & TEX_NORMALMAP)) {
/* qdn: normal from color
* The invert of the red channel is to make
* the normal map compliant with the outside world.
* It needs to be done because in Blender
* the normal used in the renderer points inward. It is generated
* this way in calc_vertexnormals(). Should this ever change
* this negate must be removed. */
texres->nor[0] = -2.0f * (texres->tr - 0.5f);
texres->nor[1] = 2.0f * (texres->tg - 0.5f);
texres->nor[2] = 2.0f * (texres->tb - 0.5f);
}
/* de-premul, this is being pre-multiplied in shade_input_do_shade() */
/* do not de-premul for generated alpha, it is already in straight */
if (texres->ta != 1.0f && texres->ta > 1e-4f && !(tex->imaflag & TEX_CALCALPHA)) {
mul_v3_fl(&texres->tr, 1.0f / texres->ta);
}
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
BRICONTRGB;
return retval;
}
void image_sample(
Image *ima, float fx, float fy, float dx, float dy, float result[4], struct ImagePool *pool)
{
TexResult texres;
ImBuf *ibuf = BKE_image_pool_acquire_ibuf(ima, NULL, pool);
if (UNLIKELY(ibuf == NULL)) {
zero_v4(result);
return;
}
texres.talpha = true; /* boxsample expects to be initialized */
boxsample(ibuf, fx, fy, fx + dx, fy + dy, &texres, 0, 1);
copy_v4_v4(result, &texres.tr);
ima->flag |= IMA_USED_FOR_RENDER;
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
void ibuf_sample(ImBuf *ibuf, float fx, float fy, float dx, float dy, float result[4])
{
TexResult texres = {0};
afdata_t AFD;
AFD.dxt[0] = dx;
AFD.dxt[1] = dx;
AFD.dyt[0] = dy;
AFD.dyt[1] = dy;
// copy_v2_v2(AFD.dxt, dx);
// copy_v2_v2(AFD.dyt, dy);
AFD.intpol = 1;
AFD.extflag = TXC_EXTD;
ewa_eval(&texres, ibuf, fx, fy, &AFD);
copy_v4_v4(result, &texres.tr);
}