This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/nodes/NOD_node_declaration.hh
Hans Goudey 7026096099 Nodes: Use dynamic declarations for group nodes
Since a year and a half ago we've been switching to a new way to
represent what sockets a node should have called "declarations"
that's easier to use, clearer, and more flexible for upcoming
features like dynamic socket counts or generic type sockets.

All builtin nodes with a static set of sockets have switched, but one
missing area has been group nodes and group input/output nodes. These
nodes have **dynamic** declarations which change based on their
properties or the group they're inside of. This patch addresses that,
in preparation for using the same dynamic declaration feature for
simulation nodes.

Generally there shouldn't be user-visible differences, but one benefit
is that user-created socket descriptions are now visible directly in
the node editor for group nodes and group input/output nodes.

The commit contains a few changes:
- Add a node type callback for building dynamic declarations with
  different arguments
- Add an `Extend` socket declaration for the "virtual" sockets used
  for connecting new links
- A similar `Custom` socket declaration is used for addon-defined socket
- Simplify the node update loop to use the declaration to build update
  sockets
- Replace the "group update" functions with the declaration building
- Move the node group input/output link creation to link drag operator
- Make the field status part of group node declarations
  (not for group input/output nodes though)
- Some fixes for declarations to make them update and build properly

Differential Revision: https://developer.blender.org/D16850
2023-01-16 15:47:25 -06:00

746 lines
22 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
#include <functional>
#include <type_traits>
#include "BLI_string_ref.hh"
#include "BLI_vector.hh"
#include "DNA_node_types.h"
struct bNode;
namespace blender::nodes {
class NodeDeclarationBuilder;
enum class InputSocketFieldType {
/** The input is required to be a single value. */
None,
/** The input can be a field. */
IsSupported,
/** The input can be a field and is a field implicitly if nothing is connected. */
Implicit,
};
enum class OutputSocketFieldType {
/** The output is always a single value. */
None,
/** The output is always a field, independent of the inputs. */
FieldSource,
/** If any input is a field, this output will be a field as well. */
DependentField,
/** If any of a subset of inputs is a field, this out will be a field as well.
* The subset is defined by the vector of indices. */
PartiallyDependent,
};
/**
* Contains information about how a node output's field state depends on inputs of the same node.
*/
class OutputFieldDependency {
private:
OutputSocketFieldType type_ = OutputSocketFieldType::None;
Vector<int> linked_input_indices_;
public:
static OutputFieldDependency ForFieldSource();
static OutputFieldDependency ForDataSource();
static OutputFieldDependency ForDependentField();
static OutputFieldDependency ForPartiallyDependentField(Vector<int> indices);
OutputSocketFieldType field_type() const;
Span<int> linked_input_indices() const;
friend bool operator==(const OutputFieldDependency &a, const OutputFieldDependency &b);
};
/**
* Information about how a node interacts with fields.
*/
struct FieldInferencingInterface {
Vector<InputSocketFieldType> inputs;
Vector<OutputFieldDependency> outputs;
};
namespace anonymous_attribute_lifetime {
/**
* Attributes can be propagated from an input geometry to an output geometry.
*/
struct PropagateRelation {
int from_geometry_input;
int to_geometry_output;
friend bool operator==(const PropagateRelation &a, const PropagateRelation &b)
{
return a.from_geometry_input == b.from_geometry_input &&
a.to_geometry_output == b.to_geometry_output;
}
};
/**
* References to attributes can be propagated from an input field to an output field.
*/
struct ReferenceRelation {
int from_field_input;
int to_field_output;
friend bool operator==(const ReferenceRelation &a, const ReferenceRelation &b)
{
return a.from_field_input == b.from_field_input && a.to_field_output == b.to_field_output;
}
};
/**
* An input field is evaluated on an input geometry.
*/
struct EvalRelation {
int field_input;
int geometry_input;
friend bool operator==(const EvalRelation &a, const EvalRelation &b)
{
return a.field_input == b.field_input && a.geometry_input == b.geometry_input;
}
};
/**
* An output field is available on an output geometry.
*/
struct AvailableRelation {
int field_output;
int geometry_output;
friend bool operator==(const AvailableRelation &a, const AvailableRelation &b)
{
return a.field_output == b.field_output && a.geometry_output == b.geometry_output;
}
};
struct RelationsInNode {
Vector<PropagateRelation> propagate_relations;
Vector<ReferenceRelation> reference_relations;
Vector<EvalRelation> eval_relations;
Vector<AvailableRelation> available_relations;
Vector<int> available_on_none;
};
bool operator==(const RelationsInNode &a, const RelationsInNode &b);
bool operator!=(const RelationsInNode &a, const RelationsInNode &b);
std::ostream &operator<<(std::ostream &stream, const RelationsInNode &relations);
} // namespace anonymous_attribute_lifetime
namespace aal = anonymous_attribute_lifetime;
using ImplicitInputValueFn = std::function<void(const bNode &node, void *r_value)>;
/**
* Describes a single input or output socket. This is subclassed for different socket types.
*/
class SocketDeclaration {
public:
std::string name;
std::string identifier;
std::string description;
/** Defined by whether the socket is part of the node's input or
* output socket declaration list. Included here for convenience. */
eNodeSocketInOut in_out;
bool hide_label = false;
bool hide_value = false;
bool compact = false;
bool is_multi_input = false;
bool no_mute_links = false;
bool is_unavailable = false;
bool is_attribute_name = false;
bool is_default_link_socket = false;
InputSocketFieldType input_field_type = InputSocketFieldType::None;
OutputFieldDependency output_field_dependency;
private:
/** The priority of the input for determining the domain of the node. See
* realtime_compositor::InputDescriptor for more information. */
int compositor_domain_priority_ = 0;
/** This input shouldn't be realized on the operation domain of the node. See
* realtime_compositor::InputDescriptor for more information. */
bool compositor_skip_realization_ = false;
/** This input expects a single value and can't operate on non-single values. See
* realtime_compositor::InputDescriptor for more information. */
bool compositor_expects_single_value_ = false;
/** Utility method to make the socket available if there is a straightforward way to do so. */
std::function<void(bNode &)> make_available_fn_;
/** Some input sockets can have non-trivial values in the case when they are unlinked. This
* callback computes the default input of a values in geometry nodes when nothing is linked. */
std::unique_ptr<ImplicitInputValueFn> implicit_input_fn_;
friend NodeDeclarationBuilder;
template<typename SocketDecl> friend class SocketDeclarationBuilder;
public:
virtual ~SocketDeclaration() = default;
virtual bNodeSocket &build(bNodeTree &ntree, bNode &node) const = 0;
virtual bool matches(const bNodeSocket &socket) const = 0;
virtual bNodeSocket &update_or_build(bNodeTree &ntree, bNode &node, bNodeSocket &socket) const;
/**
* Determine if a new socket described by this declaration could have a valid connection
* the other socket.
*/
virtual bool can_connect(const bNodeSocket &socket) const = 0;
/**
* Change the node such that the socket will become visible. The node type's update method
* should be called afterwards.
* \note this is not necessarily implemented for all node types.
*/
void make_available(bNode &node) const;
int compositor_domain_priority() const;
bool compositor_skip_realization() const;
bool compositor_expects_single_value() const;
const ImplicitInputValueFn *implicit_input_fn() const
{
return implicit_input_fn_.get();
}
protected:
void set_common_flags(bNodeSocket &socket) const;
bool matches_common_data(const bNodeSocket &socket) const;
};
class NodeDeclarationBuilder;
class BaseSocketDeclarationBuilder {
protected:
int index_ = -1;
bool reference_pass_all_ = false;
bool field_on_all_ = false;
bool propagate_from_all_ = false;
NodeDeclarationBuilder *node_decl_builder_ = nullptr;
friend class NodeDeclarationBuilder;
public:
virtual ~BaseSocketDeclarationBuilder() = default;
protected:
virtual SocketDeclaration *declaration() = 0;
};
/**
* Wraps a #SocketDeclaration and provides methods to set it up correctly.
* This is separate from #SocketDeclaration, because it allows separating the API used by nodes to
* declare themselves from how the declaration is stored internally.
*/
template<typename SocketDecl>
class SocketDeclarationBuilder : public BaseSocketDeclarationBuilder {
protected:
using Self = typename SocketDecl::Builder;
static_assert(std::is_base_of_v<SocketDeclaration, SocketDecl>);
SocketDecl *decl_;
friend class NodeDeclarationBuilder;
public:
Self &hide_label(bool value = true)
{
decl_->hide_label = value;
return *(Self *)this;
}
Self &hide_value(bool value = true)
{
decl_->hide_value = value;
return *(Self *)this;
}
Self &multi_input(bool value = true)
{
decl_->is_multi_input = value;
return *(Self *)this;
}
Self &description(std::string value = "")
{
decl_->description = std::move(value);
return *(Self *)this;
}
Self &no_muted_links(bool value = true)
{
decl_->no_mute_links = value;
return *(Self *)this;
}
/**
* Used for sockets that are always unavailable and should not be seen by the user.
* Ideally, no new calls to this method should be added over time.
*/
Self &unavailable(bool value = true)
{
decl_->is_unavailable = value;
return *(Self *)this;
}
Self &is_attribute_name(bool value = true)
{
decl_->is_attribute_name = value;
return *(Self *)this;
}
Self &is_default_link_socket(bool value = true)
{
decl_->is_default_link_socket = value;
return *(Self *)this;
}
/** The input socket allows passing in a field. */
Self &supports_field()
{
decl_->input_field_type = InputSocketFieldType::IsSupported;
return *(Self *)this;
}
/**
* For inputs this means that the input field is evaluated on all geometry inputs. For outputs
* it means that this contains an anonymous attribute reference that is available on all geometry
* outputs.
*/
Self &field_on_all()
{
if (decl_->in_out == SOCK_IN) {
this->supports_field();
}
else {
this->field_source();
}
field_on_all_ = true;
return *(Self *)this;
}
/** For inputs that are evaluated or available on a subset of the geometry sockets. */
Self &field_on(Span<int> indices);
/** The input supports a field and is a field by default when nothing is connected. */
Self &implicit_field(ImplicitInputValueFn fn)
{
this->hide_value();
decl_->input_field_type = InputSocketFieldType::Implicit;
decl_->implicit_input_fn_ = std::make_unique<ImplicitInputValueFn>(std::move(fn));
return *(Self *)this;
}
/** The input is an implicit field that is evaluated on all geometry inputs. */
Self &implicit_field_on_all(ImplicitInputValueFn fn)
{
this->implicit_field(fn);
field_on_all_ = true;
return *(Self *)this;
}
/** The input is evaluated on a subset of the geometry inputs. */
Self &implicit_field_on(ImplicitInputValueFn fn, const Span<int> input_indices)
{
this->field_on(input_indices);
this->implicit_field(fn);
return *(Self *)this;
}
/** The output is always a field, regardless of any inputs. */
Self &field_source()
{
decl_->output_field_dependency = OutputFieldDependency::ForFieldSource();
return *(Self *)this;
}
/** The output is a field if any of the inputs are a field. */
Self &dependent_field()
{
decl_->output_field_dependency = OutputFieldDependency::ForDependentField();
this->reference_pass_all();
return *(Self *)this;
}
/** The output is a field if any of the inputs with indices in the given list is a field. */
Self &dependent_field(Vector<int> input_dependencies)
{
this->reference_pass(input_dependencies);
decl_->output_field_dependency = OutputFieldDependency::ForPartiallyDependentField(
std::move(input_dependencies));
return *(Self *)this;
}
/**
* For outputs that combine all input fields into a new field. The output is a field even if none
* of the inputs is a field.
*/
Self &field_source_reference_all()
{
this->field_source();
this->reference_pass_all();
return *(Self *)this;
}
/**
* For outputs that combine a subset of input fields into a new field.
*/
Self &reference_pass(Span<int> input_indices);
/**
* For outputs that combine all input fields into a new field.
*/
Self &reference_pass_all()
{
reference_pass_all_ = true;
return *(Self *)this;
}
/** Attributes from the all geometry inputs can be propagated. */
Self &propagate_all()
{
propagate_from_all_ = true;
return *(Self *)this;
}
/** The priority of the input for determining the domain of the node. See
* realtime_compositor::InputDescriptor for more information. */
Self &compositor_domain_priority(int priority)
{
decl_->compositor_domain_priority_ = priority;
return *(Self *)this;
}
/** This input shouldn't be realized on the operation domain of the node. See
* realtime_compositor::InputDescriptor for more information. */
Self &compositor_skip_realization(bool value = true)
{
decl_->compositor_skip_realization_ = value;
return *(Self *)this;
}
/** This input expects a single value and can't operate on non-single values. See
* realtime_compositor::InputDescriptor for more information. */
Self &compositor_expects_single_value(bool value = true)
{
decl_->compositor_expects_single_value_ = value;
return *(Self *)this;
}
/**
* Pass a function that sets properties on the node required to make the corresponding socket
* available, if it is not available on the default state of the node. The function is allowed to
* make other sockets unavailable, since it is meant to be called when the node is first added.
* The node type's update function is called afterwards.
*/
Self &make_available(std::function<void(bNode &)> fn)
{
decl_->make_available_fn_ = std::move(fn);
return *(Self *)this;
}
protected:
SocketDeclaration *declaration() override
{
return decl_;
}
};
using SocketDeclarationPtr = std::unique_ptr<SocketDeclaration>;
class NodeDeclaration {
public:
Vector<SocketDeclarationPtr> inputs;
Vector<SocketDeclarationPtr> outputs;
std::unique_ptr<aal::RelationsInNode> anonymous_attribute_relations_;
/** Leave the sockets in place, even if they don't match the declaration. Used for dynamic
* declarations when the information used to build the declaration is missing, but might become
* available again in the future. */
bool skip_updating_sockets = false;
friend NodeDeclarationBuilder;
bool matches(const bNode &node) const;
Span<SocketDeclarationPtr> sockets(eNodeSocketInOut in_out) const;
const aal::RelationsInNode *anonymous_attribute_relations() const
{
return anonymous_attribute_relations_.get();
}
MEM_CXX_CLASS_ALLOC_FUNCS("NodeDeclaration")
};
class NodeDeclarationBuilder {
private:
NodeDeclaration &declaration_;
Vector<std::unique_ptr<BaseSocketDeclarationBuilder>> input_builders_;
Vector<std::unique_ptr<BaseSocketDeclarationBuilder>> output_builders_;
bool is_function_node_ = false;
public:
NodeDeclarationBuilder(NodeDeclaration &declaration);
/**
* All inputs support fields, and all outputs are fields if any of the inputs is a field.
* Calling field status definitions on each socket is unnecessary.
*/
void is_function_node()
{
is_function_node_ = true;
}
void finalize();
template<typename DeclType>
typename DeclType::Builder &add_input(StringRef name, StringRef identifier = "");
template<typename DeclType>
typename DeclType::Builder &add_output(StringRef name, StringRef identifier = "");
aal::RelationsInNode &get_anonymous_attribute_relations()
{
if (!declaration_.anonymous_attribute_relations_) {
declaration_.anonymous_attribute_relations_ = std::make_unique<aal::RelationsInNode>();
}
return *declaration_.anonymous_attribute_relations_;
}
private:
template<typename DeclType>
typename DeclType::Builder &add_socket(StringRef name,
StringRef identifier,
eNodeSocketInOut in_out);
};
namespace implicit_field_inputs {
void position(const bNode &node, void *r_value);
void normal(const bNode &node, void *r_value);
void index(const bNode &node, void *r_value);
void id_or_index(const bNode &node, void *r_value);
} // namespace implicit_field_inputs
void build_node_declaration(const bNodeType &typeinfo, NodeDeclaration &r_declaration);
void build_node_declaration_dynamic(const bNodeTree &node_tree,
const bNode &node,
NodeDeclaration &r_declaration);
template<typename SocketDecl>
typename SocketDeclarationBuilder<SocketDecl>::Self &SocketDeclarationBuilder<
SocketDecl>::reference_pass(const Span<int> input_indices)
{
aal::RelationsInNode &relations = node_decl_builder_->get_anonymous_attribute_relations();
for (const int from_input : input_indices) {
aal::ReferenceRelation relation;
relation.from_field_input = from_input;
relation.to_field_output = index_;
relations.reference_relations.append(relation);
}
return *(Self *)this;
}
template<typename SocketDecl>
typename SocketDeclarationBuilder<SocketDecl>::Self &SocketDeclarationBuilder<
SocketDecl>::field_on(const Span<int> indices)
{
aal::RelationsInNode &relations = node_decl_builder_->get_anonymous_attribute_relations();
if (decl_->in_out == SOCK_IN) {
this->supports_field();
for (const int input_index : indices) {
aal::EvalRelation relation;
relation.field_input = index_;
relation.geometry_input = input_index;
relations.eval_relations.append(relation);
}
}
else {
this->field_source();
for (const int output_index : indices) {
aal::AvailableRelation relation;
relation.field_output = index_;
relation.geometry_output = output_index;
relations.available_relations.append(relation);
}
}
return *(Self *)this;
}
/* -------------------------------------------------------------------- */
/** \name #OutputFieldDependency Inline Methods
* \{ */
inline OutputFieldDependency OutputFieldDependency::ForFieldSource()
{
OutputFieldDependency field_dependency;
field_dependency.type_ = OutputSocketFieldType::FieldSource;
return field_dependency;
}
inline OutputFieldDependency OutputFieldDependency::ForDataSource()
{
OutputFieldDependency field_dependency;
field_dependency.type_ = OutputSocketFieldType::None;
return field_dependency;
}
inline OutputFieldDependency OutputFieldDependency::ForDependentField()
{
OutputFieldDependency field_dependency;
field_dependency.type_ = OutputSocketFieldType::DependentField;
return field_dependency;
}
inline OutputFieldDependency OutputFieldDependency::ForPartiallyDependentField(Vector<int> indices)
{
OutputFieldDependency field_dependency;
if (indices.is_empty()) {
field_dependency.type_ = OutputSocketFieldType::None;
}
else {
field_dependency.type_ = OutputSocketFieldType::PartiallyDependent;
field_dependency.linked_input_indices_ = std::move(indices);
}
return field_dependency;
}
inline OutputSocketFieldType OutputFieldDependency::field_type() const
{
return type_;
}
inline Span<int> OutputFieldDependency::linked_input_indices() const
{
return linked_input_indices_;
}
inline bool operator==(const OutputFieldDependency &a, const OutputFieldDependency &b)
{
return a.type_ == b.type_ && a.linked_input_indices_ == b.linked_input_indices_;
}
inline bool operator!=(const OutputFieldDependency &a, const OutputFieldDependency &b)
{
return !(a == b);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #FieldInferencingInterface Inline Methods
* \{ */
inline bool operator==(const FieldInferencingInterface &a, const FieldInferencingInterface &b)
{
return a.inputs == b.inputs && a.outputs == b.outputs;
}
inline bool operator!=(const FieldInferencingInterface &a, const FieldInferencingInterface &b)
{
return !(a == b);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #SocketDeclaration Inline Methods
* \{ */
inline int SocketDeclaration::compositor_domain_priority() const
{
return compositor_domain_priority_;
}
inline bool SocketDeclaration::compositor_skip_realization() const
{
return compositor_skip_realization_;
}
inline bool SocketDeclaration::compositor_expects_single_value() const
{
return compositor_expects_single_value_;
}
inline void SocketDeclaration::make_available(bNode &node) const
{
if (make_available_fn_) {
make_available_fn_(node);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #NodeDeclarationBuilder Inline Methods
* \{ */
inline NodeDeclarationBuilder::NodeDeclarationBuilder(NodeDeclaration &declaration)
: declaration_(declaration)
{
}
template<typename DeclType>
inline typename DeclType::Builder &NodeDeclarationBuilder::add_input(StringRef name,
StringRef identifier)
{
return this->add_socket<DeclType>(name, identifier, SOCK_IN);
}
template<typename DeclType>
inline typename DeclType::Builder &NodeDeclarationBuilder::add_output(StringRef name,
StringRef identifier)
{
return this->add_socket<DeclType>(name, identifier, SOCK_OUT);
}
template<typename DeclType>
inline typename DeclType::Builder &NodeDeclarationBuilder::add_socket(StringRef name,
StringRef identifier,
eNodeSocketInOut in_out)
{
static_assert(std::is_base_of_v<SocketDeclaration, DeclType>);
using Builder = typename DeclType::Builder;
Vector<SocketDeclarationPtr> &declarations = in_out == SOCK_IN ? declaration_.inputs :
declaration_.outputs;
std::unique_ptr<DeclType> socket_decl = std::make_unique<DeclType>();
std::unique_ptr<Builder> socket_decl_builder = std::make_unique<Builder>();
socket_decl_builder->decl_ = &*socket_decl;
socket_decl_builder->node_decl_builder_ = this;
socket_decl->name = name;
socket_decl->identifier = identifier.is_empty() ? name : identifier;
socket_decl->in_out = in_out;
socket_decl_builder->index_ = declarations.append_and_get_index(std::move(socket_decl));
Builder &socket_decl_builder_ref = *socket_decl_builder;
((in_out == SOCK_IN) ? input_builders_ : output_builders_)
.append(std::move(socket_decl_builder));
return socket_decl_builder_ref;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #NodeDeclaration Inline Methods
* \{ */
inline Span<SocketDeclarationPtr> NodeDeclaration::sockets(eNodeSocketInOut in_out) const
{
if (in_out == SOCK_IN) {
return inputs;
}
return outputs;
}
/** \} */
} // namespace blender::nodes