Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: blender/blender#104424
2594 lines
65 KiB
C++
2594 lines
65 KiB
C++
/* SPDX-License-Identifier: GPL-2.0-or-later
|
|
* Copyright 2001-2002 NaN Holding BV. All rights reserved. */
|
|
|
|
/** \file
|
|
* \ingroup bke
|
|
*/
|
|
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstring>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_blenlib.h"
|
|
#include "BLI_endian_switch.h"
|
|
#include "BLI_math_vector.h"
|
|
#include "BLI_string_utils.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "BLT_translation.h"
|
|
|
|
/* Allow using deprecated functionality for .blend file I/O. */
|
|
#define DNA_DEPRECATED_ALLOW
|
|
|
|
#include "DNA_ID.h"
|
|
#include "DNA_anim_types.h"
|
|
#include "DNA_key_types.h"
|
|
#include "DNA_lattice_types.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_scene_types.h"
|
|
|
|
#include "BKE_anim_data.h"
|
|
#include "BKE_curve.h"
|
|
#include "BKE_customdata.h"
|
|
#include "BKE_deform.h"
|
|
#include "BKE_editmesh.h"
|
|
#include "BKE_idtype.h"
|
|
#include "BKE_key.h"
|
|
#include "BKE_lattice.h"
|
|
#include "BKE_lib_id.h"
|
|
#include "BKE_lib_query.h"
|
|
#include "BKE_main.h"
|
|
#include "BKE_mesh.hh"
|
|
#include "BKE_scene.h"
|
|
|
|
#include "RNA_access.h"
|
|
#include "RNA_path.h"
|
|
#include "RNA_prototypes.h"
|
|
|
|
#include "BLO_read_write.h"
|
|
|
|
static void shapekey_copy_data(Main * /*bmain*/, ID *id_dst, const ID *id_src, const int /*flag*/)
|
|
{
|
|
Key *key_dst = (Key *)id_dst;
|
|
const Key *key_src = (const Key *)id_src;
|
|
BLI_duplicatelist(&key_dst->block, &key_src->block);
|
|
|
|
KeyBlock *kb_dst, *kb_src;
|
|
for (kb_src = static_cast<KeyBlock *>(key_src->block.first),
|
|
kb_dst = static_cast<KeyBlock *>(key_dst->block.first);
|
|
kb_dst;
|
|
kb_src = kb_src->next, kb_dst = kb_dst->next) {
|
|
if (kb_dst->data) {
|
|
kb_dst->data = MEM_dupallocN(kb_dst->data);
|
|
}
|
|
if (kb_src == key_src->refkey) {
|
|
key_dst->refkey = kb_dst;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void shapekey_free_data(ID *id)
|
|
{
|
|
Key *key = (Key *)id;
|
|
KeyBlock *kb;
|
|
|
|
while ((kb = static_cast<KeyBlock *>(BLI_pophead(&key->block)))) {
|
|
if (kb->data) {
|
|
MEM_freeN(kb->data);
|
|
}
|
|
MEM_freeN(kb);
|
|
}
|
|
}
|
|
|
|
static void shapekey_foreach_id(ID *id, LibraryForeachIDData *data)
|
|
{
|
|
Key *key = (Key *)id;
|
|
BKE_LIB_FOREACHID_PROCESS_ID(data, key->from, IDWALK_CB_LOOPBACK);
|
|
}
|
|
|
|
static ID **shapekey_owner_pointer_get(ID *id)
|
|
{
|
|
Key *key = (Key *)id;
|
|
|
|
BLI_assert(key->from != nullptr);
|
|
BLI_assert(BKE_key_from_id(key->from) == key);
|
|
|
|
return &key->from;
|
|
}
|
|
|
|
static void shapekey_blend_write(BlendWriter *writer, ID *id, const void *id_address)
|
|
{
|
|
Key *key = (Key *)id;
|
|
const bool is_undo = BLO_write_is_undo(writer);
|
|
|
|
/* write LibData */
|
|
BLO_write_id_struct(writer, Key, id_address, &key->id);
|
|
BKE_id_blend_write(writer, &key->id);
|
|
|
|
if (key->adt) {
|
|
BKE_animdata_blend_write(writer, key->adt);
|
|
}
|
|
|
|
/* direct data */
|
|
LISTBASE_FOREACH (KeyBlock *, kb, &key->block) {
|
|
KeyBlock tmp_kb = *kb;
|
|
/* Do not store actual geometry data in case this is a library override ID. */
|
|
if (ID_IS_OVERRIDE_LIBRARY(key) && !is_undo) {
|
|
tmp_kb.totelem = 0;
|
|
tmp_kb.data = nullptr;
|
|
}
|
|
BLO_write_struct_at_address(writer, KeyBlock, kb, &tmp_kb);
|
|
if (tmp_kb.data != nullptr) {
|
|
BLO_write_raw(writer, tmp_kb.totelem * key->elemsize, tmp_kb.data);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* old defines from DNA_ipo_types.h for data-type, stored in DNA - don't modify! */
|
|
#define IPO_FLOAT 4
|
|
#define IPO_BEZTRIPLE 100
|
|
#define IPO_BPOINT 101
|
|
|
|
static void switch_endian_keyblock(Key *key, KeyBlock *kb)
|
|
{
|
|
int elemsize = key->elemsize;
|
|
char *data = static_cast<char *>(kb->data);
|
|
|
|
for (int a = 0; a < kb->totelem; a++) {
|
|
const char *cp = key->elemstr;
|
|
char *poin = data;
|
|
|
|
while (cp[0]) { /* cp[0] == amount */
|
|
switch (cp[1]) { /* cp[1] = type */
|
|
case IPO_FLOAT:
|
|
case IPO_BPOINT:
|
|
case IPO_BEZTRIPLE: {
|
|
int b = cp[0];
|
|
BLI_endian_switch_float_array((float *)poin, b);
|
|
poin += sizeof(float) * b;
|
|
break;
|
|
}
|
|
}
|
|
|
|
cp += 2;
|
|
}
|
|
data += elemsize;
|
|
}
|
|
}
|
|
|
|
static void shapekey_blend_read_data(BlendDataReader *reader, ID *id)
|
|
{
|
|
Key *key = (Key *)id;
|
|
BLO_read_list(reader, &(key->block));
|
|
|
|
BLO_read_data_address(reader, &key->adt);
|
|
BKE_animdata_blend_read_data(reader, key->adt);
|
|
|
|
BLO_read_data_address(reader, &key->refkey);
|
|
|
|
LISTBASE_FOREACH (KeyBlock *, kb, &key->block) {
|
|
BLO_read_data_address(reader, &kb->data);
|
|
|
|
if (BLO_read_requires_endian_switch(reader)) {
|
|
switch_endian_keyblock(key, kb);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void shapekey_blend_read_lib(BlendLibReader *reader, ID *id)
|
|
{
|
|
Key *key = (Key *)id;
|
|
BLI_assert((key->id.tag & LIB_TAG_EXTERN) == 0);
|
|
|
|
BLO_read_id_address(reader, key->id.lib, &key->ipo); /* XXX deprecated - old animation system */
|
|
BLO_read_id_address(reader, key->id.lib, &key->from);
|
|
}
|
|
|
|
static void shapekey_blend_read_expand(BlendExpander *expander, ID *id)
|
|
{
|
|
Key *key = (Key *)id;
|
|
BLO_expand(expander, key->ipo); /* XXX deprecated - old animation system */
|
|
}
|
|
|
|
IDTypeInfo IDType_ID_KE = {
|
|
/*id_code*/ ID_KE,
|
|
/*id_filter*/ FILTER_ID_KE,
|
|
/*main_listbase_index*/ INDEX_ID_KE,
|
|
/*struct_size*/ sizeof(Key),
|
|
/*name*/ "Key",
|
|
/*name_plural*/ "shape_keys",
|
|
/*translation_context*/ BLT_I18NCONTEXT_ID_SHAPEKEY,
|
|
/*flags*/ IDTYPE_FLAGS_NO_LIBLINKING,
|
|
/*asset_type_info*/ nullptr,
|
|
|
|
/*init_data*/ nullptr,
|
|
/*copy_data*/ shapekey_copy_data,
|
|
/*free_data*/ shapekey_free_data,
|
|
/*make_local*/ nullptr,
|
|
/*foreach_id*/ shapekey_foreach_id,
|
|
/*foreach_cache*/ nullptr,
|
|
/*foreach_path*/ nullptr,
|
|
/* A bit weird, due to shape-keys not being strictly speaking embedded data... But they also
|
|
* share a lot with those (non linkable, only ever used by one owner ID, etc.). */
|
|
/*owner_pointer_get*/ shapekey_owner_pointer_get,
|
|
|
|
/*blend_write*/ shapekey_blend_write,
|
|
/*blend_read_data*/ shapekey_blend_read_data,
|
|
/*blend_read_lib*/ shapekey_blend_read_lib,
|
|
/*blend_read_expand*/ shapekey_blend_read_expand,
|
|
|
|
/*blend_read_undo_preserve*/ nullptr,
|
|
|
|
/*lib_override_apply_post*/ nullptr,
|
|
};
|
|
|
|
#define KEY_MODE_DUMMY 0 /* use where mode isn't checked for */
|
|
#define KEY_MODE_BPOINT 1
|
|
#define KEY_MODE_BEZTRIPLE 2
|
|
|
|
/* Internal use only. */
|
|
struct WeightsArrayCache {
|
|
int num_defgroup_weights;
|
|
float **defgroup_weights;
|
|
};
|
|
|
|
void BKE_key_free_data(Key *key)
|
|
{
|
|
shapekey_free_data(&key->id);
|
|
}
|
|
|
|
void BKE_key_free_nolib(Key *key)
|
|
{
|
|
KeyBlock *kb;
|
|
|
|
while ((kb = static_cast<KeyBlock *>(BLI_pophead(&key->block)))) {
|
|
if (kb->data) {
|
|
MEM_freeN(kb->data);
|
|
}
|
|
MEM_freeN(kb);
|
|
}
|
|
}
|
|
|
|
Key *BKE_key_add(Main *bmain, ID *id) /* common function */
|
|
{
|
|
Key *key;
|
|
char *el;
|
|
|
|
key = static_cast<Key *>(BKE_id_new(bmain, ID_KE, "Key"));
|
|
|
|
key->type = KEY_NORMAL;
|
|
key->from = id;
|
|
|
|
key->uidgen = 1;
|
|
|
|
/* XXX the code here uses some defines which will soon be deprecated... */
|
|
switch (GS(id->name)) {
|
|
case ID_ME:
|
|
el = key->elemstr;
|
|
|
|
el[0] = KEYELEM_FLOAT_LEN_COORD;
|
|
el[1] = IPO_FLOAT;
|
|
el[2] = 0;
|
|
|
|
key->elemsize = sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
|
|
|
|
break;
|
|
case ID_LT:
|
|
el = key->elemstr;
|
|
|
|
el[0] = KEYELEM_FLOAT_LEN_COORD;
|
|
el[1] = IPO_FLOAT;
|
|
el[2] = 0;
|
|
|
|
key->elemsize = sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
|
|
|
|
break;
|
|
case ID_CU_LEGACY:
|
|
el = key->elemstr;
|
|
|
|
el[0] = KEYELEM_ELEM_SIZE_CURVE;
|
|
el[1] = IPO_BPOINT;
|
|
el[2] = 0;
|
|
|
|
key->elemsize = sizeof(float[KEYELEM_ELEM_SIZE_CURVE]);
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return key;
|
|
}
|
|
|
|
void BKE_key_sort(Key *key)
|
|
{
|
|
KeyBlock *kb;
|
|
KeyBlock *kb2;
|
|
|
|
/* locate the key which is out of position */
|
|
for (kb = static_cast<KeyBlock *>(key->block.first); kb; kb = kb->next) {
|
|
if ((kb->next) && (kb->pos > kb->next->pos)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* if we find a key, move it */
|
|
if (kb) {
|
|
kb = kb->next; /* next key is the out-of-order one */
|
|
BLI_remlink(&key->block, kb);
|
|
|
|
/* find the right location and insert before */
|
|
for (kb2 = static_cast<KeyBlock *>(key->block.first); kb2; kb2 = kb2->next) {
|
|
if (kb2->pos > kb->pos) {
|
|
BLI_insertlinkafter(&key->block, kb2->prev, kb);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* new rule; first key is refkey, this to match drawing channels... */
|
|
key->refkey = static_cast<KeyBlock *>(key->block.first);
|
|
}
|
|
|
|
/**************** do the key ****************/
|
|
|
|
void key_curve_position_weights(float t, float data[4], int type)
|
|
{
|
|
float t2, t3, fc;
|
|
|
|
if (type == KEY_LINEAR) {
|
|
data[0] = 0.0f;
|
|
data[1] = -t + 1.0f;
|
|
data[2] = t;
|
|
data[3] = 0.0f;
|
|
}
|
|
else if (type == KEY_CARDINAL) {
|
|
t2 = t * t;
|
|
t3 = t2 * t;
|
|
fc = 0.71f;
|
|
|
|
data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t;
|
|
data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f;
|
|
data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t;
|
|
data[3] = fc * t3 - fc * t2;
|
|
}
|
|
else if (type == KEY_BSPLINE) {
|
|
t2 = t * t;
|
|
t3 = t2 * t;
|
|
|
|
data[0] = -0.16666666f * t3 + 0.5f * t2 - 0.5f * t + 0.16666666f;
|
|
data[1] = 0.5f * t3 - t2 + 0.66666666f;
|
|
data[2] = -0.5f * t3 + 0.5f * t2 + 0.5f * t + 0.16666666f;
|
|
data[3] = 0.16666666f * t3;
|
|
}
|
|
else if (type == KEY_CATMULL_ROM) {
|
|
t2 = t * t;
|
|
t3 = t2 * t;
|
|
fc = 0.5f;
|
|
|
|
data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t;
|
|
data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f;
|
|
data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t;
|
|
data[3] = fc * t3 - fc * t2;
|
|
}
|
|
}
|
|
|
|
void key_curve_tangent_weights(float t, float data[4], int type)
|
|
{
|
|
float t2, fc;
|
|
|
|
if (type == KEY_LINEAR) {
|
|
data[0] = 0.0f;
|
|
data[1] = -1.0f;
|
|
data[2] = 1.0f;
|
|
data[3] = 0.0f;
|
|
}
|
|
else if (type == KEY_CARDINAL) {
|
|
t2 = t * t;
|
|
fc = 0.71f;
|
|
|
|
data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc;
|
|
data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t;
|
|
data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc;
|
|
data[3] = 3.0f * fc * t2 - 2.0f * fc * t;
|
|
}
|
|
else if (type == KEY_BSPLINE) {
|
|
t2 = t * t;
|
|
|
|
data[0] = -0.5f * t2 + t - 0.5f;
|
|
data[1] = 1.5f * t2 - t * 2.0f;
|
|
data[2] = -1.5f * t2 + t + 0.5f;
|
|
data[3] = 0.5f * t2;
|
|
}
|
|
else if (type == KEY_CATMULL_ROM) {
|
|
t2 = t * t;
|
|
fc = 0.5f;
|
|
|
|
data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc;
|
|
data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t;
|
|
data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc;
|
|
data[3] = 3.0f * fc * t2 - 2.0f * fc * t;
|
|
}
|
|
}
|
|
|
|
void key_curve_normal_weights(float t, float data[4], int type)
|
|
{
|
|
float fc;
|
|
|
|
if (type == KEY_LINEAR) {
|
|
data[0] = 0.0f;
|
|
data[1] = 0.0f;
|
|
data[2] = 0.0f;
|
|
data[3] = 0.0f;
|
|
}
|
|
else if (type == KEY_CARDINAL) {
|
|
fc = 0.71f;
|
|
|
|
data[0] = -6.0f * fc * t + 4.0f * fc;
|
|
data[1] = 6.0f * (2.0f - fc) * t + 2.0f * (fc - 3.0f);
|
|
data[2] = 6.0f * (fc - 2.0f) * t + 2.0f * (3.0f - 2.0f * fc);
|
|
data[3] = 6.0f * fc * t - 2.0f * fc;
|
|
}
|
|
else if (type == KEY_BSPLINE) {
|
|
data[0] = -1.0f * t + 1.0f;
|
|
data[1] = 3.0f * t - 2.0f;
|
|
data[2] = -3.0f * t + 1.0f;
|
|
data[3] = 1.0f * t;
|
|
}
|
|
else if (type == KEY_CATMULL_ROM) {
|
|
fc = 0.5f;
|
|
|
|
data[0] = -6.0f * fc * t + 4.0f * fc;
|
|
data[1] = 6.0f * (2.0f - fc) * t + 2.0f * (fc - 3.0f);
|
|
data[2] = 6.0f * (fc - 2.0f) * t + 2.0f * (3.0f - 2.0f * fc);
|
|
data[3] = 6.0f * fc * t - 2.0f * fc;
|
|
}
|
|
}
|
|
|
|
static int setkeys(float fac, ListBase *lb, KeyBlock *k[], float t[4], int cycl)
|
|
{
|
|
/* return 1 means k[2] is the position, return 0 means interpolate */
|
|
KeyBlock *k1, *firstkey;
|
|
float d, dpos, ofs = 0, lastpos;
|
|
short bsplinetype;
|
|
|
|
firstkey = static_cast<KeyBlock *>(lb->first);
|
|
k1 = static_cast<KeyBlock *>(lb->last);
|
|
lastpos = k1->pos;
|
|
dpos = lastpos - firstkey->pos;
|
|
|
|
if (fac < firstkey->pos) {
|
|
fac = firstkey->pos;
|
|
}
|
|
else if (fac > k1->pos) {
|
|
fac = k1->pos;
|
|
}
|
|
|
|
k1 = k[0] = k[1] = k[2] = k[3] = firstkey;
|
|
t[0] = t[1] = t[2] = t[3] = k1->pos;
|
|
|
|
/* if (fac < 0.0 || fac > 1.0) return 1; */
|
|
|
|
if (k1->next == nullptr) {
|
|
return 1;
|
|
}
|
|
|
|
if (cycl) { /* pre-sort */
|
|
k[2] = k1->next;
|
|
k[3] = k[2]->next;
|
|
if (k[3] == nullptr) {
|
|
k[3] = k1;
|
|
}
|
|
while (k1) {
|
|
if (k1->next == nullptr) {
|
|
k[0] = k1;
|
|
}
|
|
k1 = k1->next;
|
|
}
|
|
/* k1 = k[1]; */ /* UNUSED */
|
|
t[0] = k[0]->pos;
|
|
t[1] += dpos;
|
|
t[2] = k[2]->pos + dpos;
|
|
t[3] = k[3]->pos + dpos;
|
|
fac += dpos;
|
|
ofs = dpos;
|
|
if (k[3] == k[1]) {
|
|
t[3] += dpos;
|
|
ofs = 2.0f * dpos;
|
|
}
|
|
if (fac < t[1]) {
|
|
fac += dpos;
|
|
}
|
|
k1 = k[3];
|
|
}
|
|
else { /* pre-sort */
|
|
k[2] = k1->next;
|
|
t[2] = k[2]->pos;
|
|
k[3] = k[2]->next;
|
|
if (k[3] == nullptr) {
|
|
k[3] = k[2];
|
|
}
|
|
t[3] = k[3]->pos;
|
|
k1 = k[3];
|
|
}
|
|
|
|
while (t[2] < fac) { /* find correct location */
|
|
if (k1->next == nullptr) {
|
|
if (cycl) {
|
|
k1 = firstkey;
|
|
ofs += dpos;
|
|
}
|
|
else if (t[2] == t[3]) {
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
k1 = k1->next;
|
|
}
|
|
|
|
t[0] = t[1];
|
|
k[0] = k[1];
|
|
t[1] = t[2];
|
|
k[1] = k[2];
|
|
t[2] = t[3];
|
|
k[2] = k[3];
|
|
t[3] = k1->pos + ofs;
|
|
k[3] = k1;
|
|
|
|
if (ofs > 2.1f + lastpos) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
bsplinetype = 0;
|
|
if (k[1]->type == KEY_BSPLINE || k[2]->type == KEY_BSPLINE) {
|
|
bsplinetype = 1;
|
|
}
|
|
|
|
if (cycl == 0) {
|
|
if (bsplinetype == 0) { /* B spline doesn't go through the control points */
|
|
if (fac <= t[1]) { /* fac for 1st key */
|
|
t[2] = t[1];
|
|
k[2] = k[1];
|
|
return 1;
|
|
}
|
|
if (fac >= t[2]) { /* fac after 2nd key */
|
|
return 1;
|
|
}
|
|
}
|
|
else if (fac > t[2]) { /* last key */
|
|
fac = t[2];
|
|
k[3] = k[2];
|
|
t[3] = t[2];
|
|
}
|
|
}
|
|
|
|
d = t[2] - t[1];
|
|
if (d == 0.0f) {
|
|
if (bsplinetype == 0) {
|
|
return 1; /* both keys equal */
|
|
}
|
|
}
|
|
else {
|
|
d = (fac - t[1]) / d;
|
|
}
|
|
|
|
/* interpolation */
|
|
key_curve_position_weights(d, t, k[1]->type);
|
|
|
|
if (k[1]->type != k[2]->type) {
|
|
float t_other[4];
|
|
key_curve_position_weights(d, t_other, k[2]->type);
|
|
interp_v4_v4v4(t, t, t_other, d);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void flerp(int tot,
|
|
float *in,
|
|
const float *f0,
|
|
const float *f1,
|
|
const float *f2,
|
|
const float *f3,
|
|
const float *t)
|
|
{
|
|
int a;
|
|
|
|
for (a = 0; a < tot; a++) {
|
|
in[a] = t[0] * f0[a] + t[1] * f1[a] + t[2] * f2[a] + t[3] * f3[a];
|
|
}
|
|
}
|
|
|
|
static void rel_flerp(int tot, float *in, const float *ref, const float *out, float fac)
|
|
{
|
|
int a;
|
|
|
|
for (a = 0; a < tot; a++) {
|
|
in[a] -= fac * (ref[a] - out[a]);
|
|
}
|
|
}
|
|
|
|
static char *key_block_get_data(Key *key, KeyBlock *actkb, KeyBlock *kb, char **freedata)
|
|
{
|
|
if (kb == actkb) {
|
|
/* this hack makes it possible to edit shape keys in
|
|
* edit mode with shape keys blending applied */
|
|
if (GS(key->from->name) == ID_ME) {
|
|
Mesh *me;
|
|
BMVert *eve;
|
|
BMIter iter;
|
|
float(*co)[3];
|
|
int a;
|
|
|
|
me = (Mesh *)key->from;
|
|
|
|
if (me->edit_mesh && me->edit_mesh->bm->totvert == kb->totelem) {
|
|
a = 0;
|
|
co = static_cast<float(*)[3]>(
|
|
MEM_mallocN(sizeof(float[3]) * me->edit_mesh->bm->totvert, "key_block_get_data"));
|
|
|
|
BM_ITER_MESH (eve, &iter, me->edit_mesh->bm, BM_VERTS_OF_MESH) {
|
|
copy_v3_v3(co[a], eve->co);
|
|
a++;
|
|
}
|
|
|
|
*freedata = (char *)co;
|
|
return (char *)co;
|
|
}
|
|
}
|
|
}
|
|
|
|
*freedata = nullptr;
|
|
return static_cast<char *>(kb->data);
|
|
}
|
|
|
|
/* currently only the first value of 'ofs' may be set. */
|
|
static bool key_pointer_size(const Key *key, const int mode, int *poinsize, int *ofs, int *step)
|
|
{
|
|
if (key->from == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
*step = 1;
|
|
|
|
switch (GS(key->from->name)) {
|
|
case ID_ME:
|
|
*ofs = sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
|
|
*poinsize = *ofs;
|
|
break;
|
|
case ID_LT:
|
|
*ofs = sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
|
|
*poinsize = *ofs;
|
|
break;
|
|
case ID_CU_LEGACY:
|
|
if (mode == KEY_MODE_BPOINT) {
|
|
*ofs = sizeof(float[KEYELEM_FLOAT_LEN_BPOINT]);
|
|
*step = KEYELEM_ELEM_LEN_BPOINT;
|
|
}
|
|
else {
|
|
*ofs = sizeof(float[KEYELEM_FLOAT_LEN_BEZTRIPLE]);
|
|
*step = KEYELEM_ELEM_LEN_BEZTRIPLE;
|
|
}
|
|
*poinsize = sizeof(float[KEYELEM_ELEM_SIZE_CURVE]);
|
|
break;
|
|
default:
|
|
BLI_assert_msg(0, "invalid 'key->from' ID type");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void cp_key(const int start,
|
|
int end,
|
|
const int tot,
|
|
char *poin,
|
|
Key *key,
|
|
KeyBlock *actkb,
|
|
KeyBlock *kb,
|
|
float *weights,
|
|
const int mode)
|
|
{
|
|
float ktot = 0.0, kd = 0.0;
|
|
int elemsize, poinsize = 0, a, step, *ofsp, ofs[32], flagflo = 0;
|
|
char *k1, *kref, *freek1, *freekref;
|
|
char *cp, elemstr[8];
|
|
|
|
/* currently always 0, in future key_pointer_size may assign */
|
|
ofs[1] = 0;
|
|
|
|
if (!key_pointer_size(key, mode, &poinsize, &ofs[0], &step)) {
|
|
return;
|
|
}
|
|
|
|
if (end > tot) {
|
|
end = tot;
|
|
}
|
|
|
|
if (tot != kb->totelem) {
|
|
ktot = 0.0;
|
|
flagflo = 1;
|
|
if (kb->totelem) {
|
|
kd = kb->totelem / float(tot);
|
|
}
|
|
else {
|
|
return;
|
|
}
|
|
}
|
|
|
|
k1 = key_block_get_data(key, actkb, kb, &freek1);
|
|
kref = key_block_get_data(key, actkb, key->refkey, &freekref);
|
|
|
|
/* this exception is needed curves with multiple splines */
|
|
if (start != 0) {
|
|
|
|
poin += poinsize * start;
|
|
|
|
if (flagflo) {
|
|
ktot += start * kd;
|
|
a = int(floor(ktot));
|
|
if (a) {
|
|
ktot -= a;
|
|
k1 += a * key->elemsize;
|
|
}
|
|
}
|
|
else {
|
|
k1 += start * key->elemsize;
|
|
}
|
|
}
|
|
|
|
if (mode == KEY_MODE_BEZTRIPLE) {
|
|
elemstr[0] = 1;
|
|
elemstr[1] = IPO_BEZTRIPLE;
|
|
elemstr[2] = 0;
|
|
}
|
|
|
|
/* just do it here, not above! */
|
|
elemsize = key->elemsize * step;
|
|
|
|
for (a = start; a < end; a += step) {
|
|
cp = key->elemstr;
|
|
if (mode == KEY_MODE_BEZTRIPLE) {
|
|
cp = elemstr;
|
|
}
|
|
|
|
ofsp = ofs;
|
|
|
|
while (cp[0]) {
|
|
|
|
switch (cp[1]) {
|
|
case IPO_FLOAT:
|
|
if (weights) {
|
|
memcpy(poin, kref, sizeof(float[KEYELEM_FLOAT_LEN_COORD]));
|
|
if (*weights != 0.0f) {
|
|
rel_flerp(
|
|
KEYELEM_FLOAT_LEN_COORD, (float *)poin, (float *)kref, (float *)k1, *weights);
|
|
}
|
|
weights++;
|
|
}
|
|
else {
|
|
memcpy(poin, k1, sizeof(float[KEYELEM_FLOAT_LEN_COORD]));
|
|
}
|
|
break;
|
|
case IPO_BPOINT:
|
|
memcpy(poin, k1, sizeof(float[KEYELEM_FLOAT_LEN_BPOINT]));
|
|
break;
|
|
case IPO_BEZTRIPLE:
|
|
memcpy(poin, k1, sizeof(float[KEYELEM_FLOAT_LEN_BEZTRIPLE]));
|
|
break;
|
|
default:
|
|
/* should never happen */
|
|
if (freek1) {
|
|
MEM_freeN(freek1);
|
|
}
|
|
if (freekref) {
|
|
MEM_freeN(freekref);
|
|
}
|
|
BLI_assert_msg(0, "invalid 'cp[1]'");
|
|
return;
|
|
}
|
|
|
|
poin += *ofsp;
|
|
cp += 2;
|
|
ofsp++;
|
|
}
|
|
|
|
/* are we going to be nasty? */
|
|
if (flagflo) {
|
|
ktot += kd;
|
|
while (ktot >= 1.0f) {
|
|
ktot -= 1.0f;
|
|
k1 += elemsize;
|
|
kref += elemsize;
|
|
}
|
|
}
|
|
else {
|
|
k1 += elemsize;
|
|
kref += elemsize;
|
|
}
|
|
}
|
|
|
|
if (freek1) {
|
|
MEM_freeN(freek1);
|
|
}
|
|
if (freekref) {
|
|
MEM_freeN(freekref);
|
|
}
|
|
}
|
|
|
|
static void cp_cu_key(Curve *cu,
|
|
Key *key,
|
|
KeyBlock *actkb,
|
|
KeyBlock *kb,
|
|
const int start,
|
|
int end,
|
|
char *out,
|
|
const int tot)
|
|
{
|
|
Nurb *nu;
|
|
int a, step, a1, a2;
|
|
|
|
for (a = 0, nu = static_cast<Nurb *>(cu->nurb.first); nu; nu = nu->next, a += step) {
|
|
if (nu->bp) {
|
|
step = KEYELEM_ELEM_LEN_BPOINT * nu->pntsu * nu->pntsv;
|
|
|
|
a1 = max_ii(a, start);
|
|
a2 = min_ii(a + step, end);
|
|
|
|
if (a1 < a2) {
|
|
cp_key(a1, a2, tot, out, key, actkb, kb, nullptr, KEY_MODE_BPOINT);
|
|
}
|
|
}
|
|
else if (nu->bezt) {
|
|
step = KEYELEM_ELEM_LEN_BEZTRIPLE * nu->pntsu;
|
|
|
|
/* exception because keys prefer to work with complete blocks */
|
|
a1 = max_ii(a, start);
|
|
a2 = min_ii(a + step, end);
|
|
|
|
if (a1 < a2) {
|
|
cp_key(a1, a2, tot, out, key, actkb, kb, nullptr, KEY_MODE_BEZTRIPLE);
|
|
}
|
|
}
|
|
else {
|
|
step = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void key_evaluate_relative(const int start,
|
|
int end,
|
|
const int tot,
|
|
char *basispoin,
|
|
Key *key,
|
|
KeyBlock *actkb,
|
|
float **per_keyblock_weights,
|
|
const int mode)
|
|
{
|
|
KeyBlock *kb;
|
|
int *ofsp, ofs[3], elemsize, b, step;
|
|
char *cp, *poin, *reffrom, *from, elemstr[8];
|
|
int poinsize, keyblock_index;
|
|
|
|
/* currently always 0, in future key_pointer_size may assign */
|
|
ofs[1] = 0;
|
|
|
|
if (!key_pointer_size(key, mode, &poinsize, &ofs[0], &step)) {
|
|
return;
|
|
}
|
|
|
|
if (end > tot) {
|
|
end = tot;
|
|
}
|
|
|
|
/* In case of Bezier-triple. */
|
|
elemstr[0] = 1; /* Number of IPO-floats. */
|
|
elemstr[1] = IPO_BEZTRIPLE;
|
|
elemstr[2] = 0;
|
|
|
|
/* just here, not above! */
|
|
elemsize = key->elemsize * step;
|
|
|
|
/* step 1 init */
|
|
cp_key(start, end, tot, basispoin, key, actkb, key->refkey, nullptr, mode);
|
|
|
|
/* step 2: do it */
|
|
|
|
for (kb = static_cast<KeyBlock *>(key->block.first), keyblock_index = 0; kb;
|
|
kb = kb->next, keyblock_index++) {
|
|
if (kb != key->refkey) {
|
|
float icuval = kb->curval;
|
|
|
|
/* only with value, and no difference allowed */
|
|
if (!(kb->flag & KEYBLOCK_MUTE) && icuval != 0.0f && kb->totelem == tot) {
|
|
KeyBlock *refb;
|
|
float weight,
|
|
*weights = per_keyblock_weights ? per_keyblock_weights[keyblock_index] : nullptr;
|
|
char *freefrom = nullptr;
|
|
|
|
/* reference now can be any block */
|
|
refb = static_cast<KeyBlock *>(BLI_findlink(&key->block, kb->relative));
|
|
if (refb == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
poin = basispoin;
|
|
from = key_block_get_data(key, actkb, kb, &freefrom);
|
|
|
|
/* For meshes, use the original values instead of the bmesh values to
|
|
* maintain a constant offset. */
|
|
reffrom = static_cast<char *>(refb->data);
|
|
|
|
poin += start * poinsize;
|
|
reffrom += key->elemsize * start; /* key elemsize yes! */
|
|
from += key->elemsize * start;
|
|
|
|
for (b = start; b < end; b += step) {
|
|
|
|
weight = weights ? (*weights * icuval) : icuval;
|
|
|
|
cp = key->elemstr;
|
|
if (mode == KEY_MODE_BEZTRIPLE) {
|
|
cp = elemstr;
|
|
}
|
|
|
|
ofsp = ofs;
|
|
|
|
while (cp[0]) { /* (cp[0] == amount) */
|
|
|
|
switch (cp[1]) {
|
|
case IPO_FLOAT:
|
|
rel_flerp(KEYELEM_FLOAT_LEN_COORD,
|
|
(float *)poin,
|
|
(float *)reffrom,
|
|
(float *)from,
|
|
weight);
|
|
break;
|
|
case IPO_BPOINT:
|
|
rel_flerp(KEYELEM_FLOAT_LEN_BPOINT,
|
|
(float *)poin,
|
|
(float *)reffrom,
|
|
(float *)from,
|
|
weight);
|
|
break;
|
|
case IPO_BEZTRIPLE:
|
|
rel_flerp(KEYELEM_FLOAT_LEN_BEZTRIPLE,
|
|
(float *)poin,
|
|
(float *)reffrom,
|
|
(float *)from,
|
|
weight);
|
|
break;
|
|
default:
|
|
/* should never happen */
|
|
if (freefrom) {
|
|
MEM_freeN(freefrom);
|
|
}
|
|
BLI_assert_msg(0, "invalid 'cp[1]'");
|
|
return;
|
|
}
|
|
|
|
poin += *ofsp;
|
|
|
|
cp += 2;
|
|
ofsp++;
|
|
}
|
|
|
|
reffrom += elemsize;
|
|
from += elemsize;
|
|
|
|
if (weights) {
|
|
weights++;
|
|
}
|
|
}
|
|
|
|
if (freefrom) {
|
|
MEM_freeN(freefrom);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_key(const int start,
|
|
int end,
|
|
const int tot,
|
|
char *poin,
|
|
Key *key,
|
|
KeyBlock *actkb,
|
|
KeyBlock **k,
|
|
float *t,
|
|
const int mode)
|
|
{
|
|
float k1tot = 0.0, k2tot = 0.0, k3tot = 0.0, k4tot = 0.0;
|
|
float k1d = 0.0, k2d = 0.0, k3d = 0.0, k4d = 0.0;
|
|
int a, step, ofs[32], *ofsp;
|
|
int flagdo = 15, flagflo = 0, elemsize, poinsize = 0;
|
|
char *k1, *k2, *k3, *k4, *freek1, *freek2, *freek3, *freek4;
|
|
char *cp, elemstr[8];
|
|
|
|
/* currently always 0, in future key_pointer_size may assign */
|
|
ofs[1] = 0;
|
|
|
|
if (!key_pointer_size(key, mode, &poinsize, &ofs[0], &step)) {
|
|
return;
|
|
}
|
|
|
|
if (end > tot) {
|
|
end = tot;
|
|
}
|
|
|
|
k1 = key_block_get_data(key, actkb, k[0], &freek1);
|
|
k2 = key_block_get_data(key, actkb, k[1], &freek2);
|
|
k3 = key_block_get_data(key, actkb, k[2], &freek3);
|
|
k4 = key_block_get_data(key, actkb, k[3], &freek4);
|
|
|
|
/* Test for more or less points (per key!) */
|
|
if (tot != k[0]->totelem) {
|
|
k1tot = 0.0;
|
|
flagflo |= 1;
|
|
if (k[0]->totelem) {
|
|
k1d = k[0]->totelem / float(tot);
|
|
}
|
|
else {
|
|
flagdo -= 1;
|
|
}
|
|
}
|
|
if (tot != k[1]->totelem) {
|
|
k2tot = 0.0;
|
|
flagflo |= 2;
|
|
if (k[0]->totelem) {
|
|
k2d = k[1]->totelem / float(tot);
|
|
}
|
|
else {
|
|
flagdo -= 2;
|
|
}
|
|
}
|
|
if (tot != k[2]->totelem) {
|
|
k3tot = 0.0;
|
|
flagflo |= 4;
|
|
if (k[0]->totelem) {
|
|
k3d = k[2]->totelem / float(tot);
|
|
}
|
|
else {
|
|
flagdo -= 4;
|
|
}
|
|
}
|
|
if (tot != k[3]->totelem) {
|
|
k4tot = 0.0;
|
|
flagflo |= 8;
|
|
if (k[0]->totelem) {
|
|
k4d = k[3]->totelem / float(tot);
|
|
}
|
|
else {
|
|
flagdo -= 8;
|
|
}
|
|
}
|
|
|
|
/* this exception is needed for curves with multiple splines */
|
|
if (start != 0) {
|
|
|
|
poin += poinsize * start;
|
|
|
|
if (flagdo & 1) {
|
|
if (flagflo & 1) {
|
|
k1tot += start * k1d;
|
|
a = int(floor(k1tot));
|
|
if (a) {
|
|
k1tot -= a;
|
|
k1 += a * key->elemsize;
|
|
}
|
|
}
|
|
else {
|
|
k1 += start * key->elemsize;
|
|
}
|
|
}
|
|
if (flagdo & 2) {
|
|
if (flagflo & 2) {
|
|
k2tot += start * k2d;
|
|
a = int(floor(k2tot));
|
|
if (a) {
|
|
k2tot -= a;
|
|
k2 += a * key->elemsize;
|
|
}
|
|
}
|
|
else {
|
|
k2 += start * key->elemsize;
|
|
}
|
|
}
|
|
if (flagdo & 4) {
|
|
if (flagflo & 4) {
|
|
k3tot += start * k3d;
|
|
a = int(floor(k3tot));
|
|
if (a) {
|
|
k3tot -= a;
|
|
k3 += a * key->elemsize;
|
|
}
|
|
}
|
|
else {
|
|
k3 += start * key->elemsize;
|
|
}
|
|
}
|
|
if (flagdo & 8) {
|
|
if (flagflo & 8) {
|
|
k4tot += start * k4d;
|
|
a = int(floor(k4tot));
|
|
if (a) {
|
|
k4tot -= a;
|
|
k4 += a * key->elemsize;
|
|
}
|
|
}
|
|
else {
|
|
k4 += start * key->elemsize;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* In case of bezier-triples. */
|
|
elemstr[0] = 1; /* Number of IPO-floats. */
|
|
elemstr[1] = IPO_BEZTRIPLE;
|
|
elemstr[2] = 0;
|
|
|
|
/* only here, not above! */
|
|
elemsize = key->elemsize * step;
|
|
|
|
for (a = start; a < end; a += step) {
|
|
cp = key->elemstr;
|
|
if (mode == KEY_MODE_BEZTRIPLE) {
|
|
cp = elemstr;
|
|
}
|
|
|
|
ofsp = ofs;
|
|
|
|
while (cp[0]) { /* (cp[0] == amount) */
|
|
|
|
switch (cp[1]) {
|
|
case IPO_FLOAT:
|
|
flerp(KEYELEM_FLOAT_LEN_COORD,
|
|
(float *)poin,
|
|
(float *)k1,
|
|
(float *)k2,
|
|
(float *)k3,
|
|
(float *)k4,
|
|
t);
|
|
break;
|
|
case IPO_BPOINT:
|
|
flerp(KEYELEM_FLOAT_LEN_BPOINT,
|
|
(float *)poin,
|
|
(float *)k1,
|
|
(float *)k2,
|
|
(float *)k3,
|
|
(float *)k4,
|
|
t);
|
|
break;
|
|
case IPO_BEZTRIPLE:
|
|
flerp(KEYELEM_FLOAT_LEN_BEZTRIPLE,
|
|
(float *)poin,
|
|
(float *)k1,
|
|
(float *)k2,
|
|
(float *)k3,
|
|
(float *)k4,
|
|
t);
|
|
break;
|
|
default:
|
|
/* should never happen */
|
|
if (freek1) {
|
|
MEM_freeN(freek1);
|
|
}
|
|
if (freek2) {
|
|
MEM_freeN(freek2);
|
|
}
|
|
if (freek3) {
|
|
MEM_freeN(freek3);
|
|
}
|
|
if (freek4) {
|
|
MEM_freeN(freek4);
|
|
}
|
|
BLI_assert_msg(0, "invalid 'cp[1]'");
|
|
return;
|
|
}
|
|
|
|
poin += *ofsp;
|
|
cp += 2;
|
|
ofsp++;
|
|
}
|
|
/* lets do it the difficult way: when keys have a different size */
|
|
if (flagdo & 1) {
|
|
if (flagflo & 1) {
|
|
k1tot += k1d;
|
|
while (k1tot >= 1.0f) {
|
|
k1tot -= 1.0f;
|
|
k1 += elemsize;
|
|
}
|
|
}
|
|
else {
|
|
k1 += elemsize;
|
|
}
|
|
}
|
|
if (flagdo & 2) {
|
|
if (flagflo & 2) {
|
|
k2tot += k2d;
|
|
while (k2tot >= 1.0f) {
|
|
k2tot -= 1.0f;
|
|
k2 += elemsize;
|
|
}
|
|
}
|
|
else {
|
|
k2 += elemsize;
|
|
}
|
|
}
|
|
if (flagdo & 4) {
|
|
if (flagflo & 4) {
|
|
k3tot += k3d;
|
|
while (k3tot >= 1.0f) {
|
|
k3tot -= 1.0f;
|
|
k3 += elemsize;
|
|
}
|
|
}
|
|
else {
|
|
k3 += elemsize;
|
|
}
|
|
}
|
|
if (flagdo & 8) {
|
|
if (flagflo & 8) {
|
|
k4tot += k4d;
|
|
while (k4tot >= 1.0f) {
|
|
k4tot -= 1.0f;
|
|
k4 += elemsize;
|
|
}
|
|
}
|
|
else {
|
|
k4 += elemsize;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (freek1) {
|
|
MEM_freeN(freek1);
|
|
}
|
|
if (freek2) {
|
|
MEM_freeN(freek2);
|
|
}
|
|
if (freek3) {
|
|
MEM_freeN(freek3);
|
|
}
|
|
if (freek4) {
|
|
MEM_freeN(freek4);
|
|
}
|
|
}
|
|
|
|
static float *get_weights_array(Object *ob, char *vgroup, WeightsArrayCache *cache)
|
|
{
|
|
const MDeformVert *dvert = nullptr;
|
|
BMEditMesh *em = nullptr;
|
|
BMIter iter;
|
|
BMVert *eve;
|
|
int totvert = 0, defgrp_index = 0;
|
|
|
|
/* no vgroup string set? */
|
|
if (vgroup[0] == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
/* gather dvert and totvert */
|
|
if (ob->type == OB_MESH) {
|
|
Mesh *me = static_cast<Mesh *>(ob->data);
|
|
dvert = BKE_mesh_deform_verts(me);
|
|
totvert = me->totvert;
|
|
|
|
if (me->edit_mesh && me->edit_mesh->bm->totvert == totvert) {
|
|
em = me->edit_mesh;
|
|
}
|
|
}
|
|
else if (ob->type == OB_LATTICE) {
|
|
Lattice *lt = static_cast<Lattice *>(ob->data);
|
|
dvert = lt->dvert;
|
|
totvert = lt->pntsu * lt->pntsv * lt->pntsw;
|
|
}
|
|
|
|
if (dvert == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
/* find the group (weak loop-in-loop) */
|
|
defgrp_index = BKE_object_defgroup_name_index(ob, vgroup);
|
|
if (defgrp_index != -1) {
|
|
float *weights;
|
|
|
|
if (cache) {
|
|
if (cache->defgroup_weights == nullptr) {
|
|
int num_defgroup = BKE_object_defgroup_count(ob);
|
|
cache->defgroup_weights = static_cast<float **>(MEM_callocN(
|
|
sizeof(*cache->defgroup_weights) * num_defgroup, "cached defgroup weights"));
|
|
cache->num_defgroup_weights = num_defgroup;
|
|
}
|
|
|
|
if (cache->defgroup_weights[defgrp_index]) {
|
|
return cache->defgroup_weights[defgrp_index];
|
|
}
|
|
}
|
|
|
|
weights = static_cast<float *>(MEM_mallocN(totvert * sizeof(float), "weights"));
|
|
|
|
if (em) {
|
|
int i;
|
|
const int cd_dvert_offset = CustomData_get_offset(&em->bm->vdata, CD_MDEFORMVERT);
|
|
BM_ITER_MESH_INDEX (eve, &iter, em->bm, BM_VERTS_OF_MESH, i) {
|
|
dvert = static_cast<const MDeformVert *>(BM_ELEM_CD_GET_VOID_P(eve, cd_dvert_offset));
|
|
weights[i] = BKE_defvert_find_weight(dvert, defgrp_index);
|
|
}
|
|
}
|
|
else {
|
|
for (int i = 0; i < totvert; i++, dvert++) {
|
|
weights[i] = BKE_defvert_find_weight(dvert, defgrp_index);
|
|
}
|
|
}
|
|
|
|
if (cache) {
|
|
cache->defgroup_weights[defgrp_index] = weights;
|
|
}
|
|
|
|
return weights;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static float **keyblock_get_per_block_weights(Object *ob, Key *key, WeightsArrayCache *cache)
|
|
{
|
|
KeyBlock *keyblock;
|
|
float **per_keyblock_weights;
|
|
int keyblock_index;
|
|
|
|
per_keyblock_weights = static_cast<float **>(
|
|
MEM_mallocN(sizeof(*per_keyblock_weights) * key->totkey, "per keyblock weights"));
|
|
|
|
for (keyblock = static_cast<KeyBlock *>(key->block.first), keyblock_index = 0; keyblock;
|
|
keyblock = keyblock->next, keyblock_index++) {
|
|
per_keyblock_weights[keyblock_index] = get_weights_array(ob, keyblock->vgroup, cache);
|
|
}
|
|
|
|
return per_keyblock_weights;
|
|
}
|
|
|
|
static void keyblock_free_per_block_weights(Key *key,
|
|
float **per_keyblock_weights,
|
|
WeightsArrayCache *cache)
|
|
{
|
|
int a;
|
|
|
|
if (cache) {
|
|
if (cache->num_defgroup_weights) {
|
|
for (a = 0; a < cache->num_defgroup_weights; a++) {
|
|
if (cache->defgroup_weights[a]) {
|
|
MEM_freeN(cache->defgroup_weights[a]);
|
|
}
|
|
}
|
|
MEM_freeN(cache->defgroup_weights);
|
|
}
|
|
cache->defgroup_weights = nullptr;
|
|
}
|
|
else {
|
|
for (a = 0; a < key->totkey; a++) {
|
|
if (per_keyblock_weights[a]) {
|
|
MEM_freeN(per_keyblock_weights[a]);
|
|
}
|
|
}
|
|
}
|
|
|
|
MEM_freeN(per_keyblock_weights);
|
|
}
|
|
|
|
static void do_mesh_key(Object *ob, Key *key, char *out, const int tot)
|
|
{
|
|
KeyBlock *k[4], *actkb = BKE_keyblock_from_object(ob);
|
|
float t[4];
|
|
int flag = 0;
|
|
|
|
if (key->type == KEY_RELATIVE) {
|
|
WeightsArrayCache cache = {0, nullptr};
|
|
float **per_keyblock_weights;
|
|
per_keyblock_weights = keyblock_get_per_block_weights(ob, key, &cache);
|
|
key_evaluate_relative(
|
|
0, tot, tot, (char *)out, key, actkb, per_keyblock_weights, KEY_MODE_DUMMY);
|
|
keyblock_free_per_block_weights(key, per_keyblock_weights, &cache);
|
|
}
|
|
else {
|
|
const float ctime_scaled = key->ctime / 100.0f;
|
|
|
|
flag = setkeys(ctime_scaled, &key->block, k, t, 0);
|
|
|
|
if (flag == 0) {
|
|
do_key(0, tot, tot, (char *)out, key, actkb, k, t, KEY_MODE_DUMMY);
|
|
}
|
|
else {
|
|
cp_key(0, tot, tot, (char *)out, key, actkb, k[2], nullptr, KEY_MODE_DUMMY);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_cu_key(
|
|
Curve *cu, Key *key, KeyBlock *actkb, KeyBlock **k, float *t, char *out, const int tot)
|
|
{
|
|
Nurb *nu;
|
|
int a, step;
|
|
|
|
for (a = 0, nu = static_cast<Nurb *>(cu->nurb.first); nu; nu = nu->next, a += step) {
|
|
if (nu->bp) {
|
|
step = KEYELEM_ELEM_LEN_BPOINT * nu->pntsu * nu->pntsv;
|
|
do_key(a, a + step, tot, out, key, actkb, k, t, KEY_MODE_BPOINT);
|
|
}
|
|
else if (nu->bezt) {
|
|
step = KEYELEM_ELEM_LEN_BEZTRIPLE * nu->pntsu;
|
|
do_key(a, a + step, tot, out, key, actkb, k, t, KEY_MODE_BEZTRIPLE);
|
|
}
|
|
else {
|
|
step = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_rel_cu_key(Curve *cu, Key *key, KeyBlock *actkb, char *out, const int tot)
|
|
{
|
|
Nurb *nu;
|
|
int a, step;
|
|
|
|
for (a = 0, nu = static_cast<Nurb *>(cu->nurb.first); nu; nu = nu->next, a += step) {
|
|
if (nu->bp) {
|
|
step = KEYELEM_ELEM_LEN_BPOINT * nu->pntsu * nu->pntsv;
|
|
key_evaluate_relative(a, a + step, tot, out, key, actkb, nullptr, KEY_MODE_BPOINT);
|
|
}
|
|
else if (nu->bezt) {
|
|
step = KEYELEM_ELEM_LEN_BEZTRIPLE * nu->pntsu;
|
|
key_evaluate_relative(a, a + step, tot, out, key, actkb, nullptr, KEY_MODE_BEZTRIPLE);
|
|
}
|
|
else {
|
|
step = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_curve_key(Object *ob, Key *key, char *out, const int tot)
|
|
{
|
|
Curve *cu = static_cast<Curve *>(ob->data);
|
|
KeyBlock *k[4], *actkb = BKE_keyblock_from_object(ob);
|
|
float t[4];
|
|
int flag = 0;
|
|
|
|
if (key->type == KEY_RELATIVE) {
|
|
do_rel_cu_key(cu, cu->key, actkb, out, tot);
|
|
}
|
|
else {
|
|
const float ctime_scaled = key->ctime / 100.0f;
|
|
|
|
flag = setkeys(ctime_scaled, &key->block, k, t, 0);
|
|
|
|
if (flag == 0) {
|
|
do_cu_key(cu, key, actkb, k, t, out, tot);
|
|
}
|
|
else {
|
|
cp_cu_key(cu, key, actkb, k[2], 0, tot, out, tot);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_latt_key(Object *ob, Key *key, char *out, const int tot)
|
|
{
|
|
Lattice *lt = static_cast<Lattice *>(ob->data);
|
|
KeyBlock *k[4], *actkb = BKE_keyblock_from_object(ob);
|
|
float t[4];
|
|
int flag;
|
|
|
|
if (key->type == KEY_RELATIVE) {
|
|
float **per_keyblock_weights;
|
|
per_keyblock_weights = keyblock_get_per_block_weights(ob, key, nullptr);
|
|
key_evaluate_relative(
|
|
0, tot, tot, (char *)out, key, actkb, per_keyblock_weights, KEY_MODE_DUMMY);
|
|
keyblock_free_per_block_weights(key, per_keyblock_weights, nullptr);
|
|
}
|
|
else {
|
|
const float ctime_scaled = key->ctime / 100.0f;
|
|
|
|
flag = setkeys(ctime_scaled, &key->block, k, t, 0);
|
|
|
|
if (flag == 0) {
|
|
do_key(0, tot, tot, (char *)out, key, actkb, k, t, KEY_MODE_DUMMY);
|
|
}
|
|
else {
|
|
cp_key(0, tot, tot, (char *)out, key, actkb, k[2], nullptr, KEY_MODE_DUMMY);
|
|
}
|
|
}
|
|
|
|
if (lt->flag & LT_OUTSIDE) {
|
|
outside_lattice(lt);
|
|
}
|
|
}
|
|
|
|
static void keyblock_data_convert_to_lattice(const float (*fp)[3],
|
|
BPoint *bpoint,
|
|
const int totpoint);
|
|
static void keyblock_data_convert_to_curve(const float *fp, ListBase *nurb, const int totpoint);
|
|
|
|
float *BKE_key_evaluate_object_ex(
|
|
Object *ob, int *r_totelem, float *arr, size_t arr_size, ID *obdata)
|
|
{
|
|
Key *key = BKE_key_from_object(ob);
|
|
KeyBlock *actkb = BKE_keyblock_from_object(ob);
|
|
char *out;
|
|
int tot = 0, size = 0;
|
|
|
|
if (key == nullptr || BLI_listbase_is_empty(&key->block)) {
|
|
return nullptr;
|
|
}
|
|
|
|
/* compute size of output array */
|
|
if (ob->type == OB_MESH) {
|
|
Mesh *me = static_cast<Mesh *>(ob->data);
|
|
|
|
tot = me->totvert;
|
|
size = tot * sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
|
|
}
|
|
else if (ob->type == OB_LATTICE) {
|
|
Lattice *lt = static_cast<Lattice *>(ob->data);
|
|
|
|
tot = lt->pntsu * lt->pntsv * lt->pntsw;
|
|
size = tot * sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
|
|
}
|
|
else if (ELEM(ob->type, OB_CURVES_LEGACY, OB_SURF)) {
|
|
Curve *cu = static_cast<Curve *>(ob->data);
|
|
|
|
tot = BKE_keyblock_curve_element_count(&cu->nurb);
|
|
size = tot * sizeof(float[KEYELEM_ELEM_SIZE_CURVE]);
|
|
}
|
|
|
|
/* if nothing to interpolate, cancel */
|
|
if (tot == 0 || size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
/* allocate array */
|
|
if (arr == nullptr) {
|
|
out = static_cast<char *>(MEM_callocN(size, "BKE_key_evaluate_object out"));
|
|
}
|
|
else {
|
|
if (arr_size != size) {
|
|
return nullptr;
|
|
}
|
|
|
|
out = (char *)arr;
|
|
}
|
|
|
|
if (ob->shapeflag & OB_SHAPE_LOCK) {
|
|
/* shape locked, copy the locked shape instead of blending */
|
|
KeyBlock *kb = static_cast<KeyBlock *>(BLI_findlink(&key->block, ob->shapenr - 1));
|
|
|
|
if (kb && (kb->flag & KEYBLOCK_MUTE)) {
|
|
kb = key->refkey;
|
|
}
|
|
|
|
if (kb == nullptr) {
|
|
kb = static_cast<KeyBlock *>(key->block.first);
|
|
ob->shapenr = 1;
|
|
}
|
|
|
|
if (OB_TYPE_SUPPORT_VGROUP(ob->type)) {
|
|
float *weights = get_weights_array(ob, kb->vgroup, nullptr);
|
|
|
|
cp_key(0, tot, tot, out, key, actkb, kb, weights, 0);
|
|
|
|
if (weights) {
|
|
MEM_freeN(weights);
|
|
}
|
|
}
|
|
else if (ELEM(ob->type, OB_CURVES_LEGACY, OB_SURF)) {
|
|
cp_cu_key(static_cast<Curve *>(ob->data), key, actkb, kb, 0, tot, out, tot);
|
|
}
|
|
}
|
|
else {
|
|
if (ob->type == OB_MESH) {
|
|
do_mesh_key(ob, key, out, tot);
|
|
}
|
|
else if (ob->type == OB_LATTICE) {
|
|
do_latt_key(ob, key, out, tot);
|
|
}
|
|
else if (ob->type == OB_CURVES_LEGACY) {
|
|
do_curve_key(ob, key, out, tot);
|
|
}
|
|
else if (ob->type == OB_SURF) {
|
|
do_curve_key(ob, key, out, tot);
|
|
}
|
|
}
|
|
|
|
if (obdata != nullptr) {
|
|
switch (GS(obdata->name)) {
|
|
case ID_ME: {
|
|
Mesh *mesh = (Mesh *)obdata;
|
|
const int totvert = min_ii(tot, mesh->totvert);
|
|
mesh->vert_positions_for_write().take_front(totvert).copy_from(
|
|
{reinterpret_cast<const blender::float3 *>(out), totvert});
|
|
break;
|
|
}
|
|
case ID_LT: {
|
|
Lattice *lattice = (Lattice *)obdata;
|
|
const int totpoint = min_ii(tot, lattice->pntsu * lattice->pntsv * lattice->pntsw);
|
|
keyblock_data_convert_to_lattice((const float(*)[3])out, lattice->def, totpoint);
|
|
break;
|
|
}
|
|
case ID_CU_LEGACY: {
|
|
Curve *curve = (Curve *)obdata;
|
|
const int totpoint = min_ii(tot, BKE_keyblock_curve_element_count(&curve->nurb));
|
|
keyblock_data_convert_to_curve((const float *)out, &curve->nurb, totpoint);
|
|
break;
|
|
}
|
|
default:
|
|
BLI_assert_unreachable();
|
|
}
|
|
}
|
|
|
|
if (r_totelem) {
|
|
*r_totelem = tot;
|
|
}
|
|
return (float *)out;
|
|
}
|
|
|
|
float *BKE_key_evaluate_object(Object *ob, int *r_totelem)
|
|
{
|
|
return BKE_key_evaluate_object_ex(ob, r_totelem, nullptr, 0, nullptr);
|
|
}
|
|
|
|
int BKE_keyblock_element_count_from_shape(const Key *key, const int shape_index)
|
|
{
|
|
int result = 0;
|
|
int index = 0;
|
|
for (const KeyBlock *kb = static_cast<const KeyBlock *>(key->block.first); kb;
|
|
kb = kb->next, index++) {
|
|
if (ELEM(shape_index, -1, index)) {
|
|
result += kb->totelem;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int BKE_keyblock_element_count(const Key *key)
|
|
{
|
|
return BKE_keyblock_element_count_from_shape(key, -1);
|
|
}
|
|
|
|
size_t BKE_keyblock_element_calc_size_from_shape(const Key *key, const int shape_index)
|
|
{
|
|
return size_t(BKE_keyblock_element_count_from_shape(key, shape_index)) * key->elemsize;
|
|
}
|
|
|
|
size_t BKE_keyblock_element_calc_size(const Key *key)
|
|
{
|
|
return BKE_keyblock_element_calc_size_from_shape(key, -1);
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Key-Block Data Access
|
|
*
|
|
* Utilities for getting/setting key data as a single array,
|
|
* use #BKE_keyblock_element_calc_size to allocate the size of the data needed.
|
|
* \{ */
|
|
|
|
void BKE_keyblock_data_get_from_shape(const Key *key, float (*arr)[3], const int shape_index)
|
|
{
|
|
uint8_t *elements = (uint8_t *)arr;
|
|
int index = 0;
|
|
for (const KeyBlock *kb = static_cast<const KeyBlock *>(key->block.first); kb;
|
|
kb = kb->next, index++) {
|
|
if (ELEM(shape_index, -1, index)) {
|
|
const int block_elem_len = kb->totelem * key->elemsize;
|
|
memcpy(elements, kb->data, block_elem_len);
|
|
elements += block_elem_len;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BKE_keyblock_data_get(const Key *key, float (*arr)[3])
|
|
{
|
|
BKE_keyblock_data_get_from_shape(key, arr, -1);
|
|
}
|
|
|
|
void BKE_keyblock_data_set_with_mat4(Key *key,
|
|
const int shape_index,
|
|
const float (*coords)[3],
|
|
const float mat[4][4])
|
|
{
|
|
if (key->elemsize != sizeof(float[3])) {
|
|
BLI_assert_msg(0, "Invalid elemsize");
|
|
return;
|
|
}
|
|
|
|
const float(*elements)[3] = coords;
|
|
|
|
int index = 0;
|
|
for (KeyBlock *kb = static_cast<KeyBlock *>(key->block.first); kb; kb = kb->next, index++) {
|
|
if (ELEM(shape_index, -1, index)) {
|
|
const int block_elem_len = kb->totelem;
|
|
float(*block_data)[3] = (float(*)[3])kb->data;
|
|
for (int data_offset = 0; data_offset < block_elem_len; ++data_offset) {
|
|
const float *src_data = (const float *)(elements + data_offset);
|
|
float *dst_data = (float *)(block_data + data_offset);
|
|
mul_v3_m4v3(dst_data, mat, src_data);
|
|
}
|
|
elements += block_elem_len;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BKE_keyblock_curve_data_set_with_mat4(
|
|
Key *key, const ListBase *nurb, const int shape_index, const void *data, const float mat[4][4])
|
|
{
|
|
const uint8_t *elements = static_cast<const uint8_t *>(data);
|
|
|
|
int index = 0;
|
|
for (KeyBlock *kb = static_cast<KeyBlock *>(key->block.first); kb; kb = kb->next, index++) {
|
|
if (ELEM(shape_index, -1, index)) {
|
|
const int block_elem_size = kb->totelem * key->elemsize;
|
|
BKE_keyblock_curve_data_transform(nurb, mat, elements, kb->data);
|
|
elements += block_elem_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BKE_keyblock_data_set(Key *key, const int shape_index, const void *data)
|
|
{
|
|
const uint8_t *elements = static_cast<const uint8_t *>(data);
|
|
int index = 0;
|
|
for (KeyBlock *kb = static_cast<KeyBlock *>(key->block.first); kb; kb = kb->next, index++) {
|
|
if (ELEM(shape_index, -1, index)) {
|
|
const int block_elem_size = kb->totelem * key->elemsize;
|
|
memcpy(kb->data, elements, block_elem_size);
|
|
elements += block_elem_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \} */
|
|
|
|
bool BKE_key_idtype_support(const short id_type)
|
|
{
|
|
switch (id_type) {
|
|
case ID_ME:
|
|
case ID_CU_LEGACY:
|
|
case ID_LT:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Key **BKE_key_from_id_p(ID *id)
|
|
{
|
|
switch (GS(id->name)) {
|
|
case ID_ME: {
|
|
Mesh *me = (Mesh *)id;
|
|
return &me->key;
|
|
}
|
|
case ID_CU_LEGACY: {
|
|
Curve *cu = (Curve *)id;
|
|
if (cu->vfont == nullptr) {
|
|
return &cu->key;
|
|
}
|
|
break;
|
|
}
|
|
case ID_LT: {
|
|
Lattice *lt = (Lattice *)id;
|
|
return <->key;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Key *BKE_key_from_id(ID *id)
|
|
{
|
|
Key **key_p;
|
|
key_p = BKE_key_from_id_p(id);
|
|
if (key_p) {
|
|
return *key_p;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Key **BKE_key_from_object_p(Object *ob)
|
|
{
|
|
if (ob == nullptr || ob->data == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
return BKE_key_from_id_p(static_cast<ID *>(ob->data));
|
|
}
|
|
|
|
Key *BKE_key_from_object(Object *ob)
|
|
{
|
|
Key **key_p;
|
|
key_p = BKE_key_from_object_p(ob);
|
|
if (key_p) {
|
|
return *key_p;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
KeyBlock *BKE_keyblock_add(Key *key, const char *name)
|
|
{
|
|
KeyBlock *kb;
|
|
float curpos = -0.1;
|
|
int tot;
|
|
|
|
kb = static_cast<KeyBlock *>(key->block.last);
|
|
if (kb) {
|
|
curpos = kb->pos;
|
|
}
|
|
|
|
kb = MEM_cnew<KeyBlock>("Keyblock");
|
|
BLI_addtail(&key->block, kb);
|
|
kb->type = KEY_LINEAR;
|
|
|
|
tot = BLI_listbase_count(&key->block);
|
|
if (name) {
|
|
BLI_strncpy(kb->name, name, sizeof(kb->name));
|
|
}
|
|
else {
|
|
if (tot == 1) {
|
|
BLI_strncpy(kb->name, DATA_("Basis"), sizeof(kb->name));
|
|
}
|
|
else {
|
|
BLI_snprintf(kb->name, sizeof(kb->name), DATA_("Key %d"), tot - 1);
|
|
}
|
|
}
|
|
|
|
BLI_uniquename(&key->block, kb, DATA_("Key"), '.', offsetof(KeyBlock, name), sizeof(kb->name));
|
|
|
|
kb->uid = key->uidgen++;
|
|
|
|
key->totkey++;
|
|
if (key->totkey == 1) {
|
|
key->refkey = kb;
|
|
}
|
|
|
|
kb->slidermin = 0.0f;
|
|
kb->slidermax = 1.0f;
|
|
|
|
/**
|
|
* \note caller may want to set this to current time, but don't do it here since we need to sort
|
|
* which could cause problems in some cases, see #BKE_keyblock_add_ctime */
|
|
kb->pos = curpos + 0.1f; /* only used for absolute shape keys */
|
|
|
|
return kb;
|
|
}
|
|
|
|
KeyBlock *BKE_keyblock_add_ctime(Key *key, const char *name, const bool do_force)
|
|
{
|
|
KeyBlock *kb = BKE_keyblock_add(key, name);
|
|
const float cpos = key->ctime / 100.0f;
|
|
|
|
/* In case of absolute keys, there is no point in adding more than one key with the same pos.
|
|
* Hence only set new key-block pos to current time if none previous one already use it.
|
|
* Now at least people just adding absolute keys without touching to ctime
|
|
* won't have to systematically use retiming func (and have ordering issues, too). See #39897.
|
|
*/
|
|
if (!do_force && (key->type != KEY_RELATIVE)) {
|
|
KeyBlock *it_kb;
|
|
for (it_kb = static_cast<KeyBlock *>(key->block.first); it_kb; it_kb = it_kb->next) {
|
|
/* Use epsilon to avoid floating point precision issues.
|
|
* 1e-3 because the position is stored as frame * 1e-2. */
|
|
if (compare_ff(it_kb->pos, cpos, 1e-3f)) {
|
|
return kb;
|
|
}
|
|
}
|
|
}
|
|
if (do_force || (key->type != KEY_RELATIVE)) {
|
|
kb->pos = cpos;
|
|
BKE_key_sort(key);
|
|
}
|
|
|
|
return kb;
|
|
}
|
|
|
|
KeyBlock *BKE_keyblock_from_object(Object *ob)
|
|
{
|
|
Key *key = BKE_key_from_object(ob);
|
|
|
|
if (key) {
|
|
KeyBlock *kb = static_cast<KeyBlock *>(BLI_findlink(&key->block, ob->shapenr - 1));
|
|
return kb;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
KeyBlock *BKE_keyblock_from_object_reference(Object *ob)
|
|
{
|
|
Key *key = BKE_key_from_object(ob);
|
|
|
|
if (key) {
|
|
return key->refkey;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
KeyBlock *BKE_keyblock_from_key(Key *key, int index)
|
|
{
|
|
if (key) {
|
|
KeyBlock *kb = static_cast<KeyBlock *>(key->block.first);
|
|
|
|
for (int i = 1; i < key->totkey; i++) {
|
|
kb = kb->next;
|
|
|
|
if (index == i) {
|
|
return kb;
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
KeyBlock *BKE_keyblock_find_name(Key *key, const char name[])
|
|
{
|
|
return static_cast<KeyBlock *>(BLI_findstring(&key->block, name, offsetof(KeyBlock, name)));
|
|
}
|
|
|
|
KeyBlock *BKE_keyblock_find_uid(Key *key, const int uid)
|
|
{
|
|
LISTBASE_FOREACH (KeyBlock *, kb, &key->block) {
|
|
if (kb->uid == uid) {
|
|
return kb;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void BKE_keyblock_copy_settings(KeyBlock *kb_dst, const KeyBlock *kb_src)
|
|
{
|
|
kb_dst->pos = kb_src->pos;
|
|
kb_dst->curval = kb_src->curval;
|
|
kb_dst->type = kb_src->type;
|
|
kb_dst->relative = kb_src->relative;
|
|
BLI_strncpy(kb_dst->vgroup, kb_src->vgroup, sizeof(kb_dst->vgroup));
|
|
kb_dst->slidermin = kb_src->slidermin;
|
|
kb_dst->slidermax = kb_src->slidermax;
|
|
}
|
|
|
|
char *BKE_keyblock_curval_rnapath_get(const Key *key, const KeyBlock *kb)
|
|
{
|
|
PointerRNA ptr;
|
|
PropertyRNA *prop;
|
|
|
|
/* sanity checks */
|
|
if (ELEM(nullptr, key, kb)) {
|
|
return nullptr;
|
|
}
|
|
|
|
/* create the RNA pointer */
|
|
RNA_pointer_create((ID *)&key->id, &RNA_ShapeKey, (KeyBlock *)kb, &ptr);
|
|
/* get pointer to the property too */
|
|
prop = RNA_struct_find_property(&ptr, "value");
|
|
|
|
/* return the path */
|
|
return RNA_path_from_ID_to_property(&ptr, prop);
|
|
}
|
|
|
|
/* conversion functions */
|
|
|
|
/************************* Lattice ************************/
|
|
|
|
void BKE_keyblock_update_from_lattice(const Lattice *lt, KeyBlock *kb)
|
|
{
|
|
BPoint *bp;
|
|
float(*fp)[3];
|
|
int a, tot;
|
|
|
|
BLI_assert(kb->totelem == lt->pntsu * lt->pntsv * lt->pntsw);
|
|
|
|
tot = kb->totelem;
|
|
if (tot == 0) {
|
|
return;
|
|
}
|
|
|
|
bp = lt->def;
|
|
fp = static_cast<float(*)[3]>(kb->data);
|
|
for (a = 0; a < kb->totelem; a++, fp++, bp++) {
|
|
copy_v3_v3(*fp, bp->vec);
|
|
}
|
|
}
|
|
|
|
void BKE_keyblock_convert_from_lattice(const Lattice *lt, KeyBlock *kb)
|
|
{
|
|
int tot;
|
|
|
|
tot = lt->pntsu * lt->pntsv * lt->pntsw;
|
|
if (tot == 0) {
|
|
return;
|
|
}
|
|
|
|
MEM_SAFE_FREE(kb->data);
|
|
|
|
kb->data = MEM_mallocN(lt->key->elemsize * tot, __func__);
|
|
kb->totelem = tot;
|
|
|
|
BKE_keyblock_update_from_lattice(lt, kb);
|
|
}
|
|
|
|
static void keyblock_data_convert_to_lattice(const float (*fp)[3],
|
|
BPoint *bpoint,
|
|
const int totpoint)
|
|
{
|
|
for (int i = 0; i < totpoint; i++, fp++, bpoint++) {
|
|
copy_v3_v3(bpoint->vec, *fp);
|
|
}
|
|
}
|
|
|
|
void BKE_keyblock_convert_to_lattice(const KeyBlock *kb, Lattice *lt)
|
|
{
|
|
BPoint *bp = lt->def;
|
|
const float(*fp)[3] = static_cast<const float(*)[3]>(kb->data);
|
|
const int tot = min_ii(kb->totelem, lt->pntsu * lt->pntsv * lt->pntsw);
|
|
|
|
keyblock_data_convert_to_lattice(fp, bp, tot);
|
|
}
|
|
|
|
/************************* Curve ************************/
|
|
|
|
int BKE_keyblock_curve_element_count(const ListBase *nurb)
|
|
{
|
|
const Nurb *nu;
|
|
int tot = 0;
|
|
|
|
nu = static_cast<const Nurb *>(nurb->first);
|
|
while (nu) {
|
|
if (nu->bezt) {
|
|
tot += KEYELEM_ELEM_LEN_BEZTRIPLE * nu->pntsu;
|
|
}
|
|
else if (nu->bp) {
|
|
tot += KEYELEM_ELEM_LEN_BPOINT * nu->pntsu * nu->pntsv;
|
|
}
|
|
|
|
nu = nu->next;
|
|
}
|
|
return tot;
|
|
}
|
|
|
|
void BKE_keyblock_update_from_curve(const Curve * /*cu*/, KeyBlock *kb, const ListBase *nurb)
|
|
{
|
|
Nurb *nu;
|
|
BezTriple *bezt;
|
|
BPoint *bp;
|
|
float *fp;
|
|
int a, tot;
|
|
|
|
/* count */
|
|
BLI_assert(BKE_keyblock_curve_element_count(nurb) == kb->totelem);
|
|
|
|
tot = kb->totelem;
|
|
if (tot == 0) {
|
|
return;
|
|
}
|
|
|
|
fp = static_cast<float *>(kb->data);
|
|
for (nu = static_cast<Nurb *>(nurb->first); nu; nu = nu->next) {
|
|
if (nu->bezt) {
|
|
for (a = nu->pntsu, bezt = nu->bezt; a; a--, bezt++) {
|
|
for (int i = 0; i < 3; i++) {
|
|
copy_v3_v3(&fp[i * 3], bezt->vec[i]);
|
|
}
|
|
fp[9] = bezt->tilt;
|
|
fp[10] = bezt->radius;
|
|
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
|
|
}
|
|
}
|
|
else {
|
|
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a; a--, bp++) {
|
|
copy_v3_v3(fp, bp->vec);
|
|
fp[3] = bp->tilt;
|
|
fp[4] = bp->radius;
|
|
fp += KEYELEM_FLOAT_LEN_BPOINT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BKE_keyblock_curve_data_transform(const ListBase *nurb,
|
|
const float mat[4][4],
|
|
const void *src_data,
|
|
void *dst_data)
|
|
{
|
|
const float *src = static_cast<const float *>(src_data);
|
|
float *dst = static_cast<float *>(dst_data);
|
|
for (Nurb *nu = static_cast<Nurb *>(nurb->first); nu; nu = nu->next) {
|
|
if (nu->bezt) {
|
|
for (int a = nu->pntsu; a; a--) {
|
|
for (int i = 0; i < 3; i++) {
|
|
mul_v3_m4v3(&dst[i * 3], mat, &src[i * 3]);
|
|
}
|
|
dst[9] = src[9];
|
|
dst[10] = src[10];
|
|
src += KEYELEM_FLOAT_LEN_BEZTRIPLE;
|
|
dst += KEYELEM_FLOAT_LEN_BEZTRIPLE;
|
|
}
|
|
}
|
|
else {
|
|
for (int a = nu->pntsu * nu->pntsv; a; a--) {
|
|
mul_v3_m4v3(dst, mat, src);
|
|
dst[3] = src[3];
|
|
dst[4] = src[4];
|
|
src += KEYELEM_FLOAT_LEN_BPOINT;
|
|
dst += KEYELEM_FLOAT_LEN_BPOINT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BKE_keyblock_convert_from_curve(const Curve *cu, KeyBlock *kb, const ListBase *nurb)
|
|
{
|
|
int tot;
|
|
|
|
/* count */
|
|
tot = BKE_keyblock_curve_element_count(nurb);
|
|
if (tot == 0) {
|
|
return;
|
|
}
|
|
|
|
MEM_SAFE_FREE(kb->data);
|
|
|
|
kb->data = MEM_mallocN(cu->key->elemsize * tot, __func__);
|
|
kb->totelem = tot;
|
|
|
|
BKE_keyblock_update_from_curve(cu, kb, nurb);
|
|
}
|
|
|
|
static void keyblock_data_convert_to_curve(const float *fp, ListBase *nurb, int totpoint)
|
|
{
|
|
for (Nurb *nu = static_cast<Nurb *>(nurb->first); nu && totpoint > 0; nu = nu->next) {
|
|
if (nu->bezt != nullptr) {
|
|
BezTriple *bezt = nu->bezt;
|
|
for (int i = nu->pntsu; i && (totpoint -= KEYELEM_ELEM_LEN_BEZTRIPLE) >= 0;
|
|
i--, bezt++, fp += KEYELEM_FLOAT_LEN_BEZTRIPLE) {
|
|
for (int j = 0; j < 3; j++) {
|
|
copy_v3_v3(bezt->vec[j], &fp[j * 3]);
|
|
}
|
|
bezt->tilt = fp[9];
|
|
bezt->radius = fp[10];
|
|
}
|
|
}
|
|
else {
|
|
BPoint *bp = nu->bp;
|
|
for (int i = nu->pntsu * nu->pntsv; i && (totpoint -= KEYELEM_ELEM_LEN_BPOINT) >= 0;
|
|
i--, bp++, fp += KEYELEM_FLOAT_LEN_BPOINT) {
|
|
copy_v3_v3(bp->vec, fp);
|
|
bp->tilt = fp[3];
|
|
bp->radius = fp[4];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BKE_keyblock_convert_to_curve(KeyBlock *kb, Curve * /*cu*/, ListBase *nurb)
|
|
{
|
|
const float *fp = static_cast<const float *>(kb->data);
|
|
const int tot = min_ii(kb->totelem, BKE_keyblock_curve_element_count(nurb));
|
|
|
|
keyblock_data_convert_to_curve(fp, nurb, tot);
|
|
}
|
|
|
|
/************************* Mesh ************************/
|
|
|
|
void BKE_keyblock_update_from_mesh(const Mesh *me, KeyBlock *kb)
|
|
{
|
|
BLI_assert(me->totvert == kb->totelem);
|
|
|
|
const int tot = me->totvert;
|
|
if (tot == 0) {
|
|
return;
|
|
}
|
|
|
|
const float(*positions)[3] = BKE_mesh_vert_positions(me);
|
|
memcpy(kb->data, positions, sizeof(float[3]) * tot);
|
|
}
|
|
|
|
void BKE_keyblock_convert_from_mesh(const Mesh *me, const Key *key, KeyBlock *kb)
|
|
{
|
|
const int len = me->totvert;
|
|
|
|
if (me->totvert == 0) {
|
|
return;
|
|
}
|
|
|
|
MEM_SAFE_FREE(kb->data);
|
|
|
|
kb->data = MEM_malloc_arrayN(size_t(len), size_t(key->elemsize), __func__);
|
|
kb->totelem = len;
|
|
|
|
BKE_keyblock_update_from_mesh(me, kb);
|
|
}
|
|
|
|
void BKE_keyblock_convert_to_mesh(const KeyBlock *kb,
|
|
float (*vert_positions)[3],
|
|
const int totvert)
|
|
{
|
|
const int tot = min_ii(kb->totelem, totvert);
|
|
memcpy(vert_positions, kb->data, sizeof(float[3]) * tot);
|
|
}
|
|
|
|
void BKE_keyblock_mesh_calc_normals(const KeyBlock *kb,
|
|
Mesh *mesh,
|
|
float (*r_vert_normals)[3],
|
|
float (*r_poly_normals)[3],
|
|
float (*r_loop_normals)[3])
|
|
{
|
|
if (r_vert_normals == nullptr && r_poly_normals == nullptr && r_loop_normals == nullptr) {
|
|
return;
|
|
}
|
|
|
|
float(*positions)[3] = static_cast<float(*)[3]>(MEM_dupallocN(BKE_mesh_vert_positions(mesh)));
|
|
BKE_keyblock_convert_to_mesh(kb, positions, mesh->totvert);
|
|
const blender::Span<MEdge> edges = mesh->edges();
|
|
const blender::Span<MPoly> polys = mesh->polys();
|
|
const blender::Span<int> corner_verts = mesh->corner_verts();
|
|
const blender::Span<int> corner_edges = mesh->corner_edges();
|
|
|
|
const bool loop_normals_needed = r_loop_normals != nullptr;
|
|
const bool vert_normals_needed = r_vert_normals != nullptr || loop_normals_needed;
|
|
const bool poly_normals_needed = r_poly_normals != nullptr || vert_normals_needed ||
|
|
loop_normals_needed;
|
|
|
|
float(*vert_normals)[3] = r_vert_normals;
|
|
float(*poly_normals)[3] = r_poly_normals;
|
|
bool free_vert_normals = false;
|
|
bool free_poly_normals = false;
|
|
if (vert_normals_needed && r_vert_normals == nullptr) {
|
|
vert_normals = static_cast<float(*)[3]>(
|
|
MEM_malloc_arrayN(mesh->totvert, sizeof(float[3]), __func__));
|
|
free_vert_normals = true;
|
|
}
|
|
if (poly_normals_needed && r_poly_normals == nullptr) {
|
|
poly_normals = static_cast<float(*)[3]>(
|
|
MEM_malloc_arrayN(mesh->totpoly, sizeof(float[3]), __func__));
|
|
free_poly_normals = true;
|
|
}
|
|
|
|
if (poly_normals_needed) {
|
|
blender::bke::mesh::normals_calc_polys(
|
|
{reinterpret_cast<const blender::float3 *>(positions), mesh->totvert},
|
|
polys,
|
|
corner_verts,
|
|
{reinterpret_cast<blender::float3 *>(poly_normals), polys.size()});
|
|
}
|
|
if (vert_normals_needed) {
|
|
blender::bke::mesh::normals_calc_poly_vert(
|
|
{reinterpret_cast<const blender::float3 *>(positions), mesh->totvert},
|
|
polys,
|
|
corner_verts,
|
|
{reinterpret_cast<blender::float3 *>(poly_normals), polys.size()},
|
|
{reinterpret_cast<blender::float3 *>(vert_normals), mesh->totvert});
|
|
}
|
|
if (loop_normals_needed) {
|
|
short(*clnors)[2] = static_cast<short(*)[2]>(CustomData_get_layer_for_write(
|
|
&mesh->ldata, CD_CUSTOMLOOPNORMAL, corner_verts.size())); /* May be nullptr. */
|
|
const bool *sharp_edges = static_cast<const bool *>(
|
|
CustomData_get_layer_named(&mesh->edata, CD_PROP_BOOL, "sharp_edge"));
|
|
const bool *sharp_faces = static_cast<const bool *>(
|
|
CustomData_get_layer_named(&mesh->pdata, CD_PROP_BOOL, "sharp_face"));
|
|
blender::bke::mesh::normals_calc_loop(
|
|
{reinterpret_cast<const blender::float3 *>(positions), mesh->totvert},
|
|
edges,
|
|
polys,
|
|
corner_verts,
|
|
corner_edges,
|
|
{},
|
|
{reinterpret_cast<blender::float3 *>(vert_normals), mesh->totvert},
|
|
{reinterpret_cast<blender::float3 *>(poly_normals), polys.size()},
|
|
sharp_edges,
|
|
sharp_faces,
|
|
(mesh->flag & ME_AUTOSMOOTH) != 0,
|
|
mesh->smoothresh,
|
|
clnors,
|
|
nullptr,
|
|
{reinterpret_cast<blender::float3 *>(r_loop_normals), corner_verts.size()});
|
|
}
|
|
|
|
if (free_vert_normals) {
|
|
MEM_freeN(vert_normals);
|
|
}
|
|
if (free_poly_normals) {
|
|
MEM_freeN(poly_normals);
|
|
}
|
|
MEM_freeN(positions);
|
|
}
|
|
|
|
/************************* raw coords ************************/
|
|
|
|
void BKE_keyblock_update_from_vertcos(const Object *ob, KeyBlock *kb, const float (*vertCos)[3])
|
|
{
|
|
const float(*co)[3] = vertCos;
|
|
float *fp = static_cast<float *>(kb->data);
|
|
int tot, a;
|
|
|
|
#ifndef NDEBUG
|
|
if (ob->type == OB_LATTICE) {
|
|
Lattice *lt = static_cast<Lattice *>(ob->data);
|
|
BLI_assert((lt->pntsu * lt->pntsv * lt->pntsw) == kb->totelem);
|
|
}
|
|
else if (ELEM(ob->type, OB_CURVES_LEGACY, OB_SURF)) {
|
|
Curve *cu = static_cast<Curve *>(ob->data);
|
|
BLI_assert(BKE_keyblock_curve_element_count(&cu->nurb) == kb->totelem);
|
|
}
|
|
else if (ob->type == OB_MESH) {
|
|
Mesh *me = static_cast<Mesh *>(ob->data);
|
|
BLI_assert(me->totvert == kb->totelem);
|
|
}
|
|
else {
|
|
BLI_assert(0 == kb->totelem);
|
|
}
|
|
#endif
|
|
|
|
tot = kb->totelem;
|
|
if (tot == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Copy coords to key-block. */
|
|
if (ELEM(ob->type, OB_MESH, OB_LATTICE)) {
|
|
for (a = 0; a < tot; a++, fp += 3, co++) {
|
|
copy_v3_v3(fp, *co);
|
|
}
|
|
}
|
|
else if (ELEM(ob->type, OB_CURVES_LEGACY, OB_SURF)) {
|
|
const Curve *cu = (const Curve *)ob->data;
|
|
const Nurb *nu;
|
|
const BezTriple *bezt;
|
|
const BPoint *bp;
|
|
|
|
for (nu = static_cast<const Nurb *>(cu->nurb.first); nu; nu = nu->next) {
|
|
if (nu->bezt) {
|
|
for (a = nu->pntsu, bezt = nu->bezt; a; a--, bezt++) {
|
|
for (int i = 0; i < 3; i++, co++) {
|
|
copy_v3_v3(&fp[i * 3], *co);
|
|
}
|
|
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
|
|
}
|
|
}
|
|
else {
|
|
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a; a--, bp++, co++) {
|
|
copy_v3_v3(fp, *co);
|
|
fp += KEYELEM_FLOAT_LEN_BPOINT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BKE_keyblock_convert_from_vertcos(const Object *ob, KeyBlock *kb, const float (*vertCos)[3])
|
|
{
|
|
int tot = 0, elemsize;
|
|
|
|
MEM_SAFE_FREE(kb->data);
|
|
|
|
/* Count of vertex coords in array */
|
|
if (ob->type == OB_MESH) {
|
|
const Mesh *me = (const Mesh *)ob->data;
|
|
tot = me->totvert;
|
|
elemsize = me->key->elemsize;
|
|
}
|
|
else if (ob->type == OB_LATTICE) {
|
|
const Lattice *lt = (const Lattice *)ob->data;
|
|
tot = lt->pntsu * lt->pntsv * lt->pntsw;
|
|
elemsize = lt->key->elemsize;
|
|
}
|
|
else if (ELEM(ob->type, OB_CURVES_LEGACY, OB_SURF)) {
|
|
const Curve *cu = (const Curve *)ob->data;
|
|
elemsize = cu->key->elemsize;
|
|
tot = BKE_keyblock_curve_element_count(&cu->nurb);
|
|
}
|
|
|
|
if (tot == 0) {
|
|
return;
|
|
}
|
|
|
|
kb->data = MEM_mallocN(tot * elemsize, __func__);
|
|
|
|
/* Copy coords to key-block. */
|
|
BKE_keyblock_update_from_vertcos(ob, kb, vertCos);
|
|
}
|
|
|
|
float (*BKE_keyblock_convert_to_vertcos(const Object *ob, const KeyBlock *kb))[3]
|
|
{
|
|
float(*vertCos)[3], (*co)[3];
|
|
const float *fp = static_cast<const float *>(kb->data);
|
|
int tot = 0, a;
|
|
|
|
/* Count of vertex coords in array */
|
|
if (ob->type == OB_MESH) {
|
|
const Mesh *me = (const Mesh *)ob->data;
|
|
tot = me->totvert;
|
|
}
|
|
else if (ob->type == OB_LATTICE) {
|
|
const Lattice *lt = (const Lattice *)ob->data;
|
|
tot = lt->pntsu * lt->pntsv * lt->pntsw;
|
|
}
|
|
else if (ELEM(ob->type, OB_CURVES_LEGACY, OB_SURF)) {
|
|
const Curve *cu = (const Curve *)ob->data;
|
|
tot = BKE_nurbList_verts_count(&cu->nurb);
|
|
}
|
|
|
|
if (tot == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
co = vertCos = static_cast<float(*)[3]>(MEM_mallocN(tot * sizeof(*vertCos), __func__));
|
|
|
|
/* Copy coords to array */
|
|
if (ELEM(ob->type, OB_MESH, OB_LATTICE)) {
|
|
for (a = 0; a < tot; a++, fp += 3, co++) {
|
|
copy_v3_v3(*co, fp);
|
|
}
|
|
}
|
|
else if (ELEM(ob->type, OB_CURVES_LEGACY, OB_SURF)) {
|
|
const Curve *cu = (const Curve *)ob->data;
|
|
const Nurb *nu;
|
|
const BezTriple *bezt;
|
|
const BPoint *bp;
|
|
|
|
for (nu = static_cast<Nurb *>(cu->nurb.first); nu; nu = nu->next) {
|
|
if (nu->bezt) {
|
|
for (a = nu->pntsu, bezt = nu->bezt; a; a--, bezt++) {
|
|
for (int i = 0; i < 3; i++, co++) {
|
|
copy_v3_v3(*co, &fp[i * 3]);
|
|
}
|
|
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
|
|
}
|
|
}
|
|
else {
|
|
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a; a--, bp++, co++) {
|
|
copy_v3_v3(*co, fp);
|
|
fp += KEYELEM_FLOAT_LEN_BPOINT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return vertCos;
|
|
}
|
|
|
|
void BKE_keyblock_update_from_offset(const Object *ob, KeyBlock *kb, const float (*ofs)[3])
|
|
{
|
|
int a;
|
|
float *fp = static_cast<float *>(kb->data);
|
|
|
|
if (ELEM(ob->type, OB_MESH, OB_LATTICE)) {
|
|
for (a = 0; a < kb->totelem; a++, fp += 3, ofs++) {
|
|
add_v3_v3(fp, *ofs);
|
|
}
|
|
}
|
|
else if (ELEM(ob->type, OB_CURVES_LEGACY, OB_SURF)) {
|
|
const Curve *cu = (const Curve *)ob->data;
|
|
const Nurb *nu;
|
|
const BezTriple *bezt;
|
|
const BPoint *bp;
|
|
|
|
for (nu = static_cast<const Nurb *>(cu->nurb.first); nu; nu = nu->next) {
|
|
if (nu->bezt) {
|
|
for (a = nu->pntsu, bezt = nu->bezt; a; a--, bezt++) {
|
|
for (int i = 0; i < 3; i++, ofs++) {
|
|
add_v3_v3(&fp[i * 3], *ofs);
|
|
}
|
|
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
|
|
}
|
|
}
|
|
else {
|
|
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a; a--, bp++, ofs++) {
|
|
add_v3_v3(fp, *ofs);
|
|
fp += KEYELEM_FLOAT_LEN_BPOINT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool BKE_keyblock_move(Object *ob, int org_index, int new_index)
|
|
{
|
|
Key *key = BKE_key_from_object(ob);
|
|
KeyBlock *kb;
|
|
const int act_index = ob->shapenr - 1;
|
|
const int totkey = key->totkey;
|
|
int i;
|
|
bool rev, in_range = false;
|
|
|
|
if (org_index < 0) {
|
|
org_index = act_index;
|
|
}
|
|
|
|
CLAMP(new_index, 0, key->totkey - 1);
|
|
CLAMP(org_index, 0, key->totkey - 1);
|
|
|
|
if (new_index == org_index) {
|
|
return false;
|
|
}
|
|
|
|
rev = ((new_index - org_index) < 0) ? true : false;
|
|
|
|
/* We swap 'org' element with its previous/next neighbor (depending on direction of the move)
|
|
* repeatedly, until we reach final position.
|
|
* This allows us to only loop on the list once! */
|
|
for (kb = static_cast<KeyBlock *>(rev ? key->block.last : key->block.first),
|
|
i = (rev ? totkey - 1 : 0);
|
|
kb;
|
|
kb = (rev ? kb->prev : kb->next), rev ? i-- : i++) {
|
|
if (i == org_index) {
|
|
in_range = true; /* Start list items swapping... */
|
|
}
|
|
else if (i == new_index) {
|
|
in_range = false; /* End list items swapping. */
|
|
}
|
|
|
|
if (in_range) {
|
|
KeyBlock *other_kb = rev ? kb->prev : kb->next;
|
|
|
|
/* Swap with previous/next list item. */
|
|
BLI_listbase_swaplinks(&key->block, kb, other_kb);
|
|
|
|
/* Swap absolute positions. */
|
|
std::swap(kb->pos, other_kb->pos);
|
|
|
|
kb = other_kb;
|
|
}
|
|
|
|
/* Adjust relative indices, this has to be done on the whole list! */
|
|
if (kb->relative == org_index) {
|
|
kb->relative = new_index;
|
|
}
|
|
else if (kb->relative < org_index && kb->relative >= new_index) {
|
|
/* remove after, insert before this index */
|
|
kb->relative++;
|
|
}
|
|
else if (kb->relative > org_index && kb->relative <= new_index) {
|
|
/* remove before, insert after this index */
|
|
kb->relative--;
|
|
}
|
|
}
|
|
|
|
/* Need to update active shape number if it's affected,
|
|
* same principle as for relative indices above. */
|
|
if (org_index == act_index) {
|
|
ob->shapenr = new_index + 1;
|
|
}
|
|
else if (act_index < org_index && act_index >= new_index) {
|
|
ob->shapenr++;
|
|
}
|
|
else if (act_index > org_index && act_index <= new_index) {
|
|
ob->shapenr--;
|
|
}
|
|
|
|
/* First key is always refkey, matches interface and BKE_key_sort */
|
|
key->refkey = static_cast<KeyBlock *>(key->block.first);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool BKE_keyblock_is_basis(const Key *key, const int index)
|
|
{
|
|
const KeyBlock *kb;
|
|
int i;
|
|
|
|
if (key->type == KEY_RELATIVE) {
|
|
for (i = 0, kb = static_cast<const KeyBlock *>(key->block.first); kb; i++, kb = kb->next) {
|
|
if ((i != index) && (kb->relative == index)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|