This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/draw/intern/draw_command.hh
Miguel Pozo 59b9bb0849 Draw: Custom IDs
This pull request adds a new tipe of resource handles (thin handles).
These are intended for cases where a resource buffer with more than one
entry for each object is needed (for example, one entry per material
slot).
While it's already possible to have multiple regular handles for the
same object, they have a non-trivial overhead in terms of uploaded
data (matrix, bounds, object info) and computation (visibility
culling).
Thin handles store an indirection buffer pointing to their "parent"
regular handle, therefore multiple thin handles can share the same
per-object data and visibility culling computation.

Thin handles can only be used in their own Pass type (PassMainThin),
so passes that don't need them don't have to pay the overhead.

This pull request also includes the update of the Workbench Next
pre-pass to use PassMainThin, which is the main reason for the
implementation of this feature.

The main change from the previous PR is that the thin handles are now
stored directly in the main resource_id_buf, to avoid wasting an extra
 bind slot.

Pull Request #105261
2023-03-01 21:42:25 +01:00

607 lines
19 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2022 Blender Foundation. */
#pragma once
/** \file
* \ingroup draw
*
* Commands stored inside draw passes. Converted into GPU commands upon pass submission.
*
* Draw calls (primitive rendering commands) are managed by either `DrawCommandBuf` or
* `DrawMultiBuf`. See implementation details at their definition.
*/
#include "BKE_global.h"
#include "BLI_map.hh"
#include "DRW_gpu_wrapper.hh"
#include "draw_command_shared.hh"
#include "draw_handle.hh"
#include "draw_state.h"
#include "draw_view.hh"
/* Forward declarations. */
namespace blender::draw::detail {
template<typename T, int64_t block_size> class SubPassVector;
template<typename DrawCommandBufType> class PassBase;
} // namespace blender::draw::detail
namespace blender::draw::command {
class DrawCommandBuf;
class DrawMultiBuf;
/* -------------------------------------------------------------------- */
/** \name Recording State
* \{ */
/**
* Command recording state.
* Keep track of several states and avoid redundant state changes.
*/
struct RecordingState {
GPUShader *shader = nullptr;
bool front_facing = true;
bool inverted_view = false;
DRWState pipeline_state = DRW_STATE_NO_DRAW;
int clip_plane_count = 0;
/** Used for gl_BaseInstance workaround. */
GPUStorageBuf *resource_id_buf = nullptr;
void front_facing_set(bool facing)
{
/* Facing is inverted if view is not in expected handedness. */
facing = this->inverted_view == facing;
/* Remove redundant changes. */
if (assign_if_different(this->front_facing, facing)) {
GPU_front_facing(!facing);
}
}
void cleanup()
{
if (front_facing == false) {
GPU_front_facing(false);
}
if (G.debug & G_DEBUG_GPU) {
GPU_storagebuf_unbind_all();
GPU_texture_image_unbind_all();
GPU_texture_unbind_all();
GPU_uniformbuf_unbind_all();
}
}
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Regular Commands
* \{ */
enum class Type : uint8_t {
/**
* None Type commands are either uninitialized or are repurposed as data storage.
* They are skipped during submission.
*/
None = 0,
/** Commands stored as Undetermined in regular command buffer. */
Barrier,
Clear,
ClearMulti,
Dispatch,
DispatchIndirect,
Draw,
DrawIndirect,
FramebufferBind,
PushConstant,
ResourceBind,
ShaderBind,
StateSet,
StencilSet,
/** Special commands stored in separate buffers. */
SubPass,
DrawMulti,
};
/**
* The index of the group is implicit since it is known by the one who want to
* access it. This also allows to have an indexed object to split the command
* stream.
*/
struct Header {
/** Command type. */
Type type;
/** Command index in command heap of this type. */
uint index;
};
struct ShaderBind {
GPUShader *shader;
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct FramebufferBind {
GPUFrameBuffer **framebuffer;
void execute() const;
std::string serialize() const;
};
struct ResourceBind {
eGPUSamplerState sampler;
int slot;
bool is_reference;
enum class Type : uint8_t {
Sampler = 0,
BufferSampler,
Image,
UniformBuf,
StorageBuf,
UniformAsStorageBuf,
VertexAsStorageBuf,
IndexAsStorageBuf,
} type;
union {
/** TODO: Use draw::Texture|StorageBuffer|UniformBuffer as resources as they will give more
* debug info. */
GPUUniformBuf *uniform_buf;
GPUUniformBuf **uniform_buf_ref;
GPUStorageBuf *storage_buf;
GPUStorageBuf **storage_buf_ref;
/** NOTE: Texture is used for both Sampler and Image binds. */
GPUTexture *texture;
GPUTexture **texture_ref;
GPUVertBuf *vertex_buf;
GPUVertBuf **vertex_buf_ref;
GPUIndexBuf *index_buf;
GPUIndexBuf **index_buf_ref;
};
ResourceBind() = default;
ResourceBind(int slot_, GPUUniformBuf *res)
: slot(slot_), is_reference(false), type(Type::UniformBuf), uniform_buf(res){};
ResourceBind(int slot_, GPUUniformBuf **res)
: slot(slot_), is_reference(true), type(Type::UniformBuf), uniform_buf_ref(res){};
ResourceBind(int slot_, GPUStorageBuf *res)
: slot(slot_), is_reference(false), type(Type::StorageBuf), storage_buf(res){};
ResourceBind(int slot_, GPUStorageBuf **res)
: slot(slot_), is_reference(true), type(Type::StorageBuf), storage_buf_ref(res){};
ResourceBind(int slot_, GPUUniformBuf *res, Type /* type */)
: slot(slot_), is_reference(false), type(Type::UniformAsStorageBuf), uniform_buf(res){};
ResourceBind(int slot_, GPUUniformBuf **res, Type /* type */)
: slot(slot_), is_reference(true), type(Type::UniformAsStorageBuf), uniform_buf_ref(res){};
ResourceBind(int slot_, GPUVertBuf *res, Type /* type */)
: slot(slot_), is_reference(false), type(Type::VertexAsStorageBuf), vertex_buf(res){};
ResourceBind(int slot_, GPUVertBuf **res, Type /* type */)
: slot(slot_), is_reference(true), type(Type::VertexAsStorageBuf), vertex_buf_ref(res){};
ResourceBind(int slot_, GPUIndexBuf *res, Type /* type */)
: slot(slot_), is_reference(false), type(Type::IndexAsStorageBuf), index_buf(res){};
ResourceBind(int slot_, GPUIndexBuf **res, Type /* type */)
: slot(slot_), is_reference(true), type(Type::IndexAsStorageBuf), index_buf_ref(res){};
ResourceBind(int slot_, draw::Image *res)
: slot(slot_), is_reference(false), type(Type::Image), texture(draw::as_texture(res)){};
ResourceBind(int slot_, draw::Image **res)
: slot(slot_), is_reference(true), type(Type::Image), texture_ref(draw::as_texture(res)){};
ResourceBind(int slot_, GPUTexture *res, eGPUSamplerState state)
: sampler(state), slot(slot_), is_reference(false), type(Type::Sampler), texture(res){};
ResourceBind(int slot_, GPUTexture **res, eGPUSamplerState state)
: sampler(state), slot(slot_), is_reference(true), type(Type::Sampler), texture_ref(res){};
ResourceBind(int slot_, GPUVertBuf *res)
: slot(slot_), is_reference(false), type(Type::BufferSampler), vertex_buf(res){};
ResourceBind(int slot_, GPUVertBuf **res)
: slot(slot_), is_reference(true), type(Type::BufferSampler), vertex_buf_ref(res){};
void execute() const;
std::string serialize() const;
};
struct PushConstant {
int location;
uint8_t array_len;
uint8_t comp_len;
enum class Type : uint8_t {
IntValue = 0,
FloatValue,
IntReference,
FloatReference,
} type;
/**
* IMPORTANT: Data is at the end of the struct as it can span over the next commands.
* These next commands are not real commands but just memory to hold the data and are not
* referenced by any Command::Header.
* This is a hack to support float4x4 copy.
*/
union {
int int1_value;
int2 int2_value;
int3 int3_value;
int4 int4_value;
float float1_value;
float2 float2_value;
float3 float3_value;
float4 float4_value;
const int *int_ref;
const int2 *int2_ref;
const int3 *int3_ref;
const int4 *int4_ref;
const float *float_ref;
const float2 *float2_ref;
const float3 *float3_ref;
const float4 *float4_ref;
const float4x4 *float4x4_ref;
};
PushConstant() = default;
PushConstant(int loc, const float &val)
: location(loc), array_len(1), comp_len(1), type(Type::FloatValue), float1_value(val){};
PushConstant(int loc, const float2 &val)
: location(loc), array_len(1), comp_len(2), type(Type::FloatValue), float2_value(val){};
PushConstant(int loc, const float3 &val)
: location(loc), array_len(1), comp_len(3), type(Type::FloatValue), float3_value(val){};
PushConstant(int loc, const float4 &val)
: location(loc), array_len(1), comp_len(4), type(Type::FloatValue), float4_value(val){};
PushConstant(int loc, const int &val)
: location(loc), array_len(1), comp_len(1), type(Type::IntValue), int1_value(val){};
PushConstant(int loc, const int2 &val)
: location(loc), array_len(1), comp_len(2), type(Type::IntValue), int2_value(val){};
PushConstant(int loc, const int3 &val)
: location(loc), array_len(1), comp_len(3), type(Type::IntValue), int3_value(val){};
PushConstant(int loc, const int4 &val)
: location(loc), array_len(1), comp_len(4), type(Type::IntValue), int4_value(val){};
PushConstant(int loc, const float *val, int arr)
: location(loc), array_len(arr), comp_len(1), type(Type::FloatReference), float_ref(val){};
PushConstant(int loc, const float2 *val, int arr)
: location(loc), array_len(arr), comp_len(2), type(Type::FloatReference), float2_ref(val){};
PushConstant(int loc, const float3 *val, int arr)
: location(loc), array_len(arr), comp_len(3), type(Type::FloatReference), float3_ref(val){};
PushConstant(int loc, const float4 *val, int arr)
: location(loc), array_len(arr), comp_len(4), type(Type::FloatReference), float4_ref(val){};
PushConstant(int loc, const float4x4 *val)
: location(loc), array_len(1), comp_len(16), type(Type::FloatReference), float4x4_ref(val){};
PushConstant(int loc, const int *val, int arr)
: location(loc), array_len(arr), comp_len(1), type(Type::IntReference), int_ref(val){};
PushConstant(int loc, const int2 *val, int arr)
: location(loc), array_len(arr), comp_len(2), type(Type::IntReference), int2_ref(val){};
PushConstant(int loc, const int3 *val, int arr)
: location(loc), array_len(arr), comp_len(3), type(Type::IntReference), int3_ref(val){};
PushConstant(int loc, const int4 *val, int arr)
: location(loc), array_len(arr), comp_len(4), type(Type::IntReference), int4_ref(val){};
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct Draw {
GPUBatch *batch;
uint instance_len;
uint vertex_len;
uint vertex_first;
ResourceHandle handle;
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct DrawMulti {
GPUBatch *batch;
DrawMultiBuf *multi_draw_buf;
uint group_first;
uint uuid;
void execute(RecordingState &state) const;
std::string serialize(std::string line_prefix) const;
};
struct DrawIndirect {
GPUBatch *batch;
GPUStorageBuf **indirect_buf;
ResourceHandle handle;
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct Dispatch {
bool is_reference;
union {
int3 size;
int3 *size_ref;
};
Dispatch() = default;
Dispatch(int3 group_len) : is_reference(false), size(group_len){};
Dispatch(int3 *group_len) : is_reference(true), size_ref(group_len){};
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct DispatchIndirect {
GPUStorageBuf **indirect_buf;
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct Barrier {
eGPUBarrier type;
void execute() const;
std::string serialize() const;
};
struct Clear {
uint8_t clear_channels; /* #eGPUFrameBufferBits. But want to save some bits. */
uint8_t stencil;
float depth;
float4 color;
void execute() const;
std::string serialize() const;
};
struct ClearMulti {
/** \note This should be a Span<float4> but we need have to only have trivial types here. */
const float4 *colors;
int colors_len;
void execute() const;
std::string serialize() const;
};
struct StateSet {
DRWState new_state;
int clip_plane_count;
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct StencilSet {
uint write_mask;
uint compare_mask;
uint reference;
void execute() const;
std::string serialize() const;
};
union Undetermined {
ShaderBind shader_bind;
ResourceBind resource_bind;
FramebufferBind framebuffer_bind;
PushConstant push_constant;
Draw draw;
DrawMulti draw_multi;
DrawIndirect draw_indirect;
Dispatch dispatch;
DispatchIndirect dispatch_indirect;
Barrier barrier;
Clear clear;
ClearMulti clear_multi;
StateSet state_set;
StencilSet stencil_set;
};
/** Try to keep the command size as low as possible for performance. */
BLI_STATIC_ASSERT(sizeof(Undetermined) <= 24, "One of the command type is too large.")
/** \} */
/* -------------------------------------------------------------------- */
/** \name Draw Commands
*
* A draw command buffer used to issue single draw commands without instance merging or any
* other optimizations.
*
* It still uses a ResourceIdBuf to keep the same shader interface as multi draw commands.
*
* \{ */
class DrawCommandBuf {
friend Manager;
private:
using ResourceIdBuf = StorageArrayBuffer<uint, 128, false>;
using SubPassVector = detail::SubPassVector<detail::PassBase<DrawCommandBuf>, 16>;
/** Array of resource id. One per instance. Generated on GPU and send to GPU. */
ResourceIdBuf resource_id_buf_;
/** Used items in the resource_id_buf_. Not it's allocated length. */
uint resource_id_count_ = 0;
public:
void clear(){};
void append_draw(Vector<Header, 0> &headers,
Vector<Undetermined, 0> &commands,
GPUBatch *batch,
uint instance_len,
uint vertex_len,
uint vertex_first,
ResourceHandle handle,
uint /*custom_id*/)
{
vertex_first = vertex_first != -1 ? vertex_first : 0;
instance_len = instance_len != -1 ? instance_len : 1;
int64_t index = commands.append_and_get_index({});
headers.append({Type::Draw, uint(index)});
commands[index].draw = {batch, instance_len, vertex_len, vertex_first, handle};
}
void bind(RecordingState &state,
Vector<Header, 0> &headers,
Vector<Undetermined, 0> &commands,
SubPassVector &sub_passes);
private:
static void finalize_commands(Vector<Header, 0> &headers,
Vector<Undetermined, 0> &commands,
SubPassVector &sub_passes,
uint &resource_id_count,
ResourceIdBuf &resource_id_buf);
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Multi Draw Commands
*
* For efficient rendering of large scene we strive to minimize the number of draw call and state
* changes. To this end, we group many rendering commands and sort them per render state using
* `DrawGroup` as a container. This is done automatically for any successive commands with the
* same state.
*
* A `DrawGroup` is the combination of a `GPUBatch` (VBO state) and a `command::DrawMulti`
* (Pipeline State).
*
* Inside each `DrawGroup` all instances of a same `GPUBatch` is merged into a single indirect
* command.
*
* To support this arbitrary reordering, we only need to know the offset of all the commands for a
* specific `DrawGroup`. This is done on CPU by doing a simple prefix sum. The result is pushed to
* GPU and used on CPU to issue the right command indirect.
*
* Each draw command is stored in an unsorted array of `DrawPrototype` and sent directly to the
* GPU.
*
* A command generation compute shader then go over each `DrawPrototype`. For each it adds it (or
* not depending on visibility) to the correct draw command using the offset of the `DrawGroup`
* computed on CPU. After that, it also outputs one resource ID for each instance inside a
* `DrawPrototype`.
*
* \{ */
class DrawMultiBuf {
friend Manager;
friend DrawMulti;
private:
using DrawGroupBuf = StorageArrayBuffer<DrawGroup, 16>;
using DrawPrototypeBuf = StorageArrayBuffer<DrawPrototype, 16>;
using DrawCommandBuf = StorageArrayBuffer<DrawCommand, 16, true>;
using ResourceIdBuf = StorageArrayBuffer<uint, 128, true>;
using DrawGroupKey = std::pair<uint, GPUBatch *>;
using DrawGroupMap = Map<DrawGroupKey, uint>;
/** Maps a DrawMulti command and a gpu batch to their unique DrawGroup command. */
DrawGroupMap group_ids_;
/** DrawGroup Command heap. Uploaded to GPU for sorting. */
DrawGroupBuf group_buf_ = {"DrawGroupBuf"};
/** Command Prototypes. Unsorted */
DrawPrototypeBuf prototype_buf_ = {"DrawPrototypeBuf"};
/** Command list generated by the sorting / compaction steps. Lives on GPU. */
DrawCommandBuf command_buf_ = {"DrawCommandBuf"};
/** Array of resource id. One per instance. Lives on GPU. */
ResourceIdBuf resource_id_buf_ = {"ResourceIdBuf"};
/** Give unique ID to each header so we can use that as hash key. */
uint header_id_counter_ = 0;
/** Number of groups inside group_buf_. */
uint group_count_ = 0;
/** Number of prototype command inside prototype_buf_. */
uint prototype_count_ = 0;
/** Used items in the resource_id_buf_. Not it's allocated length. */
uint resource_id_count_ = 0;
public:
void clear()
{
header_id_counter_ = 0;
group_count_ = 0;
prototype_count_ = 0;
group_ids_.clear();
}
void append_draw(Vector<Header, 0> &headers,
Vector<Undetermined, 0> &commands,
GPUBatch *batch,
uint instance_len,
uint vertex_len,
uint vertex_first,
ResourceHandle handle,
uint custom_id)
{
/* Custom draw-calls cannot be batched and will produce one group per draw. */
const bool custom_group = ((vertex_first != 0 && vertex_first != -1) || vertex_len != -1);
instance_len = instance_len != -1 ? instance_len : 1;
/* If there was some state changes since previous call, we have to create another command. */
if (headers.is_empty() || headers.last().type != Type::DrawMulti) {
uint index = commands.append_and_get_index({});
headers.append({Type::DrawMulti, index});
commands[index].draw_multi = {batch, this, (uint)-1, header_id_counter_++};
}
DrawMulti &cmd = commands.last().draw_multi;
uint &group_id = group_ids_.lookup_or_add(DrawGroupKey(cmd.uuid, batch), uint(-1));
bool inverted = handle.has_inverted_handedness();
DrawPrototype &draw = prototype_buf_.get_or_resize(prototype_count_++);
draw.resource_handle = handle.raw;
draw.custom_id = custom_id;
draw.instance_len = instance_len;
draw.group_id = group_id;
if (group_id == uint(-1) || custom_group) {
uint new_group_id = group_count_++;
draw.group_id = new_group_id;
DrawGroup &group = group_buf_.get_or_resize(new_group_id);
group.next = cmd.group_first;
group.len = instance_len;
group.front_facing_len = inverted ? 0 : instance_len;
group.gpu_batch = batch;
group.front_proto_len = 0;
group.back_proto_len = 0;
group.vertex_len = vertex_len;
group.vertex_first = vertex_first;
/* Custom group are not to be registered in the group_ids_. */
if (!custom_group) {
group_id = new_group_id;
}
/* For serialization only. */
(inverted ? group.back_proto_len : group.front_proto_len)++;
/* Append to list. */
cmd.group_first = new_group_id;
}
else {
DrawGroup &group = group_buf_[group_id];
group.len += instance_len;
group.front_facing_len += inverted ? 0 : instance_len;
/* For serialization only. */
(inverted ? group.back_proto_len : group.front_proto_len)++;
}
}
void bind(RecordingState &state,
Vector<Header, 0> &headers,
Vector<Undetermined, 0> &commands,
VisibilityBuf &visibility_buf,
int visibility_word_per_draw,
int view_len,
bool use_custom_ids);
};
/** \} */
}; // namespace blender::draw::command