This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/render/intern/texture_pointdensity.c
Hans Goudey 16fbadde36 Mesh: Replace MLoop struct with generic attributes
Implements #102359.

Split the `MLoop` struct into two separate integer arrays called
`corner_verts` and `corner_edges`, referring to the vertex each corner
is attached to and the next edge around the face at each corner. These
arrays can be sliced to give access to the edges or vertices in a face.
Then they are often referred to as "poly_verts" or "poly_edges".

The main benefits are halving the necessary memory bandwidth when only
one array is used and simplifications from using regular integer indices
instead of a special-purpose struct.

The commit also starts a renaming from "loop" to "corner" in mesh code.

Like the other mesh struct of array refactors, forward compatibility is
kept by writing files with the older format. This will be done until 4.0
to ease the transition process.

Looking at a small portion of the patch should give a good impression
for the rest of the changes. I tried to make the changes as small as
possible so it's easy to tell the correctness from the diff. Though I
found Blender developers have been very inventive over the last decade
when finding different ways to loop over the corners in a face.

For performance, nearly every piece of code that deals with `Mesh` is
slightly impacted. Any algorithm that is memory bottle-necked should
see an improvement. For example, here is a comparison of interpolating
a vertex float attribute to face corners (Ryzen 3700x):

**Before** (Average: 3.7 ms, Min: 3.4 ms)
```
threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) {
  for (const int64_t i : range) {
    dst[i] = src[loops[i].v];
  }
});
```

**After** (Average: 2.9 ms, Min: 2.6 ms)
```
array_utils::gather(src, corner_verts, dst);
```

That's an improvement of 28% to the average timings, and it's also a
simplification, since an index-based routine can be used instead.
For more examples using the new arrays, see the design task.

Pull Request: blender/blender#104424
2023-03-20 15:55:13 +01:00

950 lines
25 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2001-2002 NaN Holding BV. All rights reserved. */
/** \file
* \ingroup render
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_kdopbvh.h"
#include "BLI_math.h"
#include "BLI_noise.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "BLT_translation.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "BKE_colorband.h"
#include "BKE_colortools.h"
#include "BKE_customdata.h"
#include "BKE_deform.h"
#include "BKE_lattice.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_particle.h"
#include "BKE_scene.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
#include "texture_common.h"
#include "RE_texture.h"
static ThreadMutex sample_mutex = PTHREAD_MUTEX_INITIALIZER;
static int point_data_used(PointDensity *pd)
{
int pd_bitflag = 0;
if (pd->source == TEX_PD_PSYS) {
if ((pd->falloff_type == TEX_PD_FALLOFF_PARTICLE_VEL) ||
(pd->color_source == TEX_PD_COLOR_PARTVEL) ||
(pd->color_source == TEX_PD_COLOR_PARTSPEED)) {
pd_bitflag |= POINT_DATA_VEL;
}
if ((pd->color_source == TEX_PD_COLOR_PARTAGE) ||
(pd->falloff_type == TEX_PD_FALLOFF_PARTICLE_AGE)) {
pd_bitflag |= POINT_DATA_LIFE;
}
}
else if (pd->source == TEX_PD_OBJECT) {
if (ELEM(pd->ob_color_source,
TEX_PD_COLOR_VERTCOL,
TEX_PD_COLOR_VERTWEIGHT,
TEX_PD_COLOR_VERTNOR)) {
pd_bitflag |= POINT_DATA_COLOR;
}
}
return pd_bitflag;
}
static void point_data_pointers(PointDensity *pd,
float **r_data_velocity,
float **r_data_life,
float **r_data_color)
{
const int data_used = point_data_used(pd);
const int totpoint = pd->totpoints;
float *data = pd->point_data;
int offset = 0;
if (data_used & POINT_DATA_VEL) {
if (r_data_velocity) {
*r_data_velocity = data + offset;
}
offset += 3 * totpoint;
}
else {
if (r_data_velocity) {
*r_data_velocity = NULL;
}
}
if (data_used & POINT_DATA_LIFE) {
if (r_data_life) {
*r_data_life = data + offset;
}
offset += totpoint;
}
else {
if (r_data_life) {
*r_data_life = NULL;
}
}
if (data_used & POINT_DATA_COLOR) {
if (r_data_color) {
*r_data_color = data + offset;
}
offset += 3 * totpoint;
}
else {
if (r_data_color) {
*r_data_color = NULL;
}
}
}
/* additional data stored alongside the point density BVH,
* accessible by point index number to retrieve other information
* such as particle velocity or lifetime */
static void alloc_point_data(PointDensity *pd)
{
const int totpoints = pd->totpoints;
int data_used = point_data_used(pd);
int data_size = 0;
if (data_used & POINT_DATA_VEL) {
/* store 3 channels of velocity data */
data_size += 3;
}
if (data_used & POINT_DATA_LIFE) {
/* store 1 channel of lifetime data */
data_size += 1;
}
if (data_used & POINT_DATA_COLOR) {
/* store 3 channels of RGB data */
data_size += 3;
}
if (data_size) {
pd->point_data = MEM_callocN(sizeof(float) * data_size * totpoints, "particle point data");
}
}
static void pointdensity_cache_psys(
Depsgraph *depsgraph, Scene *scene, PointDensity *pd, Object *ob, ParticleSystem *psys)
{
ParticleKey state;
ParticleCacheKey *cache;
ParticleSimulationData sim = {NULL};
ParticleData *pa = NULL;
float cfra = BKE_scene_ctime_get(scene);
int i;
// int childexists = 0; /* UNUSED */
int total_particles;
int data_used;
float *data_vel, *data_life;
float partco[3];
const bool use_render_params = (DEG_get_mode(depsgraph) == DAG_EVAL_RENDER);
data_used = point_data_used(pd);
if (!psys_check_enabled(ob, psys, use_render_params)) {
return;
}
sim.depsgraph = depsgraph;
sim.scene = scene;
sim.ob = ob;
sim.psys = psys;
sim.psmd = psys_get_modifier(ob, psys);
/* in case ob->world_to_object isn't up-to-date */
invert_m4_m4(ob->world_to_object, ob->object_to_world);
total_particles = psys->totpart + psys->totchild;
psys_sim_data_init(&sim);
pd->point_tree = BLI_bvhtree_new(total_particles, 0.0, 4, 6);
pd->totpoints = total_particles;
alloc_point_data(pd);
point_data_pointers(pd, &data_vel, &data_life, NULL);
#if 0 /* UNUSED */
if (psys->totchild > 0 && !(psys->part->draw & PART_DRAW_PARENT)) {
childexists = 1;
}
#endif
for (i = 0, pa = psys->particles; i < total_particles; i++, pa++) {
if (psys->part->type == PART_HAIR) {
/* hair particles */
if (i < psys->totpart && psys->pathcache) {
cache = psys->pathcache[i];
}
else if (i >= psys->totpart && psys->childcache) {
cache = psys->childcache[i - psys->totpart];
}
else {
continue;
}
cache += cache->segments; /* use endpoint */
copy_v3_v3(state.co, cache->co);
zero_v3(state.vel);
state.time = 0.0f;
}
else {
/* emitter particles */
state.time = cfra;
if (!psys_get_particle_state(&sim, i, &state, 0)) {
continue;
}
if (data_used & POINT_DATA_LIFE) {
if (i < psys->totpart) {
state.time = (cfra - pa->time) / pa->lifetime;
}
else {
ChildParticle *cpa = (psys->child + i) - psys->totpart;
float pa_birthtime, pa_dietime;
state.time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
}
}
}
copy_v3_v3(partco, state.co);
if (pd->psys_cache_space == TEX_PD_OBJECTSPACE) {
mul_m4_v3(ob->world_to_object, partco);
}
else if (pd->psys_cache_space == TEX_PD_OBJECTLOC) {
sub_v3_v3(partco, ob->loc);
}
else {
/* TEX_PD_WORLDSPACE */
}
BLI_bvhtree_insert(pd->point_tree, i, partco, 1);
if (data_vel) {
data_vel[i * 3 + 0] = state.vel[0];
data_vel[i * 3 + 1] = state.vel[1];
data_vel[i * 3 + 2] = state.vel[2];
}
if (data_life) {
data_life[i] = state.time;
}
}
BLI_bvhtree_balance(pd->point_tree);
psys_sim_data_free(&sim);
}
static void pointdensity_cache_vertex_color(PointDensity *pd,
Object *UNUSED(ob),
Mesh *mesh,
float *data_color)
{
const int *corner_verts = BKE_mesh_corner_verts(mesh);
const int totloop = mesh->totloop;
char layername[MAX_CUSTOMDATA_LAYER_NAME];
int i;
BLI_assert(data_color);
if (!CustomData_has_layer(&mesh->ldata, CD_PROP_BYTE_COLOR)) {
return;
}
CustomData_validate_layer_name(
&mesh->ldata, CD_PROP_BYTE_COLOR, pd->vertex_attribute_name, layername);
const MLoopCol *mcol = CustomData_get_layer_named(&mesh->ldata, CD_PROP_BYTE_COLOR, layername);
if (!mcol) {
return;
}
/* Stores the number of MLoops using the same vertex, so we can normalize colors. */
int *mcorners = MEM_callocN(sizeof(int) * pd->totpoints, "point density corner count");
for (i = 0; i < totloop; i++) {
int v = corner_verts[i];
if (mcorners[v] == 0) {
rgb_uchar_to_float(&data_color[v * 3], &mcol[i].r);
}
else {
float col[3];
rgb_uchar_to_float(col, &mcol[i].r);
add_v3_v3(&data_color[v * 3], col);
}
++mcorners[v];
}
/* Normalize colors by averaging over mcorners.
* All the corners share the same vertex, ie. occupy the same point in space.
*/
for (i = 0; i < pd->totpoints; i++) {
if (mcorners[i] > 0) {
mul_v3_fl(&data_color[i * 3], 1.0f / mcorners[i]);
}
}
MEM_freeN(mcorners);
}
static void pointdensity_cache_vertex_weight(PointDensity *pd,
Object *ob,
Mesh *mesh,
float *data_color)
{
const int totvert = mesh->totvert;
int mdef_index;
int i;
BLI_assert(data_color);
const MDeformVert *mdef = CustomData_get_layer(&mesh->vdata, CD_MDEFORMVERT);
if (!mdef) {
return;
}
mdef_index = BKE_id_defgroup_name_index(&mesh->id, pd->vertex_attribute_name);
if (mdef_index < 0) {
mdef_index = BKE_object_defgroup_active_index_get(ob) - 1;
}
if (mdef_index < 0) {
return;
}
const MDeformVert *dv;
for (i = 0, dv = mdef; i < totvert; i++, dv++, data_color += 3) {
MDeformWeight *dw;
int j;
for (j = 0, dw = dv->dw; j < dv->totweight; j++, dw++) {
if (dw->def_nr == mdef_index) {
copy_v3_fl(data_color, dw->weight);
break;
}
}
}
}
static void pointdensity_cache_vertex_normal(Mesh *mesh, float *data_color)
{
BLI_assert(data_color);
const float(*vert_normals)[3] = BKE_mesh_vert_normals_ensure(mesh);
memcpy(data_color, vert_normals, sizeof(float[3]) * mesh->totvert);
}
static void pointdensity_cache_object(PointDensity *pd, Object *ob)
{
float *data_color;
int i;
Mesh *mesh = ob->data;
#if 0 /* UNUSED */
CustomData_MeshMasks mask = CD_MASK_BAREMESH;
mask.fmask |= CD_MASK_MTFACE | CD_MASK_MCOL;
switch (pd->ob_color_source) {
case TEX_PD_COLOR_VERTCOL:
mask.lmask |= CD_MASK_PROP_BYTE_COLOR;
break;
case TEX_PD_COLOR_VERTWEIGHT:
mask.vmask |= CD_MASK_MDEFORMVERT;
break;
}
#endif
const float(*positions)[3] = BKE_mesh_vert_positions(mesh); /* local object space */
pd->totpoints = mesh->totvert;
if (pd->totpoints == 0) {
return;
}
pd->point_tree = BLI_bvhtree_new(pd->totpoints, 0.0, 4, 6);
alloc_point_data(pd);
point_data_pointers(pd, NULL, NULL, &data_color);
for (i = 0; i < pd->totpoints; i++) {
float co[3];
copy_v3_v3(co, positions[i]);
switch (pd->ob_cache_space) {
case TEX_PD_OBJECTSPACE:
break;
case TEX_PD_OBJECTLOC:
mul_m4_v3(ob->object_to_world, co);
sub_v3_v3(co, ob->loc);
break;
case TEX_PD_WORLDSPACE:
default:
mul_m4_v3(ob->object_to_world, co);
break;
}
BLI_bvhtree_insert(pd->point_tree, i, co, 1);
}
switch (pd->ob_color_source) {
case TEX_PD_COLOR_VERTCOL:
pointdensity_cache_vertex_color(pd, ob, mesh, data_color);
break;
case TEX_PD_COLOR_VERTWEIGHT:
pointdensity_cache_vertex_weight(pd, ob, mesh, data_color);
break;
case TEX_PD_COLOR_VERTNOR:
pointdensity_cache_vertex_normal(mesh, data_color);
break;
}
BLI_bvhtree_balance(pd->point_tree);
}
static void cache_pointdensity(Depsgraph *depsgraph, Scene *scene, PointDensity *pd)
{
if (pd == NULL) {
return;
}
if (pd->point_tree) {
BLI_bvhtree_free(pd->point_tree);
pd->point_tree = NULL;
}
if (pd->source == TEX_PD_PSYS) {
Object *ob = pd->object;
ParticleSystem *psys;
if (!ob || !pd->psys) {
return;
}
psys = BLI_findlink(&ob->particlesystem, pd->psys - 1);
if (!psys) {
return;
}
pointdensity_cache_psys(depsgraph, scene, pd, ob, psys);
}
else if (pd->source == TEX_PD_OBJECT) {
Object *ob = pd->object;
if (ob && ob->type == OB_MESH) {
pointdensity_cache_object(pd, ob);
}
}
}
static void free_pointdensity(PointDensity *pd)
{
if (pd == NULL) {
return;
}
if (pd->point_tree) {
BLI_bvhtree_free(pd->point_tree);
pd->point_tree = NULL;
}
MEM_SAFE_FREE(pd->point_data);
pd->totpoints = 0;
}
typedef struct PointDensityRangeData {
float *density;
float squared_radius;
float *point_data_life;
float *point_data_velocity;
float *point_data_color;
float *vec;
float *col;
float softness;
short falloff_type;
short noise_influence;
float *age;
struct CurveMapping *density_curve;
float velscale;
} PointDensityRangeData;
static float density_falloff(PointDensityRangeData *pdr, int index, float squared_dist)
{
const float dist = (pdr->squared_radius - squared_dist) / pdr->squared_radius * 0.5f;
float density = 0.0f;
switch (pdr->falloff_type) {
case TEX_PD_FALLOFF_STD:
density = dist;
break;
case TEX_PD_FALLOFF_SMOOTH:
density = 3.0f * dist * dist - 2.0f * dist * dist * dist;
break;
case TEX_PD_FALLOFF_SOFT:
density = pow(dist, pdr->softness);
break;
case TEX_PD_FALLOFF_CONSTANT:
density = pdr->squared_radius;
break;
case TEX_PD_FALLOFF_ROOT:
density = sqrtf(dist);
break;
case TEX_PD_FALLOFF_PARTICLE_AGE:
if (pdr->point_data_life) {
density = dist * MIN2(pdr->point_data_life[index], 1.0f);
}
else {
density = dist;
}
break;
case TEX_PD_FALLOFF_PARTICLE_VEL:
if (pdr->point_data_velocity) {
density = dist * len_v3(&pdr->point_data_velocity[index * 3]) * pdr->velscale;
}
else {
density = dist;
}
break;
}
if (pdr->density_curve && dist != 0.0f) {
BKE_curvemapping_init(pdr->density_curve);
density = BKE_curvemapping_evaluateF(pdr->density_curve, 0, density / dist) * dist;
}
return density;
}
static void accum_density(void *userdata, int index, const float co[3], float squared_dist)
{
PointDensityRangeData *pdr = (PointDensityRangeData *)userdata;
float density = 0.0f;
UNUSED_VARS(co);
if (pdr->point_data_velocity) {
pdr->vec[0] += pdr->point_data_velocity[index * 3 + 0]; // * density;
pdr->vec[1] += pdr->point_data_velocity[index * 3 + 1]; // * density;
pdr->vec[2] += pdr->point_data_velocity[index * 3 + 2]; // * density;
}
if (pdr->point_data_life) {
*pdr->age += pdr->point_data_life[index]; // * density;
}
if (pdr->point_data_color) {
add_v3_v3(pdr->col, &pdr->point_data_color[index * 3]); // * density;
}
density = density_falloff(pdr, index, squared_dist);
*pdr->density += density;
}
static void init_pointdensityrangedata(PointDensity *pd,
PointDensityRangeData *pdr,
float *density,
float *vec,
float *age,
float *col,
struct CurveMapping *density_curve,
float velscale)
{
pdr->squared_radius = pd->radius * pd->radius;
pdr->density = density;
pdr->falloff_type = pd->falloff_type;
pdr->vec = vec;
pdr->age = age;
pdr->col = col;
pdr->softness = pd->falloff_softness;
pdr->noise_influence = pd->noise_influence;
point_data_pointers(
pd, &pdr->point_data_velocity, &pdr->point_data_life, &pdr->point_data_color);
pdr->density_curve = density_curve;
pdr->velscale = velscale;
}
static int pointdensity(PointDensity *pd,
const float texvec[3],
TexResult *texres,
float r_vec[3],
float *r_age,
float r_col[3])
{
int retval = TEX_INT;
PointDensityRangeData pdr;
float density = 0.0f, age = 0.0f;
float vec[3] = {0.0f, 0.0f, 0.0f}, col[3] = {0.0f, 0.0f, 0.0f}, co[3];
float turb, noise_fac;
int num = 0;
texres->tin = 0.0f;
init_pointdensityrangedata(pd,
&pdr,
&density,
vec,
&age,
col,
(pd->flag & TEX_PD_FALLOFF_CURVE ? pd->falloff_curve : NULL),
pd->falloff_speed_scale * 0.001f);
noise_fac = pd->noise_fac * 0.5f; /* better default */
copy_v3_v3(co, texvec);
if (point_data_used(pd)) {
/* does a BVH lookup to find accumulated density and additional point data *
* stores particle velocity vector in 'vec', and particle lifetime in 'time' */
num = BLI_bvhtree_range_query(pd->point_tree, co, pd->radius, accum_density, &pdr);
if (num > 0) {
age /= num;
mul_v3_fl(vec, 1.0f / num);
mul_v3_fl(col, 1.0f / num);
}
/* reset */
density = 0.0f;
zero_v3(vec);
zero_v3(col);
}
if (pd->flag & TEX_PD_TURBULENCE) {
turb = BLI_noise_generic_turbulence(pd->noise_size,
texvec[0] + vec[0],
texvec[1] + vec[1],
texvec[2] + vec[2],
pd->noise_depth,
0,
pd->noise_basis);
turb -= 0.5f; /* re-center 0.0-1.0 range around 0 to prevent offsetting result */
/* now we have an offset coordinate to use for the density lookup */
co[0] = texvec[0] + noise_fac * turb;
co[1] = texvec[1] + noise_fac * turb;
co[2] = texvec[2] + noise_fac * turb;
}
/* BVH query with the potentially perturbed coordinates */
num = BLI_bvhtree_range_query(pd->point_tree, co, pd->radius, accum_density, &pdr);
if (num > 0) {
age /= num;
mul_v3_fl(vec, 1.0f / num);
mul_v3_fl(col, 1.0f / num);
}
texres->tin = density;
if (r_age != NULL) {
*r_age = age;
}
if (r_vec != NULL) {
copy_v3_v3(r_vec, vec);
}
if (r_col != NULL) {
copy_v3_v3(r_col, col);
}
return retval;
}
static void pointdensity_color(
PointDensity *pd, TexResult *texres, float age, const float vec[3], const float col[3])
{
copy_v4_fl(texres->trgba, 1.0f);
if (pd->source == TEX_PD_PSYS) {
float rgba[4];
switch (pd->color_source) {
case TEX_PD_COLOR_PARTAGE:
if (pd->coba) {
if (BKE_colorband_evaluate(pd->coba, age, rgba)) {
texres->talpha = true;
copy_v3_v3(texres->trgba, rgba);
texres->tin *= rgba[3];
texres->trgba[3] = texres->tin;
}
}
break;
case TEX_PD_COLOR_PARTSPEED: {
float speed = len_v3(vec) * pd->speed_scale;
if (pd->coba) {
if (BKE_colorband_evaluate(pd->coba, speed, rgba)) {
texres->talpha = true;
copy_v3_v3(texres->trgba, rgba);
texres->tin *= rgba[3];
texres->trgba[3] = texres->tin;
}
}
break;
}
case TEX_PD_COLOR_PARTVEL:
texres->talpha = true;
mul_v3_v3fl(texres->trgba, vec, pd->speed_scale);
texres->trgba[3] = texres->tin;
break;
case TEX_PD_COLOR_CONSTANT:
default:
break;
}
}
else {
float rgba[4];
switch (pd->ob_color_source) {
case TEX_PD_COLOR_VERTCOL:
texres->talpha = true;
copy_v3_v3(texres->trgba, col);
texres->trgba[3] = texres->tin;
break;
case TEX_PD_COLOR_VERTWEIGHT:
texres->talpha = true;
if (pd->coba && BKE_colorband_evaluate(pd->coba, col[0], rgba)) {
copy_v3_v3(texres->trgba, rgba);
texres->tin *= rgba[3];
}
else {
copy_v3_v3(texres->trgba, col);
}
texres->trgba[3] = texres->tin;
break;
case TEX_PD_COLOR_VERTNOR:
texres->talpha = true;
copy_v3_v3(texres->trgba, col);
texres->trgba[3] = texres->tin;
break;
case TEX_PD_COLOR_CONSTANT:
default:
break;
}
}
}
static void sample_dummy_point_density(int resolution, float *values)
{
memset(values, 0, sizeof(float[4]) * resolution * resolution * resolution);
}
static void particle_system_minmax(Depsgraph *depsgraph,
Scene *scene,
Object *object,
ParticleSystem *psys,
float radius,
float min[3],
float max[3])
{
const float size[3] = {radius, radius, radius};
const float cfra = BKE_scene_ctime_get(scene);
ParticleSettings *part = psys->part;
ParticleSimulationData sim = {NULL};
ParticleData *pa = NULL;
int i;
int total_particles;
float mat[4][4], imat[4][4];
INIT_MINMAX(min, max);
if (part->type == PART_HAIR) {
/* TODO(sergey): Not supported currently. */
return;
}
unit_m4(mat);
sim.depsgraph = depsgraph;
sim.scene = scene;
sim.ob = object;
sim.psys = psys;
sim.psmd = psys_get_modifier(object, psys);
invert_m4_m4(imat, object->object_to_world);
total_particles = psys->totpart + psys->totchild;
psys_sim_data_init(&sim);
for (i = 0, pa = psys->particles; i < total_particles; i++, pa++) {
float co_object[3], co_min[3], co_max[3];
ParticleKey state;
state.time = cfra;
if (!psys_get_particle_state(&sim, i, &state, 0)) {
continue;
}
mul_v3_m4v3(co_object, imat, state.co);
sub_v3_v3v3(co_min, co_object, size);
add_v3_v3v3(co_max, co_object, size);
minmax_v3v3_v3(min, max, co_min);
minmax_v3v3_v3(min, max, co_max);
}
psys_sim_data_free(&sim);
}
void RE_point_density_cache(struct Depsgraph *depsgraph, PointDensity *pd)
{
Scene *scene = DEG_get_evaluated_scene(depsgraph);
/* Same matrices/resolution as dupli_render_particle_set(). */
BLI_mutex_lock(&sample_mutex);
cache_pointdensity(depsgraph, scene, pd);
BLI_mutex_unlock(&sample_mutex);
}
void RE_point_density_minmax(struct Depsgraph *depsgraph,
struct PointDensity *pd,
float r_min[3],
float r_max[3])
{
Scene *scene = DEG_get_evaluated_scene(depsgraph);
Object *object = pd->object;
if (object == NULL) {
zero_v3(r_min);
zero_v3(r_max);
return;
}
if (pd->source == TEX_PD_PSYS) {
ParticleSystem *psys;
if (pd->psys == 0) {
zero_v3(r_min);
zero_v3(r_max);
return;
}
psys = BLI_findlink(&object->particlesystem, pd->psys - 1);
if (psys == NULL) {
zero_v3(r_min);
zero_v3(r_max);
return;
}
particle_system_minmax(depsgraph, scene, object, psys, pd->radius, r_min, r_max);
}
else {
const float radius[3] = {pd->radius, pd->radius, pd->radius};
const BoundBox *bb = BKE_object_boundbox_get(object);
if (bb != NULL) {
BLI_assert((bb->flag & BOUNDBOX_DIRTY) == 0);
copy_v3_v3(r_min, bb->vec[0]);
copy_v3_v3(r_max, bb->vec[6]);
/* Adjust texture space to include density points on the boundaries. */
sub_v3_v3(r_min, radius);
add_v3_v3(r_max, radius);
}
else {
zero_v3(r_min);
zero_v3(r_max);
}
}
}
typedef struct SampleCallbackData {
PointDensity *pd;
int resolution;
float *min, *dim;
float *values;
} SampleCallbackData;
static void point_density_sample_func(void *__restrict data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
SampleCallbackData *data = (SampleCallbackData *)data_v;
const int resolution = data->resolution;
const int resolution2 = resolution * resolution;
const float *min = data->min, *dim = data->dim;
PointDensity *pd = data->pd;
float *values = data->values;
if (!pd || !pd->point_tree) {
return;
}
size_t z = (size_t)iter;
for (size_t y = 0; y < resolution; y++) {
for (size_t x = 0; x < resolution; x++) {
size_t index = z * resolution2 + y * resolution + x;
float texvec[3];
float age, vec[3], col[3];
TexResult texres;
copy_v3_v3(texvec, min);
texvec[0] += dim[0] * (float)x / (float)resolution;
texvec[1] += dim[1] * (float)y / (float)resolution;
texvec[2] += dim[2] * (float)z / (float)resolution;
pointdensity(pd, texvec, &texres, vec, &age, col);
pointdensity_color(pd, &texres, age, vec, col);
copy_v3_v3(&values[index * 4 + 0], texres.trgba);
values[index * 4 + 3] = texres.tin;
}
}
}
void RE_point_density_sample(Depsgraph *depsgraph,
PointDensity *pd,
const int resolution,
float *values)
{
Object *object = pd->object;
float min[3], max[3], dim[3];
/* TODO(sergey): Implement some sort of assert() that point density
* was cached already.
*/
if (object == NULL) {
sample_dummy_point_density(resolution, values);
return;
}
BLI_mutex_lock(&sample_mutex);
RE_point_density_minmax(depsgraph, pd, min, max);
BLI_mutex_unlock(&sample_mutex);
sub_v3_v3v3(dim, max, min);
if (dim[0] <= 0.0f || dim[1] <= 0.0f || dim[2] <= 0.0f) {
sample_dummy_point_density(resolution, values);
return;
}
SampleCallbackData data;
data.pd = pd;
data.resolution = resolution;
data.min = min;
data.dim = dim;
data.values = values;
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (resolution > 32);
BLI_task_parallel_range(0, resolution, &data, point_density_sample_func, &settings);
free_pointdensity(pd);
}
void RE_point_density_free(struct PointDensity *pd)
{
free_pointdensity(pd);
}
void RE_point_density_fix_linking(void)
{
}