1
1
This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/scripts/freestyle/styles/long_anisotropically_dense.py
Sergey Sharybin 03806d0b67 Re-design of submodules used in blender.git
This commit implements described in the #104573.

The goal is to fix the confusion of the submodule hashes change, which are not
ideal for any of the supported git-module configuration (they are either always
visible causing confusion, or silently staged and committed, also causing
confusion).

This commit replaces submodules with a checkout of addons and addons_contrib,
covered by the .gitignore, and locale and developer tools are moved to the
main repository.

This also changes the paths:
- /release/scripts are moved to the /scripts
- /source/tools are moved to the /tools
- /release/datafiles/locale is moved to /locale

This is done to avoid conflicts when using bisect, and also allow buildbot to
automatically "recover" wgen building older or newer branches/patches.

Running `make update` will initialize the local checkout to the changed
repository configuration.

Another aspect of the change is that the make update will support Github style
of remote organization (origin remote pointing to thy fork, upstream remote
pointing to the upstream blender/blender.git).

Pull Request #104755
2023-02-21 16:39:58 +01:00

67 lines
2.3 KiB
Python

# SPDX-License-Identifier: GPL-2.0-or-later
# Filename : long_anisotropically_dense.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Selects the lines that are long and have a high anisotropic
# a priori density and uses causal density
# to draw without cluttering. Ideally, half of the
# selected lines are culled using the causal density.
#
# ********************* WARNING *************************************
# ******** The Directional a priori density maps must ******
# ******** have been computed prior to using this style module ******
from freestyle.chainingiterators import ChainSilhouetteIterator
from freestyle.functions import DensityF1D
from freestyle.predicates import (
NotUP1D,
QuantitativeInvisibilityUP1D,
UnaryPredicate1D,
pyHighDensityAnisotropyUP1D,
pyHigherLengthUP1D,
pyLengthBP1D,
)
from freestyle.shaders import (
ConstantColorShader,
ConstantThicknessShader,
SamplingShader,
)
from freestyle.types import IntegrationType, Operators
# custom density predicate
class pyDensityUP1D(UnaryPredicate1D):
def __init__(self, wsize, threshold, integration=IntegrationType.MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._wsize = wsize
self._threshold = threshold
self._integration = integration
self._func = DensityF1D(self._wsize, self._integration, sampling)
self._func2 = DensityF1D(self._wsize, IntegrationType.MAX, sampling)
def __call__(self, inter):
c = self._func(inter)
m = self._func2(inter)
if c < self._threshold:
return 1
if m > 4 * c:
if c < 1.5 * self._threshold:
return 1
return 0
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectional_chain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
Operators.select(pyHigherLengthUP1D(40))
# selects lines having a high anisotropic a priori density
Operators.select(pyHighDensityAnisotropyUP1D(0.3, 4))
Operators.sort(pyLengthBP1D())
shaders_list = [
SamplingShader(2.0),
ConstantThicknessShader(2),
ConstantColorShader(0.2, 0.2, 0.25, 1),
]
# uniform culling
Operators.create(pyDensityUP1D(3.0, 2.0e-2, IntegrationType.MEAN, 0.1), shaders_list)