Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: blender/blender#104424
1547 lines
62 KiB
C++
1547 lines
62 KiB
C++
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#include "GEO_realize_instances.hh"
|
|
|
|
#include "DNA_collection_types.h"
|
|
#include "DNA_layer_types.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_pointcloud_types.h"
|
|
|
|
#include "BLI_math_matrix.hh"
|
|
#include "BLI_noise.hh"
|
|
#include "BLI_task.hh"
|
|
|
|
#include "BKE_collection.h"
|
|
#include "BKE_curves.hh"
|
|
#include "BKE_deform.h"
|
|
#include "BKE_geometry_set_instances.hh"
|
|
#include "BKE_instances.hh"
|
|
#include "BKE_material.h"
|
|
#include "BKE_mesh.hh"
|
|
#include "BKE_pointcloud.h"
|
|
#include "BKE_type_conversions.hh"
|
|
|
|
namespace blender::geometry {
|
|
|
|
using blender::bke::AttributeIDRef;
|
|
using blender::bke::AttributeKind;
|
|
using blender::bke::AttributeMetaData;
|
|
using blender::bke::custom_data_type_to_cpp_type;
|
|
using blender::bke::CustomDataAttributes;
|
|
using blender::bke::GSpanAttributeWriter;
|
|
using blender::bke::InstanceReference;
|
|
using blender::bke::Instances;
|
|
using blender::bke::object_get_evaluated_geometry_set;
|
|
using blender::bke::SpanAttributeWriter;
|
|
|
|
/**
|
|
* An ordered set of attribute ids. Attributes are ordered to avoid name lookups in many places.
|
|
* Once the attributes are ordered, they can just be referred to by index.
|
|
*/
|
|
struct OrderedAttributes {
|
|
VectorSet<AttributeIDRef> ids;
|
|
Vector<AttributeKind> kinds;
|
|
|
|
int size() const
|
|
{
|
|
return this->kinds.size();
|
|
}
|
|
|
|
IndexRange index_range() const
|
|
{
|
|
return this->kinds.index_range();
|
|
}
|
|
};
|
|
|
|
struct AttributeFallbacksArray {
|
|
/**
|
|
* Instance attribute values used as fallback when the geometry does not have the
|
|
* corresponding attributes itself. The pointers point to attributes stored in the instances
|
|
* component or in #r_temporary_arrays. The order depends on the corresponding #OrderedAttributes
|
|
* instance.
|
|
*/
|
|
Array<const void *> array;
|
|
|
|
AttributeFallbacksArray(int size) : array(size, nullptr)
|
|
{
|
|
}
|
|
};
|
|
|
|
struct PointCloudRealizeInfo {
|
|
const PointCloud *pointcloud = nullptr;
|
|
/** Matches the order stored in #AllPointCloudsInfo.attributes. */
|
|
Array<std::optional<GVArraySpan>> attributes;
|
|
/** Id attribute on the point cloud. If there are no ids, this #Span is empty. */
|
|
Span<float3> positions;
|
|
VArray<float> radii;
|
|
Span<int> stored_ids;
|
|
};
|
|
|
|
struct RealizePointCloudTask {
|
|
/** Starting index in the final realized point cloud. */
|
|
int start_index;
|
|
/** Preprocessed information about the point cloud. */
|
|
const PointCloudRealizeInfo *pointcloud_info;
|
|
/** Transformation that is applied to all positions. */
|
|
float4x4 transform;
|
|
AttributeFallbacksArray attribute_fallbacks;
|
|
/** Only used when the output contains an output attribute. */
|
|
uint32_t id = 0;
|
|
};
|
|
|
|
/** Start indices in the final output mesh. */
|
|
struct MeshElementStartIndices {
|
|
int vertex = 0;
|
|
int edge = 0;
|
|
int poly = 0;
|
|
int loop = 0;
|
|
};
|
|
|
|
struct MeshRealizeInfo {
|
|
const Mesh *mesh = nullptr;
|
|
Span<float3> positions;
|
|
Span<MEdge> edges;
|
|
Span<MPoly> polys;
|
|
Span<int> corner_verts;
|
|
Span<int> corner_edges;
|
|
|
|
/** Maps old material indices to new material indices. */
|
|
Array<int> material_index_map;
|
|
/** Matches the order in #AllMeshesInfo.attributes. */
|
|
Array<std::optional<GVArraySpan>> attributes;
|
|
/** Vertex ids stored on the mesh. If there are no ids, this #Span is empty. */
|
|
Span<int> stored_vertex_ids;
|
|
VArray<int> material_indices;
|
|
};
|
|
|
|
struct RealizeMeshTask {
|
|
MeshElementStartIndices start_indices;
|
|
const MeshRealizeInfo *mesh_info;
|
|
/** Transformation that is applied to all positions. */
|
|
float4x4 transform;
|
|
AttributeFallbacksArray attribute_fallbacks;
|
|
/** Only used when the output contains an output attribute. */
|
|
uint32_t id = 0;
|
|
};
|
|
|
|
struct RealizeCurveInfo {
|
|
const Curves *curves;
|
|
/**
|
|
* Matches the order in #AllCurvesInfo.attributes.
|
|
*/
|
|
Array<std::optional<GVArraySpan>> attributes;
|
|
|
|
/** ID attribute on the curves. If there are no ids, this #Span is empty. */
|
|
Span<int> stored_ids;
|
|
|
|
/**
|
|
* Handle position attributes must be transformed along with positions. Accessing them in
|
|
* advance isn't necessary theoretically, but is done to simplify other code and to avoid
|
|
* some overhead.
|
|
*/
|
|
Span<float3> handle_left;
|
|
Span<float3> handle_right;
|
|
|
|
/**
|
|
* The radius attribute must be filled with a default of 1.0 if it
|
|
* doesn't exist on some (but not all) of the input curves data-blocks.
|
|
*/
|
|
Span<float> radius;
|
|
|
|
/**
|
|
* The resolution attribute must be filled with the default value if it does not exist on some
|
|
* curves.
|
|
*/
|
|
VArray<int> resolution;
|
|
|
|
/**
|
|
* The resolution attribute must be filled with the default value if it does not exist on some
|
|
* curves.
|
|
*/
|
|
Span<float> nurbs_weight;
|
|
};
|
|
|
|
/** Start indices in the final output curves data-block. */
|
|
struct CurvesElementStartIndices {
|
|
int point = 0;
|
|
int curve = 0;
|
|
};
|
|
|
|
struct RealizeCurveTask {
|
|
CurvesElementStartIndices start_indices;
|
|
|
|
const RealizeCurveInfo *curve_info;
|
|
/* Transformation applied to the position of control points and handles. */
|
|
float4x4 transform;
|
|
AttributeFallbacksArray attribute_fallbacks;
|
|
/** Only used when the output contains an output attribute. */
|
|
uint32_t id = 0;
|
|
};
|
|
|
|
struct AllPointCloudsInfo {
|
|
/** Ordering of all attributes that are propagated to the output point cloud generically. */
|
|
OrderedAttributes attributes;
|
|
/** Ordering of the original point clouds that are joined. */
|
|
VectorSet<const PointCloud *> order;
|
|
/** Preprocessed data about every original point cloud. This is ordered by #order. */
|
|
Array<PointCloudRealizeInfo> realize_info;
|
|
bool create_id_attribute = false;
|
|
bool create_radius_attribute = false;
|
|
};
|
|
|
|
struct AllMeshesInfo {
|
|
/** Ordering of all attributes that are propagated to the output mesh generically. */
|
|
OrderedAttributes attributes;
|
|
/** Ordering of the original meshes that are joined. */
|
|
VectorSet<const Mesh *> order;
|
|
/** Preprocessed data about every original mesh. This is ordered by #order. */
|
|
Array<MeshRealizeInfo> realize_info;
|
|
/** Ordered materials on the output mesh. */
|
|
VectorSet<Material *> materials;
|
|
bool create_id_attribute = false;
|
|
bool create_material_index_attribute = false;
|
|
};
|
|
|
|
struct AllCurvesInfo {
|
|
/** Ordering of all attributes that are propagated to the output curve generically. */
|
|
OrderedAttributes attributes;
|
|
/** Ordering of the original curves that are joined. */
|
|
VectorSet<const Curves *> order;
|
|
/** Preprocessed data about every original curve. This is ordered by #order. */
|
|
Array<RealizeCurveInfo> realize_info;
|
|
bool create_id_attribute = false;
|
|
bool create_handle_postion_attributes = false;
|
|
bool create_radius_attribute = false;
|
|
bool create_resolution_attribute = false;
|
|
bool create_nurbs_weight_attribute = false;
|
|
};
|
|
|
|
/** Collects all tasks that need to be executed to realize all instances. */
|
|
struct GatherTasks {
|
|
Vector<RealizePointCloudTask> pointcloud_tasks;
|
|
Vector<RealizeMeshTask> mesh_tasks;
|
|
Vector<RealizeCurveTask> curve_tasks;
|
|
|
|
/* Volumes only have very simple support currently. Only the first found volume is put into the
|
|
* output. */
|
|
UserCounter<const VolumeComponent> first_volume;
|
|
UserCounter<const GeometryComponentEditData> first_edit_data;
|
|
};
|
|
|
|
/** Current offsets while during the gather operation. */
|
|
struct GatherOffsets {
|
|
int pointcloud_offset = 0;
|
|
MeshElementStartIndices mesh_offsets;
|
|
CurvesElementStartIndices curves_offsets;
|
|
};
|
|
|
|
struct GatherTasksInfo {
|
|
/** Static information about all geometries that are joined. */
|
|
const AllPointCloudsInfo &pointclouds;
|
|
const AllMeshesInfo &meshes;
|
|
const AllCurvesInfo &curves;
|
|
bool create_id_attribute_on_any_component = false;
|
|
|
|
/**
|
|
* Under some circumstances, temporary arrays need to be allocated during the gather operation.
|
|
* For example, when an instance attribute has to be realized as a different data type. This
|
|
* array owns all the temporary arrays so that they can live until all processing is done.
|
|
* Use #std::unique_ptr to avoid depending on whether #GArray has an inline buffer or not.
|
|
*/
|
|
Vector<std::unique_ptr<GArray<>>> &r_temporary_arrays;
|
|
|
|
/** All gathered tasks. */
|
|
GatherTasks r_tasks;
|
|
/** Current offsets while gathering tasks. */
|
|
GatherOffsets r_offsets;
|
|
};
|
|
|
|
/**
|
|
* Information about the parent instances in the current context.
|
|
*/
|
|
struct InstanceContext {
|
|
/** Ordered by #AllPointCloudsInfo.attributes. */
|
|
AttributeFallbacksArray pointclouds;
|
|
/** Ordered by #AllMeshesInfo.attributes. */
|
|
AttributeFallbacksArray meshes;
|
|
/** Ordered by #AllCurvesInfo.attributes. */
|
|
AttributeFallbacksArray curves;
|
|
/** Id mixed from all parent instances. */
|
|
uint32_t id = 0;
|
|
|
|
InstanceContext(const GatherTasksInfo &gather_info)
|
|
: pointclouds(gather_info.pointclouds.attributes.size()),
|
|
meshes(gather_info.meshes.attributes.size()),
|
|
curves(gather_info.curves.attributes.size())
|
|
{
|
|
}
|
|
};
|
|
|
|
static void copy_transformed_positions(const Span<float3> src,
|
|
const float4x4 &transform,
|
|
MutableSpan<float3> dst)
|
|
{
|
|
threading::parallel_for(src.index_range(), 1024, [&](const IndexRange range) {
|
|
for (const int i : range) {
|
|
dst[i] = math::transform_point(transform, src[i]);
|
|
}
|
|
});
|
|
}
|
|
|
|
static void threaded_copy(const GSpan src, GMutableSpan dst)
|
|
{
|
|
BLI_assert(src.size() == dst.size());
|
|
BLI_assert(src.type() == dst.type());
|
|
threading::parallel_for(IndexRange(src.size()), 1024, [&](const IndexRange range) {
|
|
src.type().copy_construct_n(src.slice(range).data(), dst.slice(range).data(), range.size());
|
|
});
|
|
}
|
|
|
|
static void threaded_fill(const GPointer value, GMutableSpan dst)
|
|
{
|
|
BLI_assert(*value.type() == dst.type());
|
|
threading::parallel_for(IndexRange(dst.size()), 1024, [&](const IndexRange range) {
|
|
value.type()->fill_construct_n(value.get(), dst.slice(range).data(), range.size());
|
|
});
|
|
}
|
|
|
|
static void copy_generic_attributes_to_result(
|
|
const Span<std::optional<GVArraySpan>> src_attributes,
|
|
const AttributeFallbacksArray &attribute_fallbacks,
|
|
const OrderedAttributes &ordered_attributes,
|
|
const FunctionRef<IndexRange(eAttrDomain)> &range_fn,
|
|
MutableSpan<GSpanAttributeWriter> dst_attribute_writers)
|
|
{
|
|
threading::parallel_for(
|
|
dst_attribute_writers.index_range(), 10, [&](const IndexRange attribute_range) {
|
|
for (const int attribute_index : attribute_range) {
|
|
const eAttrDomain domain = ordered_attributes.kinds[attribute_index].domain;
|
|
const IndexRange element_slice = range_fn(domain);
|
|
|
|
GMutableSpan dst_span = dst_attribute_writers[attribute_index].span.slice(element_slice);
|
|
if (src_attributes[attribute_index].has_value()) {
|
|
threaded_copy(*src_attributes[attribute_index], dst_span);
|
|
}
|
|
else {
|
|
const CPPType &cpp_type = dst_span.type();
|
|
const void *fallback = attribute_fallbacks.array[attribute_index] == nullptr ?
|
|
cpp_type.default_value() :
|
|
attribute_fallbacks.array[attribute_index];
|
|
threaded_fill({cpp_type, fallback}, dst_span);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
static void create_result_ids(const RealizeInstancesOptions &options,
|
|
Span<int> stored_ids,
|
|
const int task_id,
|
|
MutableSpan<int> dst_ids)
|
|
{
|
|
if (options.keep_original_ids) {
|
|
if (stored_ids.is_empty()) {
|
|
dst_ids.fill(0);
|
|
}
|
|
else {
|
|
dst_ids.copy_from(stored_ids);
|
|
}
|
|
}
|
|
else {
|
|
if (stored_ids.is_empty()) {
|
|
threading::parallel_for(dst_ids.index_range(), 1024, [&](const IndexRange range) {
|
|
for (const int i : range) {
|
|
dst_ids[i] = noise::hash(task_id, i);
|
|
}
|
|
});
|
|
}
|
|
else {
|
|
threading::parallel_for(dst_ids.index_range(), 1024, [&](const IndexRange range) {
|
|
for (const int i : range) {
|
|
dst_ids[i] = noise::hash(task_id, stored_ids[i]);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Gather Realize Tasks
|
|
* \{ */
|
|
|
|
/* Forward declaration. */
|
|
static void gather_realize_tasks_recursive(GatherTasksInfo &gather_info,
|
|
const GeometrySet &geometry_set,
|
|
const float4x4 &base_transform,
|
|
const InstanceContext &base_instance_context);
|
|
|
|
/**
|
|
* Checks which of the #ordered_attributes exist on the #instances_component. For each attribute
|
|
* that exists on the instances, a pair is returned that contains the attribute index and the
|
|
* corresponding attribute data.
|
|
*/
|
|
static Vector<std::pair<int, GSpan>> prepare_attribute_fallbacks(
|
|
GatherTasksInfo &gather_info,
|
|
const Instances &instances,
|
|
const OrderedAttributes &ordered_attributes)
|
|
{
|
|
Vector<std::pair<int, GSpan>> attributes_to_override;
|
|
const CustomDataAttributes &attributes = instances.custom_data_attributes();
|
|
attributes.foreach_attribute(
|
|
[&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) {
|
|
const int attribute_index = ordered_attributes.ids.index_of_try(attribute_id);
|
|
if (attribute_index == -1) {
|
|
/* The attribute is not propagated to the final geometry. */
|
|
return true;
|
|
}
|
|
GSpan span = *attributes.get_for_read(attribute_id);
|
|
const eCustomDataType expected_type = ordered_attributes.kinds[attribute_index].data_type;
|
|
if (meta_data.data_type != expected_type) {
|
|
const CPPType &from_type = span.type();
|
|
const CPPType &to_type = *custom_data_type_to_cpp_type(expected_type);
|
|
const bke::DataTypeConversions &conversions = bke::get_implicit_type_conversions();
|
|
if (!conversions.is_convertible(from_type, to_type)) {
|
|
/* Ignore the attribute because it can not be converted to the desired type. */
|
|
return true;
|
|
}
|
|
/* Convert the attribute on the instances component to the expected attribute type. */
|
|
std::unique_ptr<GArray<>> temporary_array = std::make_unique<GArray<>>(
|
|
to_type, instances.instances_num());
|
|
conversions.convert_to_initialized_n(span, temporary_array->as_mutable_span());
|
|
span = temporary_array->as_span();
|
|
gather_info.r_temporary_arrays.append(std::move(temporary_array));
|
|
}
|
|
attributes_to_override.append({attribute_index, span});
|
|
return true;
|
|
},
|
|
ATTR_DOMAIN_INSTANCE);
|
|
return attributes_to_override;
|
|
}
|
|
|
|
/**
|
|
* Calls #fn for every geometry in the given #InstanceReference. Also passes on the transformation
|
|
* that is applied to every instance.
|
|
*/
|
|
static void foreach_geometry_in_reference(
|
|
const InstanceReference &reference,
|
|
const float4x4 &base_transform,
|
|
const uint32_t id,
|
|
FunctionRef<void(const GeometrySet &geometry_set, const float4x4 &transform, uint32_t id)> fn)
|
|
{
|
|
switch (reference.type()) {
|
|
case InstanceReference::Type::Object: {
|
|
const Object &object = reference.object();
|
|
const GeometrySet object_geometry_set = object_get_evaluated_geometry_set(object);
|
|
fn(object_geometry_set, base_transform, id);
|
|
break;
|
|
}
|
|
case InstanceReference::Type::Collection: {
|
|
Collection &collection = reference.collection();
|
|
float4x4 offset_matrix = float4x4::identity();
|
|
offset_matrix.location() -= collection.instance_offset;
|
|
int index = 0;
|
|
FOREACH_COLLECTION_OBJECT_RECURSIVE_BEGIN (&collection, object) {
|
|
const GeometrySet object_geometry_set = object_get_evaluated_geometry_set(*object);
|
|
const float4x4 matrix = base_transform * offset_matrix *
|
|
float4x4_view(object->object_to_world);
|
|
const int sub_id = noise::hash(id, index);
|
|
fn(object_geometry_set, matrix, sub_id);
|
|
index++;
|
|
}
|
|
FOREACH_COLLECTION_OBJECT_RECURSIVE_END;
|
|
break;
|
|
}
|
|
case InstanceReference::Type::GeometrySet: {
|
|
const GeometrySet &instance_geometry_set = reference.geometry_set();
|
|
fn(instance_geometry_set, base_transform, id);
|
|
break;
|
|
}
|
|
case InstanceReference::Type::None: {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gather_realize_tasks_for_instances(GatherTasksInfo &gather_info,
|
|
const Instances &instances,
|
|
const float4x4 &base_transform,
|
|
const InstanceContext &base_instance_context)
|
|
{
|
|
const Span<InstanceReference> references = instances.references();
|
|
const Span<int> handles = instances.reference_handles();
|
|
const Span<float4x4> transforms = instances.transforms();
|
|
|
|
Span<int> stored_instance_ids;
|
|
if (gather_info.create_id_attribute_on_any_component) {
|
|
std::optional<GSpan> ids = instances.custom_data_attributes().get_for_read("id");
|
|
if (ids.has_value()) {
|
|
stored_instance_ids = ids->typed<int>();
|
|
}
|
|
}
|
|
|
|
/* Prepare attribute fallbacks. */
|
|
InstanceContext instance_context = base_instance_context;
|
|
Vector<std::pair<int, GSpan>> pointcloud_attributes_to_override = prepare_attribute_fallbacks(
|
|
gather_info, instances, gather_info.pointclouds.attributes);
|
|
Vector<std::pair<int, GSpan>> mesh_attributes_to_override = prepare_attribute_fallbacks(
|
|
gather_info, instances, gather_info.meshes.attributes);
|
|
Vector<std::pair<int, GSpan>> curve_attributes_to_override = prepare_attribute_fallbacks(
|
|
gather_info, instances, gather_info.curves.attributes);
|
|
|
|
for (const int i : transforms.index_range()) {
|
|
const int handle = handles[i];
|
|
const float4x4 &transform = transforms[i];
|
|
const InstanceReference &reference = references[handle];
|
|
const float4x4 new_base_transform = base_transform * transform;
|
|
|
|
/* Update attribute fallbacks for the current instance. */
|
|
for (const std::pair<int, GSpan> &pair : pointcloud_attributes_to_override) {
|
|
instance_context.pointclouds.array[pair.first] = pair.second[i];
|
|
}
|
|
for (const std::pair<int, GSpan> &pair : mesh_attributes_to_override) {
|
|
instance_context.meshes.array[pair.first] = pair.second[i];
|
|
}
|
|
for (const std::pair<int, GSpan> &pair : curve_attributes_to_override) {
|
|
instance_context.curves.array[pair.first] = pair.second[i];
|
|
}
|
|
|
|
uint32_t local_instance_id = 0;
|
|
if (gather_info.create_id_attribute_on_any_component) {
|
|
if (stored_instance_ids.is_empty()) {
|
|
local_instance_id = uint32_t(i);
|
|
}
|
|
else {
|
|
local_instance_id = uint32_t(stored_instance_ids[i]);
|
|
}
|
|
}
|
|
const uint32_t instance_id = noise::hash(base_instance_context.id, local_instance_id);
|
|
|
|
/* Add realize tasks for all referenced geometry sets recursively. */
|
|
foreach_geometry_in_reference(reference,
|
|
new_base_transform,
|
|
instance_id,
|
|
[&](const GeometrySet &instance_geometry_set,
|
|
const float4x4 &transform,
|
|
const uint32_t id) {
|
|
instance_context.id = id;
|
|
gather_realize_tasks_recursive(gather_info,
|
|
instance_geometry_set,
|
|
transform,
|
|
instance_context);
|
|
});
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Gather tasks for all geometries in the #geometry_set.
|
|
*/
|
|
static void gather_realize_tasks_recursive(GatherTasksInfo &gather_info,
|
|
const GeometrySet &geometry_set,
|
|
const float4x4 &base_transform,
|
|
const InstanceContext &base_instance_context)
|
|
{
|
|
for (const GeometryComponent *component : geometry_set.get_components_for_read()) {
|
|
const GeometryComponentType type = component->type();
|
|
switch (type) {
|
|
case GEO_COMPONENT_TYPE_MESH: {
|
|
const MeshComponent &mesh_component = *static_cast<const MeshComponent *>(component);
|
|
const Mesh *mesh = mesh_component.get_for_read();
|
|
if (mesh != nullptr && mesh->totvert > 0) {
|
|
const int mesh_index = gather_info.meshes.order.index_of(mesh);
|
|
const MeshRealizeInfo &mesh_info = gather_info.meshes.realize_info[mesh_index];
|
|
gather_info.r_tasks.mesh_tasks.append({gather_info.r_offsets.mesh_offsets,
|
|
&mesh_info,
|
|
base_transform,
|
|
base_instance_context.meshes,
|
|
base_instance_context.id});
|
|
gather_info.r_offsets.mesh_offsets.vertex += mesh->totvert;
|
|
gather_info.r_offsets.mesh_offsets.edge += mesh->totedge;
|
|
gather_info.r_offsets.mesh_offsets.loop += mesh->totloop;
|
|
gather_info.r_offsets.mesh_offsets.poly += mesh->totpoly;
|
|
}
|
|
break;
|
|
}
|
|
case GEO_COMPONENT_TYPE_POINT_CLOUD: {
|
|
const PointCloudComponent &pointcloud_component =
|
|
*static_cast<const PointCloudComponent *>(component);
|
|
const PointCloud *pointcloud = pointcloud_component.get_for_read();
|
|
if (pointcloud != nullptr && pointcloud->totpoint > 0) {
|
|
const int pointcloud_index = gather_info.pointclouds.order.index_of(pointcloud);
|
|
const PointCloudRealizeInfo &pointcloud_info =
|
|
gather_info.pointclouds.realize_info[pointcloud_index];
|
|
gather_info.r_tasks.pointcloud_tasks.append({gather_info.r_offsets.pointcloud_offset,
|
|
&pointcloud_info,
|
|
base_transform,
|
|
base_instance_context.pointclouds,
|
|
base_instance_context.id});
|
|
gather_info.r_offsets.pointcloud_offset += pointcloud->totpoint;
|
|
}
|
|
break;
|
|
}
|
|
case GEO_COMPONENT_TYPE_CURVE: {
|
|
const CurveComponent &curve_component = *static_cast<const CurveComponent *>(component);
|
|
const Curves *curves = curve_component.get_for_read();
|
|
if (curves != nullptr && curves->geometry.curve_num > 0) {
|
|
const int curve_index = gather_info.curves.order.index_of(curves);
|
|
const RealizeCurveInfo &curve_info = gather_info.curves.realize_info[curve_index];
|
|
gather_info.r_tasks.curve_tasks.append({gather_info.r_offsets.curves_offsets,
|
|
&curve_info,
|
|
base_transform,
|
|
base_instance_context.curves,
|
|
base_instance_context.id});
|
|
gather_info.r_offsets.curves_offsets.point += curves->geometry.point_num;
|
|
gather_info.r_offsets.curves_offsets.curve += curves->geometry.curve_num;
|
|
}
|
|
break;
|
|
}
|
|
case GEO_COMPONENT_TYPE_INSTANCES: {
|
|
const InstancesComponent &instances_component = *static_cast<const InstancesComponent *>(
|
|
component);
|
|
const Instances *instances = instances_component.get_for_read();
|
|
if (instances != nullptr && instances->instances_num() > 0) {
|
|
gather_realize_tasks_for_instances(
|
|
gather_info, *instances, base_transform, base_instance_context);
|
|
}
|
|
break;
|
|
}
|
|
case GEO_COMPONENT_TYPE_VOLUME: {
|
|
const VolumeComponent *volume_component = static_cast<const VolumeComponent *>(component);
|
|
if (!gather_info.r_tasks.first_volume) {
|
|
volume_component->user_add();
|
|
gather_info.r_tasks.first_volume = volume_component;
|
|
}
|
|
break;
|
|
}
|
|
case GEO_COMPONENT_TYPE_EDIT: {
|
|
const GeometryComponentEditData *edit_component =
|
|
static_cast<const GeometryComponentEditData *>(component);
|
|
if (!gather_info.r_tasks.first_edit_data) {
|
|
edit_component->user_add();
|
|
gather_info.r_tasks.first_edit_data = edit_component;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Point Cloud
|
|
* \{ */
|
|
|
|
static OrderedAttributes gather_generic_pointcloud_attributes_to_propagate(
|
|
const GeometrySet &in_geometry_set,
|
|
const RealizeInstancesOptions &options,
|
|
bool &r_create_radii,
|
|
bool &r_create_id)
|
|
{
|
|
Vector<GeometryComponentType> src_component_types;
|
|
src_component_types.append(GEO_COMPONENT_TYPE_POINT_CLOUD);
|
|
if (options.realize_instance_attributes) {
|
|
src_component_types.append(GEO_COMPONENT_TYPE_INSTANCES);
|
|
}
|
|
|
|
Map<AttributeIDRef, AttributeKind> attributes_to_propagate;
|
|
in_geometry_set.gather_attributes_for_propagation(src_component_types,
|
|
GEO_COMPONENT_TYPE_POINT_CLOUD,
|
|
true,
|
|
options.propagation_info,
|
|
attributes_to_propagate);
|
|
attributes_to_propagate.remove("position");
|
|
r_create_id = attributes_to_propagate.pop_try("id").has_value();
|
|
r_create_radii = attributes_to_propagate.pop_try("radius").has_value();
|
|
OrderedAttributes ordered_attributes;
|
|
for (const auto item : attributes_to_propagate.items()) {
|
|
ordered_attributes.ids.add_new(item.key);
|
|
ordered_attributes.kinds.append(item.value);
|
|
}
|
|
return ordered_attributes;
|
|
}
|
|
|
|
static void gather_pointclouds_to_realize(const GeometrySet &geometry_set,
|
|
VectorSet<const PointCloud *> &r_pointclouds)
|
|
{
|
|
if (const PointCloud *pointcloud = geometry_set.get_pointcloud_for_read()) {
|
|
if (pointcloud->totpoint > 0) {
|
|
r_pointclouds.add(pointcloud);
|
|
}
|
|
}
|
|
if (const Instances *instances = geometry_set.get_instances_for_read()) {
|
|
instances->foreach_referenced_geometry([&](const GeometrySet &instance_geometry_set) {
|
|
gather_pointclouds_to_realize(instance_geometry_set, r_pointclouds);
|
|
});
|
|
}
|
|
}
|
|
|
|
static AllPointCloudsInfo preprocess_pointclouds(const GeometrySet &geometry_set,
|
|
const RealizeInstancesOptions &options)
|
|
{
|
|
AllPointCloudsInfo info;
|
|
info.attributes = gather_generic_pointcloud_attributes_to_propagate(
|
|
geometry_set, options, info.create_radius_attribute, info.create_id_attribute);
|
|
|
|
gather_pointclouds_to_realize(geometry_set, info.order);
|
|
info.realize_info.reinitialize(info.order.size());
|
|
for (const int pointcloud_index : info.realize_info.index_range()) {
|
|
PointCloudRealizeInfo &pointcloud_info = info.realize_info[pointcloud_index];
|
|
const PointCloud *pointcloud = info.order[pointcloud_index];
|
|
pointcloud_info.pointcloud = pointcloud;
|
|
|
|
/* Access attributes. */
|
|
bke::AttributeAccessor attributes = pointcloud->attributes();
|
|
pointcloud_info.attributes.reinitialize(info.attributes.size());
|
|
for (const int attribute_index : info.attributes.index_range()) {
|
|
const AttributeIDRef &attribute_id = info.attributes.ids[attribute_index];
|
|
const eCustomDataType data_type = info.attributes.kinds[attribute_index].data_type;
|
|
const eAttrDomain domain = info.attributes.kinds[attribute_index].domain;
|
|
if (attributes.contains(attribute_id)) {
|
|
GVArray attribute = attributes.lookup_or_default(attribute_id, domain, data_type);
|
|
pointcloud_info.attributes[attribute_index].emplace(std::move(attribute));
|
|
}
|
|
}
|
|
if (info.create_id_attribute) {
|
|
bke::GAttributeReader ids_attribute = attributes.lookup("id");
|
|
if (ids_attribute) {
|
|
pointcloud_info.stored_ids = ids_attribute.varray.get_internal_span().typed<int>();
|
|
}
|
|
}
|
|
if (info.create_radius_attribute) {
|
|
pointcloud_info.radii = attributes.lookup_or_default("radius", ATTR_DOMAIN_POINT, 0.01f);
|
|
}
|
|
const VArray<float3> position_attribute = attributes.lookup_or_default<float3>(
|
|
"position", ATTR_DOMAIN_POINT, float3(0));
|
|
pointcloud_info.positions = position_attribute.get_internal_span();
|
|
}
|
|
return info;
|
|
}
|
|
|
|
static void execute_realize_pointcloud_task(
|
|
const RealizeInstancesOptions &options,
|
|
const RealizePointCloudTask &task,
|
|
const OrderedAttributes &ordered_attributes,
|
|
MutableSpan<GSpanAttributeWriter> dst_attribute_writers,
|
|
MutableSpan<float> all_dst_radii,
|
|
MutableSpan<int> all_dst_ids,
|
|
MutableSpan<float3> all_dst_positions)
|
|
{
|
|
const PointCloudRealizeInfo &pointcloud_info = *task.pointcloud_info;
|
|
const PointCloud &pointcloud = *pointcloud_info.pointcloud;
|
|
const IndexRange point_slice{task.start_index, pointcloud.totpoint};
|
|
|
|
copy_transformed_positions(
|
|
pointcloud_info.positions, task.transform, all_dst_positions.slice(point_slice));
|
|
|
|
/* Create point ids. */
|
|
if (!all_dst_ids.is_empty()) {
|
|
create_result_ids(
|
|
options, pointcloud_info.stored_ids, task.id, all_dst_ids.slice(point_slice));
|
|
}
|
|
if (!all_dst_radii.is_empty()) {
|
|
pointcloud_info.radii.materialize(all_dst_radii.slice(point_slice));
|
|
}
|
|
|
|
copy_generic_attributes_to_result(
|
|
pointcloud_info.attributes,
|
|
task.attribute_fallbacks,
|
|
ordered_attributes,
|
|
[&](const eAttrDomain domain) {
|
|
BLI_assert(domain == ATTR_DOMAIN_POINT);
|
|
UNUSED_VARS_NDEBUG(domain);
|
|
return point_slice;
|
|
},
|
|
dst_attribute_writers);
|
|
}
|
|
|
|
static void execute_realize_pointcloud_tasks(const RealizeInstancesOptions &options,
|
|
const AllPointCloudsInfo &all_pointclouds_info,
|
|
const Span<RealizePointCloudTask> tasks,
|
|
const OrderedAttributes &ordered_attributes,
|
|
GeometrySet &r_realized_geometry)
|
|
{
|
|
if (tasks.is_empty()) {
|
|
return;
|
|
}
|
|
|
|
const RealizePointCloudTask &last_task = tasks.last();
|
|
const PointCloud &last_pointcloud = *last_task.pointcloud_info->pointcloud;
|
|
const int tot_points = last_task.start_index + last_pointcloud.totpoint;
|
|
|
|
/* Allocate new point cloud. */
|
|
PointCloud *dst_pointcloud = BKE_pointcloud_new_nomain(tot_points);
|
|
PointCloudComponent &dst_component =
|
|
r_realized_geometry.get_component_for_write<PointCloudComponent>();
|
|
dst_component.replace(dst_pointcloud);
|
|
bke::MutableAttributeAccessor dst_attributes = dst_pointcloud->attributes_for_write();
|
|
|
|
SpanAttributeWriter<float3> positions = dst_attributes.lookup_or_add_for_write_only_span<float3>(
|
|
"position", ATTR_DOMAIN_POINT);
|
|
|
|
/* Prepare id attribute. */
|
|
SpanAttributeWriter<int> point_ids;
|
|
if (all_pointclouds_info.create_id_attribute) {
|
|
point_ids = dst_attributes.lookup_or_add_for_write_only_span<int>("id", ATTR_DOMAIN_POINT);
|
|
}
|
|
SpanAttributeWriter<float> point_radii;
|
|
if (all_pointclouds_info.create_radius_attribute) {
|
|
point_radii = dst_attributes.lookup_or_add_for_write_only_span<float>("radius",
|
|
ATTR_DOMAIN_POINT);
|
|
}
|
|
|
|
/* Prepare generic output attributes. */
|
|
Vector<GSpanAttributeWriter> dst_attribute_writers;
|
|
for (const int attribute_index : ordered_attributes.index_range()) {
|
|
const AttributeIDRef &attribute_id = ordered_attributes.ids[attribute_index];
|
|
const eCustomDataType data_type = ordered_attributes.kinds[attribute_index].data_type;
|
|
dst_attribute_writers.append(dst_attributes.lookup_or_add_for_write_only_span(
|
|
attribute_id, ATTR_DOMAIN_POINT, data_type));
|
|
}
|
|
|
|
/* Actually execute all tasks. */
|
|
threading::parallel_for(tasks.index_range(), 100, [&](const IndexRange task_range) {
|
|
for (const int task_index : task_range) {
|
|
const RealizePointCloudTask &task = tasks[task_index];
|
|
execute_realize_pointcloud_task(options,
|
|
task,
|
|
ordered_attributes,
|
|
dst_attribute_writers,
|
|
point_radii.span,
|
|
point_ids.span,
|
|
positions.span);
|
|
}
|
|
});
|
|
|
|
/* Tag modified attributes. */
|
|
for (GSpanAttributeWriter &dst_attribute : dst_attribute_writers) {
|
|
dst_attribute.finish();
|
|
}
|
|
positions.finish();
|
|
point_radii.finish();
|
|
point_ids.finish();
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Mesh
|
|
* \{ */
|
|
|
|
static OrderedAttributes gather_generic_mesh_attributes_to_propagate(
|
|
const GeometrySet &in_geometry_set,
|
|
const RealizeInstancesOptions &options,
|
|
bool &r_create_id,
|
|
bool &r_create_material_index)
|
|
{
|
|
Vector<GeometryComponentType> src_component_types;
|
|
src_component_types.append(GEO_COMPONENT_TYPE_MESH);
|
|
if (options.realize_instance_attributes) {
|
|
src_component_types.append(GEO_COMPONENT_TYPE_INSTANCES);
|
|
}
|
|
|
|
Map<AttributeIDRef, AttributeKind> attributes_to_propagate;
|
|
in_geometry_set.gather_attributes_for_propagation(src_component_types,
|
|
GEO_COMPONENT_TYPE_MESH,
|
|
true,
|
|
options.propagation_info,
|
|
attributes_to_propagate);
|
|
attributes_to_propagate.remove("position");
|
|
attributes_to_propagate.remove(".corner_vert");
|
|
attributes_to_propagate.remove(".corner_edge");
|
|
r_create_id = attributes_to_propagate.pop_try("id").has_value();
|
|
r_create_material_index = attributes_to_propagate.pop_try("material_index").has_value();
|
|
OrderedAttributes ordered_attributes;
|
|
for (const auto item : attributes_to_propagate.items()) {
|
|
ordered_attributes.ids.add_new(item.key);
|
|
ordered_attributes.kinds.append(item.value);
|
|
}
|
|
return ordered_attributes;
|
|
}
|
|
|
|
static void gather_meshes_to_realize(const GeometrySet &geometry_set,
|
|
VectorSet<const Mesh *> &r_meshes)
|
|
{
|
|
if (const Mesh *mesh = geometry_set.get_mesh_for_read()) {
|
|
if (mesh->totvert > 0) {
|
|
r_meshes.add(mesh);
|
|
}
|
|
}
|
|
if (const Instances *instances = geometry_set.get_instances_for_read()) {
|
|
instances->foreach_referenced_geometry([&](const GeometrySet &instance_geometry_set) {
|
|
gather_meshes_to_realize(instance_geometry_set, r_meshes);
|
|
});
|
|
}
|
|
}
|
|
|
|
static AllMeshesInfo preprocess_meshes(const GeometrySet &geometry_set,
|
|
const RealizeInstancesOptions &options)
|
|
{
|
|
AllMeshesInfo info;
|
|
info.attributes = gather_generic_mesh_attributes_to_propagate(
|
|
geometry_set, options, info.create_id_attribute, info.create_material_index_attribute);
|
|
|
|
gather_meshes_to_realize(geometry_set, info.order);
|
|
for (const Mesh *mesh : info.order) {
|
|
if (mesh->totcol == 0) {
|
|
/* Add an empty material slot for the default material. */
|
|
info.materials.add(nullptr);
|
|
}
|
|
else {
|
|
for (const int slot_index : IndexRange(mesh->totcol)) {
|
|
Material *material = mesh->mat[slot_index];
|
|
info.materials.add(material);
|
|
}
|
|
}
|
|
}
|
|
info.create_material_index_attribute |= info.materials.size() > 1;
|
|
info.realize_info.reinitialize(info.order.size());
|
|
for (const int mesh_index : info.realize_info.index_range()) {
|
|
MeshRealizeInfo &mesh_info = info.realize_info[mesh_index];
|
|
const Mesh *mesh = info.order[mesh_index];
|
|
mesh_info.mesh = mesh;
|
|
mesh_info.positions = mesh->vert_positions();
|
|
mesh_info.edges = mesh->edges();
|
|
mesh_info.polys = mesh->polys();
|
|
mesh_info.corner_verts = mesh->corner_verts();
|
|
mesh_info.corner_edges = mesh->corner_edges();
|
|
|
|
/* Create material index mapping. */
|
|
mesh_info.material_index_map.reinitialize(std::max<int>(mesh->totcol, 1));
|
|
if (mesh->totcol == 0) {
|
|
mesh_info.material_index_map.first() = info.materials.index_of(nullptr);
|
|
}
|
|
else {
|
|
for (const int old_slot_index : IndexRange(mesh->totcol)) {
|
|
Material *material = mesh->mat[old_slot_index];
|
|
const int new_slot_index = info.materials.index_of(material);
|
|
mesh_info.material_index_map[old_slot_index] = new_slot_index;
|
|
}
|
|
}
|
|
|
|
/* Access attributes. */
|
|
bke::AttributeAccessor attributes = mesh->attributes();
|
|
mesh_info.attributes.reinitialize(info.attributes.size());
|
|
for (const int attribute_index : info.attributes.index_range()) {
|
|
const AttributeIDRef &attribute_id = info.attributes.ids[attribute_index];
|
|
const eCustomDataType data_type = info.attributes.kinds[attribute_index].data_type;
|
|
const eAttrDomain domain = info.attributes.kinds[attribute_index].domain;
|
|
if (attributes.contains(attribute_id)) {
|
|
GVArray attribute = attributes.lookup_or_default(attribute_id, domain, data_type);
|
|
mesh_info.attributes[attribute_index].emplace(std::move(attribute));
|
|
}
|
|
}
|
|
if (info.create_id_attribute) {
|
|
bke::GAttributeReader ids_attribute = attributes.lookup("id");
|
|
if (ids_attribute) {
|
|
mesh_info.stored_vertex_ids = ids_attribute.varray.get_internal_span().typed<int>();
|
|
}
|
|
}
|
|
mesh_info.material_indices = attributes.lookup_or_default<int>(
|
|
"material_index", ATTR_DOMAIN_FACE, 0);
|
|
}
|
|
return info;
|
|
}
|
|
|
|
static void execute_realize_mesh_task(const RealizeInstancesOptions &options,
|
|
const RealizeMeshTask &task,
|
|
const OrderedAttributes &ordered_attributes,
|
|
MutableSpan<GSpanAttributeWriter> dst_attribute_writers,
|
|
MutableSpan<float3> all_dst_positions,
|
|
MutableSpan<MEdge> all_dst_edges,
|
|
MutableSpan<MPoly> all_dst_polys,
|
|
MutableSpan<int> all_dst_corner_verts,
|
|
MutableSpan<int> all_dst_corner_edges,
|
|
MutableSpan<int> all_dst_vertex_ids,
|
|
MutableSpan<int> all_dst_material_indices)
|
|
{
|
|
const MeshRealizeInfo &mesh_info = *task.mesh_info;
|
|
const Mesh &mesh = *mesh_info.mesh;
|
|
|
|
const Span<float3> src_positions = mesh_info.positions;
|
|
const Span<MEdge> src_edges = mesh_info.edges;
|
|
const Span<MPoly> src_polys = mesh_info.polys;
|
|
const Span<int> src_corner_verts = mesh_info.corner_verts;
|
|
const Span<int> src_corner_edges = mesh_info.corner_edges;
|
|
|
|
const IndexRange dst_vert_range(task.start_indices.vertex, src_positions.size());
|
|
const IndexRange dst_edge_range(task.start_indices.edge, src_edges.size());
|
|
const IndexRange dst_poly_range(task.start_indices.poly, src_polys.size());
|
|
const IndexRange dst_loop_range(task.start_indices.loop, src_corner_verts.size());
|
|
|
|
MutableSpan<float3> dst_positions = all_dst_positions.slice(dst_vert_range);
|
|
MutableSpan<MEdge> dst_edges = all_dst_edges.slice(dst_edge_range);
|
|
MutableSpan<MPoly> dst_polys = all_dst_polys.slice(dst_poly_range);
|
|
MutableSpan<int> dst_corner_verts = all_dst_corner_verts.slice(dst_loop_range);
|
|
MutableSpan<int> dst_corner_edges = all_dst_corner_edges.slice(dst_loop_range);
|
|
|
|
threading::parallel_for(src_positions.index_range(), 1024, [&](const IndexRange vert_range) {
|
|
for (const int i : vert_range) {
|
|
dst_positions[i] = math::transform_point(task.transform, src_positions[i]);
|
|
}
|
|
});
|
|
threading::parallel_for(src_edges.index_range(), 1024, [&](const IndexRange edge_range) {
|
|
for (const int i : edge_range) {
|
|
const MEdge &src_edge = src_edges[i];
|
|
MEdge &dst_edge = dst_edges[i];
|
|
dst_edge = src_edge;
|
|
dst_edge.v1 += task.start_indices.vertex;
|
|
dst_edge.v2 += task.start_indices.vertex;
|
|
}
|
|
});
|
|
threading::parallel_for(src_corner_verts.index_range(), 1024, [&](const IndexRange loop_range) {
|
|
for (const int i : loop_range) {
|
|
dst_corner_verts[i] = src_corner_verts[i] + task.start_indices.vertex;
|
|
}
|
|
});
|
|
threading::parallel_for(src_corner_edges.index_range(), 1024, [&](const IndexRange loop_range) {
|
|
for (const int i : loop_range) {
|
|
dst_corner_edges[i] = src_corner_edges[i] + task.start_indices.edge;
|
|
}
|
|
});
|
|
threading::parallel_for(src_polys.index_range(), 1024, [&](const IndexRange poly_range) {
|
|
for (const int i : poly_range) {
|
|
const MPoly &src_poly = src_polys[i];
|
|
MPoly &dst_poly = dst_polys[i];
|
|
dst_poly = src_poly;
|
|
dst_poly.loopstart += task.start_indices.loop;
|
|
}
|
|
});
|
|
if (!all_dst_material_indices.is_empty()) {
|
|
const Span<int> material_index_map = mesh_info.material_index_map;
|
|
MutableSpan<int> dst_material_indices = all_dst_material_indices.slice(dst_poly_range);
|
|
if (mesh.totcol == 0) {
|
|
/* The material index map contains the index of the null material in the result. */
|
|
dst_material_indices.fill(material_index_map.first());
|
|
}
|
|
else {
|
|
if (mesh_info.material_indices.is_single()) {
|
|
const int src_index = mesh_info.material_indices.get_internal_single();
|
|
const bool valid = IndexRange(mesh.totcol).contains(src_index);
|
|
dst_material_indices.fill(valid ? material_index_map[src_index] : 0);
|
|
}
|
|
else {
|
|
VArraySpan<int> indices_span(mesh_info.material_indices);
|
|
threading::parallel_for(src_polys.index_range(), 1024, [&](const IndexRange poly_range) {
|
|
for (const int i : poly_range) {
|
|
const int src_index = indices_span[i];
|
|
const bool valid = IndexRange(mesh.totcol).contains(src_index);
|
|
dst_material_indices[i] = valid ? material_index_map[src_index] : 0;
|
|
}
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!all_dst_vertex_ids.is_empty()) {
|
|
create_result_ids(options,
|
|
mesh_info.stored_vertex_ids,
|
|
task.id,
|
|
all_dst_vertex_ids.slice(task.start_indices.vertex, mesh.totvert));
|
|
}
|
|
|
|
copy_generic_attributes_to_result(
|
|
mesh_info.attributes,
|
|
task.attribute_fallbacks,
|
|
ordered_attributes,
|
|
[&](const eAttrDomain domain) {
|
|
switch (domain) {
|
|
case ATTR_DOMAIN_POINT:
|
|
return dst_vert_range;
|
|
case ATTR_DOMAIN_EDGE:
|
|
return dst_edge_range;
|
|
case ATTR_DOMAIN_FACE:
|
|
return dst_poly_range;
|
|
case ATTR_DOMAIN_CORNER:
|
|
return dst_loop_range;
|
|
default:
|
|
BLI_assert_unreachable();
|
|
return IndexRange();
|
|
}
|
|
},
|
|
dst_attribute_writers);
|
|
}
|
|
|
|
static void execute_realize_mesh_tasks(const RealizeInstancesOptions &options,
|
|
const AllMeshesInfo &all_meshes_info,
|
|
const Span<RealizeMeshTask> tasks,
|
|
const OrderedAttributes &ordered_attributes,
|
|
const VectorSet<Material *> &ordered_materials,
|
|
GeometrySet &r_realized_geometry)
|
|
{
|
|
if (tasks.is_empty()) {
|
|
return;
|
|
}
|
|
|
|
const RealizeMeshTask &last_task = tasks.last();
|
|
const Mesh &last_mesh = *last_task.mesh_info->mesh;
|
|
const int tot_vertices = last_task.start_indices.vertex + last_mesh.totvert;
|
|
const int tot_edges = last_task.start_indices.edge + last_mesh.totedge;
|
|
const int tot_loops = last_task.start_indices.loop + last_mesh.totloop;
|
|
const int tot_poly = last_task.start_indices.poly + last_mesh.totpoly;
|
|
|
|
Mesh *dst_mesh = BKE_mesh_new_nomain(tot_vertices, tot_edges, tot_loops, tot_poly);
|
|
MeshComponent &dst_component = r_realized_geometry.get_component_for_write<MeshComponent>();
|
|
dst_component.replace(dst_mesh);
|
|
bke::MutableAttributeAccessor dst_attributes = dst_mesh->attributes_for_write();
|
|
MutableSpan<float3> dst_positions = dst_mesh->vert_positions_for_write();
|
|
MutableSpan<MEdge> dst_edges = dst_mesh->edges_for_write();
|
|
MutableSpan<MPoly> dst_polys = dst_mesh->polys_for_write();
|
|
MutableSpan<int> dst_corner_verts = dst_mesh->corner_verts_for_write();
|
|
MutableSpan<int> dst_corner_edges = dst_mesh->corner_edges_for_write();
|
|
|
|
/* Copy settings from the first input geometry set with a mesh. */
|
|
const RealizeMeshTask &first_task = tasks.first();
|
|
const Mesh &first_mesh = *first_task.mesh_info->mesh;
|
|
BKE_mesh_copy_parameters_for_eval(dst_mesh, &first_mesh);
|
|
/* The above line also copies vertex group names. We don't want that here because the new
|
|
* attributes are added explicitly below. */
|
|
BLI_freelistN(&dst_mesh->vertex_group_names);
|
|
|
|
/* Add materials. */
|
|
for (const int i : IndexRange(ordered_materials.size())) {
|
|
Material *material = ordered_materials[i];
|
|
BKE_id_material_eval_assign(&dst_mesh->id, i + 1, material);
|
|
}
|
|
|
|
/* Prepare id attribute. */
|
|
SpanAttributeWriter<int> vertex_ids;
|
|
if (all_meshes_info.create_id_attribute) {
|
|
vertex_ids = dst_attributes.lookup_or_add_for_write_only_span<int>("id", ATTR_DOMAIN_POINT);
|
|
}
|
|
/* Prepare material indices. */
|
|
SpanAttributeWriter<int> material_indices;
|
|
if (all_meshes_info.create_material_index_attribute) {
|
|
material_indices = dst_attributes.lookup_or_add_for_write_only_span<int>("material_index",
|
|
ATTR_DOMAIN_FACE);
|
|
}
|
|
|
|
/* Prepare generic output attributes. */
|
|
Vector<GSpanAttributeWriter> dst_attribute_writers;
|
|
for (const int attribute_index : ordered_attributes.index_range()) {
|
|
const AttributeIDRef &attribute_id = ordered_attributes.ids[attribute_index];
|
|
const eAttrDomain domain = ordered_attributes.kinds[attribute_index].domain;
|
|
const eCustomDataType data_type = ordered_attributes.kinds[attribute_index].data_type;
|
|
dst_attribute_writers.append(
|
|
dst_attributes.lookup_or_add_for_write_only_span(attribute_id, domain, data_type));
|
|
}
|
|
|
|
/* Actually execute all tasks. */
|
|
threading::parallel_for(tasks.index_range(), 100, [&](const IndexRange task_range) {
|
|
for (const int task_index : task_range) {
|
|
const RealizeMeshTask &task = tasks[task_index];
|
|
execute_realize_mesh_task(options,
|
|
task,
|
|
ordered_attributes,
|
|
dst_attribute_writers,
|
|
dst_positions,
|
|
dst_edges,
|
|
dst_polys,
|
|
dst_corner_verts,
|
|
dst_corner_edges,
|
|
vertex_ids.span,
|
|
material_indices.span);
|
|
}
|
|
});
|
|
|
|
/* Tag modified attributes. */
|
|
for (GSpanAttributeWriter &dst_attribute : dst_attribute_writers) {
|
|
dst_attribute.finish();
|
|
}
|
|
vertex_ids.finish();
|
|
material_indices.finish();
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Curves
|
|
* \{ */
|
|
|
|
static OrderedAttributes gather_generic_curve_attributes_to_propagate(
|
|
const GeometrySet &in_geometry_set, const RealizeInstancesOptions &options, bool &r_create_id)
|
|
{
|
|
Vector<GeometryComponentType> src_component_types;
|
|
src_component_types.append(GEO_COMPONENT_TYPE_CURVE);
|
|
if (options.realize_instance_attributes) {
|
|
src_component_types.append(GEO_COMPONENT_TYPE_INSTANCES);
|
|
}
|
|
|
|
Map<AttributeIDRef, AttributeKind> attributes_to_propagate;
|
|
in_geometry_set.gather_attributes_for_propagation(src_component_types,
|
|
GEO_COMPONENT_TYPE_CURVE,
|
|
true,
|
|
options.propagation_info,
|
|
attributes_to_propagate);
|
|
attributes_to_propagate.remove("position");
|
|
attributes_to_propagate.remove("radius");
|
|
attributes_to_propagate.remove("nurbs_weight");
|
|
attributes_to_propagate.remove("resolution");
|
|
attributes_to_propagate.remove("handle_right");
|
|
attributes_to_propagate.remove("handle_left");
|
|
r_create_id = attributes_to_propagate.pop_try("id").has_value();
|
|
OrderedAttributes ordered_attributes;
|
|
for (const auto item : attributes_to_propagate.items()) {
|
|
ordered_attributes.ids.add_new(item.key);
|
|
ordered_attributes.kinds.append(item.value);
|
|
}
|
|
return ordered_attributes;
|
|
}
|
|
|
|
static void gather_curves_to_realize(const GeometrySet &geometry_set,
|
|
VectorSet<const Curves *> &r_curves)
|
|
{
|
|
if (const Curves *curves = geometry_set.get_curves_for_read()) {
|
|
if (curves->geometry.curve_num != 0) {
|
|
r_curves.add(curves);
|
|
}
|
|
}
|
|
if (const Instances *instances = geometry_set.get_instances_for_read()) {
|
|
instances->foreach_referenced_geometry([&](const GeometrySet &instance_geometry_set) {
|
|
gather_curves_to_realize(instance_geometry_set, r_curves);
|
|
});
|
|
}
|
|
}
|
|
|
|
static AllCurvesInfo preprocess_curves(const GeometrySet &geometry_set,
|
|
const RealizeInstancesOptions &options)
|
|
{
|
|
AllCurvesInfo info;
|
|
info.attributes = gather_generic_curve_attributes_to_propagate(
|
|
geometry_set, options, info.create_id_attribute);
|
|
|
|
gather_curves_to_realize(geometry_set, info.order);
|
|
info.realize_info.reinitialize(info.order.size());
|
|
for (const int curve_index : info.realize_info.index_range()) {
|
|
RealizeCurveInfo &curve_info = info.realize_info[curve_index];
|
|
const Curves *curves_id = info.order[curve_index];
|
|
const bke::CurvesGeometry &curves = curves_id->geometry.wrap();
|
|
curve_info.curves = curves_id;
|
|
|
|
/* Access attributes. */
|
|
bke::AttributeAccessor attributes = curves.attributes();
|
|
curve_info.attributes.reinitialize(info.attributes.size());
|
|
for (const int attribute_index : info.attributes.index_range()) {
|
|
const eAttrDomain domain = info.attributes.kinds[attribute_index].domain;
|
|
const AttributeIDRef &attribute_id = info.attributes.ids[attribute_index];
|
|
const eCustomDataType data_type = info.attributes.kinds[attribute_index].data_type;
|
|
if (attributes.contains(attribute_id)) {
|
|
GVArray attribute = attributes.lookup_or_default(attribute_id, domain, data_type);
|
|
curve_info.attributes[attribute_index].emplace(std::move(attribute));
|
|
}
|
|
}
|
|
if (info.create_id_attribute) {
|
|
bke::GAttributeReader id_attribute = attributes.lookup("id");
|
|
if (id_attribute) {
|
|
curve_info.stored_ids = id_attribute.varray.get_internal_span().typed<int>();
|
|
}
|
|
}
|
|
|
|
if (attributes.contains("radius")) {
|
|
curve_info.radius =
|
|
attributes.lookup<float>("radius", ATTR_DOMAIN_POINT).get_internal_span();
|
|
info.create_radius_attribute = true;
|
|
}
|
|
if (attributes.contains("nurbs_weight")) {
|
|
curve_info.nurbs_weight =
|
|
attributes.lookup<float>("nurbs_weight", ATTR_DOMAIN_POINT).get_internal_span();
|
|
info.create_nurbs_weight_attribute = true;
|
|
}
|
|
curve_info.resolution = curves.resolution();
|
|
if (attributes.contains("resolution")) {
|
|
info.create_resolution_attribute = true;
|
|
}
|
|
if (attributes.contains("handle_right")) {
|
|
curve_info.handle_left =
|
|
attributes.lookup<float3>("handle_left", ATTR_DOMAIN_POINT).get_internal_span();
|
|
curve_info.handle_right =
|
|
attributes.lookup<float3>("handle_right", ATTR_DOMAIN_POINT).get_internal_span();
|
|
info.create_handle_postion_attributes = true;
|
|
}
|
|
}
|
|
return info;
|
|
}
|
|
|
|
static void execute_realize_curve_task(const RealizeInstancesOptions &options,
|
|
const AllCurvesInfo &all_curves_info,
|
|
const RealizeCurveTask &task,
|
|
const OrderedAttributes &ordered_attributes,
|
|
bke::CurvesGeometry &dst_curves,
|
|
MutableSpan<GSpanAttributeWriter> dst_attribute_writers,
|
|
MutableSpan<int> all_dst_ids,
|
|
MutableSpan<float3> all_handle_left,
|
|
MutableSpan<float3> all_handle_right,
|
|
MutableSpan<float> all_radii,
|
|
MutableSpan<float> all_nurbs_weights,
|
|
MutableSpan<int> all_resolutions)
|
|
{
|
|
const RealizeCurveInfo &curves_info = *task.curve_info;
|
|
const Curves &curves_id = *curves_info.curves;
|
|
const bke::CurvesGeometry &curves = curves_id.geometry.wrap();
|
|
|
|
const IndexRange dst_point_range{task.start_indices.point, curves.points_num()};
|
|
const IndexRange dst_curve_range{task.start_indices.curve, curves.curves_num()};
|
|
|
|
copy_transformed_positions(
|
|
curves.positions(), task.transform, dst_curves.positions_for_write().slice(dst_point_range));
|
|
|
|
/* Copy and transform handle positions if necessary. */
|
|
if (all_curves_info.create_handle_postion_attributes) {
|
|
if (curves_info.handle_left.is_empty()) {
|
|
all_handle_left.slice(dst_point_range).fill(float3(0));
|
|
}
|
|
else {
|
|
copy_transformed_positions(
|
|
curves_info.handle_left, task.transform, all_handle_left.slice(dst_point_range));
|
|
}
|
|
if (curves_info.handle_right.is_empty()) {
|
|
all_handle_right.slice(dst_point_range).fill(float3(0));
|
|
}
|
|
else {
|
|
copy_transformed_positions(
|
|
curves_info.handle_right, task.transform, all_handle_right.slice(dst_point_range));
|
|
}
|
|
}
|
|
|
|
auto copy_point_span_with_default =
|
|
[&](const Span<float> src, MutableSpan<float> all_dst, const float value) {
|
|
if (src.is_empty()) {
|
|
all_dst.slice(dst_point_range).fill(value);
|
|
}
|
|
else {
|
|
all_dst.slice(dst_point_range).copy_from(src);
|
|
}
|
|
};
|
|
if (all_curves_info.create_radius_attribute) {
|
|
copy_point_span_with_default(curves_info.radius, all_radii, 1.0f);
|
|
}
|
|
if (all_curves_info.create_nurbs_weight_attribute) {
|
|
copy_point_span_with_default(curves_info.nurbs_weight, all_nurbs_weights, 1.0f);
|
|
}
|
|
|
|
if (all_curves_info.create_resolution_attribute) {
|
|
curves_info.resolution.materialize(all_resolutions.slice(dst_curve_range));
|
|
}
|
|
|
|
/* Copy curve offsets. */
|
|
const Span<int> src_offsets = curves.offsets();
|
|
const MutableSpan<int> dst_offsets = dst_curves.offsets_for_write().slice(dst_curve_range);
|
|
threading::parallel_for(curves.curves_range(), 2048, [&](const IndexRange range) {
|
|
for (const int i : range) {
|
|
dst_offsets[i] = task.start_indices.point + src_offsets[i];
|
|
}
|
|
});
|
|
|
|
if (!all_dst_ids.is_empty()) {
|
|
create_result_ids(
|
|
options, curves_info.stored_ids, task.id, all_dst_ids.slice(dst_point_range));
|
|
}
|
|
|
|
copy_generic_attributes_to_result(
|
|
curves_info.attributes,
|
|
task.attribute_fallbacks,
|
|
ordered_attributes,
|
|
[&](const eAttrDomain domain) {
|
|
switch (domain) {
|
|
case ATTR_DOMAIN_POINT:
|
|
return IndexRange(task.start_indices.point, curves.points_num());
|
|
case ATTR_DOMAIN_CURVE:
|
|
return IndexRange(task.start_indices.curve, curves.curves_num());
|
|
default:
|
|
BLI_assert_unreachable();
|
|
return IndexRange();
|
|
}
|
|
},
|
|
dst_attribute_writers);
|
|
}
|
|
|
|
static void execute_realize_curve_tasks(const RealizeInstancesOptions &options,
|
|
const AllCurvesInfo &all_curves_info,
|
|
const Span<RealizeCurveTask> tasks,
|
|
const OrderedAttributes &ordered_attributes,
|
|
GeometrySet &r_realized_geometry)
|
|
{
|
|
if (tasks.is_empty()) {
|
|
return;
|
|
}
|
|
|
|
const RealizeCurveTask &last_task = tasks.last();
|
|
const Curves &last_curves = *last_task.curve_info->curves;
|
|
const int points_num = last_task.start_indices.point + last_curves.geometry.point_num;
|
|
const int curves_num = last_task.start_indices.curve + last_curves.geometry.curve_num;
|
|
|
|
/* Allocate new curves data-block. */
|
|
Curves *dst_curves_id = bke::curves_new_nomain(points_num, curves_num);
|
|
bke::CurvesGeometry &dst_curves = dst_curves_id->geometry.wrap();
|
|
dst_curves.offsets_for_write().last() = points_num;
|
|
CurveComponent &dst_component = r_realized_geometry.get_component_for_write<CurveComponent>();
|
|
dst_component.replace(dst_curves_id);
|
|
bke::MutableAttributeAccessor dst_attributes = dst_curves.attributes_for_write();
|
|
|
|
/* Copy settings from the first input geometry set with curves. */
|
|
const RealizeCurveTask &first_task = tasks.first();
|
|
const Curves &first_curves_id = *first_task.curve_info->curves;
|
|
bke::curves_copy_parameters(first_curves_id, *dst_curves_id);
|
|
|
|
/* Prepare id attribute. */
|
|
SpanAttributeWriter<int> point_ids;
|
|
if (all_curves_info.create_id_attribute) {
|
|
point_ids = dst_attributes.lookup_or_add_for_write_only_span<int>("id", ATTR_DOMAIN_POINT);
|
|
}
|
|
|
|
/* Prepare generic output attributes. */
|
|
Vector<GSpanAttributeWriter> dst_attribute_writers;
|
|
for (const int attribute_index : ordered_attributes.index_range()) {
|
|
const AttributeIDRef &attribute_id = ordered_attributes.ids[attribute_index];
|
|
const eAttrDomain domain = ordered_attributes.kinds[attribute_index].domain;
|
|
const eCustomDataType data_type = ordered_attributes.kinds[attribute_index].data_type;
|
|
dst_attribute_writers.append(
|
|
dst_attributes.lookup_or_add_for_write_only_span(attribute_id, domain, data_type));
|
|
}
|
|
|
|
/* Prepare handle position attributes if necessary. */
|
|
SpanAttributeWriter<float3> handle_left;
|
|
SpanAttributeWriter<float3> handle_right;
|
|
if (all_curves_info.create_handle_postion_attributes) {
|
|
handle_left = dst_attributes.lookup_or_add_for_write_only_span<float3>("handle_left",
|
|
ATTR_DOMAIN_POINT);
|
|
handle_right = dst_attributes.lookup_or_add_for_write_only_span<float3>("handle_right",
|
|
ATTR_DOMAIN_POINT);
|
|
}
|
|
|
|
SpanAttributeWriter<float> radius;
|
|
if (all_curves_info.create_radius_attribute) {
|
|
radius = dst_attributes.lookup_or_add_for_write_only_span<float>("radius", ATTR_DOMAIN_POINT);
|
|
}
|
|
SpanAttributeWriter<float> nurbs_weight;
|
|
if (all_curves_info.create_nurbs_weight_attribute) {
|
|
nurbs_weight = dst_attributes.lookup_or_add_for_write_only_span<float>("nurbs_weight",
|
|
ATTR_DOMAIN_POINT);
|
|
}
|
|
SpanAttributeWriter<int> resolution;
|
|
if (all_curves_info.create_resolution_attribute) {
|
|
resolution = dst_attributes.lookup_or_add_for_write_only_span<int>("resolution",
|
|
ATTR_DOMAIN_CURVE);
|
|
}
|
|
|
|
/* Actually execute all tasks. */
|
|
threading::parallel_for(tasks.index_range(), 100, [&](const IndexRange task_range) {
|
|
for (const int task_index : task_range) {
|
|
const RealizeCurveTask &task = tasks[task_index];
|
|
execute_realize_curve_task(options,
|
|
all_curves_info,
|
|
task,
|
|
ordered_attributes,
|
|
dst_curves,
|
|
dst_attribute_writers,
|
|
point_ids.span,
|
|
handle_left.span,
|
|
handle_right.span,
|
|
radius.span,
|
|
nurbs_weight.span,
|
|
resolution.span);
|
|
}
|
|
});
|
|
|
|
/* Type counts have to be updated eagerly. */
|
|
dst_curves.runtime->type_counts.fill(0);
|
|
for (const RealizeCurveTask &task : tasks) {
|
|
for (const int i : IndexRange(CURVE_TYPES_NUM)) {
|
|
dst_curves.runtime->type_counts[i] +=
|
|
task.curve_info->curves->geometry.runtime->type_counts[i];
|
|
}
|
|
}
|
|
|
|
/* Tag modified attributes. */
|
|
for (GSpanAttributeWriter &dst_attribute : dst_attribute_writers) {
|
|
dst_attribute.finish();
|
|
}
|
|
point_ids.finish();
|
|
radius.finish();
|
|
resolution.finish();
|
|
nurbs_weight.finish();
|
|
handle_left.finish();
|
|
handle_right.finish();
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Realize Instances
|
|
* \{ */
|
|
|
|
static void remove_id_attribute_from_instances(GeometrySet &geometry_set)
|
|
{
|
|
geometry_set.modify_geometry_sets([&](GeometrySet &sub_geometry) {
|
|
if (Instances *instances = sub_geometry.get_instances_for_write()) {
|
|
instances->custom_data_attributes().remove("id");
|
|
}
|
|
});
|
|
}
|
|
|
|
GeometrySet realize_instances(GeometrySet geometry_set, const RealizeInstancesOptions &options)
|
|
{
|
|
/* The algorithm works in three steps:
|
|
* 1. Preprocess each unique geometry that is instanced (e.g. each `Mesh`).
|
|
* 2. Gather "tasks" that need to be executed to realize the instances. Each task corresponds to
|
|
* instances of the previously preprocessed geometry.
|
|
* 3. Execute all tasks in parallel.
|
|
*/
|
|
|
|
if (!geometry_set.has_instances()) {
|
|
return geometry_set;
|
|
}
|
|
|
|
if (options.keep_original_ids) {
|
|
remove_id_attribute_from_instances(geometry_set);
|
|
}
|
|
|
|
AllPointCloudsInfo all_pointclouds_info = preprocess_pointclouds(geometry_set, options);
|
|
AllMeshesInfo all_meshes_info = preprocess_meshes(geometry_set, options);
|
|
AllCurvesInfo all_curves_info = preprocess_curves(geometry_set, options);
|
|
|
|
Vector<std::unique_ptr<GArray<>>> temporary_arrays;
|
|
const bool create_id_attribute = all_pointclouds_info.create_id_attribute ||
|
|
all_meshes_info.create_id_attribute ||
|
|
all_curves_info.create_id_attribute;
|
|
GatherTasksInfo gather_info = {all_pointclouds_info,
|
|
all_meshes_info,
|
|
all_curves_info,
|
|
create_id_attribute,
|
|
temporary_arrays};
|
|
const float4x4 transform = float4x4::identity();
|
|
InstanceContext attribute_fallbacks(gather_info);
|
|
gather_realize_tasks_recursive(gather_info, geometry_set, transform, attribute_fallbacks);
|
|
|
|
GeometrySet new_geometry_set;
|
|
execute_realize_pointcloud_tasks(options,
|
|
all_pointclouds_info,
|
|
gather_info.r_tasks.pointcloud_tasks,
|
|
all_pointclouds_info.attributes,
|
|
new_geometry_set);
|
|
execute_realize_mesh_tasks(options,
|
|
all_meshes_info,
|
|
gather_info.r_tasks.mesh_tasks,
|
|
all_meshes_info.attributes,
|
|
all_meshes_info.materials,
|
|
new_geometry_set);
|
|
execute_realize_curve_tasks(options,
|
|
all_curves_info,
|
|
gather_info.r_tasks.curve_tasks,
|
|
all_curves_info.attributes,
|
|
new_geometry_set);
|
|
|
|
if (gather_info.r_tasks.first_volume) {
|
|
new_geometry_set.add(*gather_info.r_tasks.first_volume);
|
|
}
|
|
if (gather_info.r_tasks.first_edit_data) {
|
|
new_geometry_set.add(*gather_info.r_tasks.first_edit_data);
|
|
}
|
|
|
|
return new_geometry_set;
|
|
}
|
|
|
|
/** \} */
|
|
|
|
} // namespace blender::geometry
|