This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/nodes/intern/CMP_nodes/CMP_blur.c
2008-02-28 15:23:44 +00:00

693 lines
16 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2006 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Campbell Barton, Alfredo de Greef, David Millan Escriva,
* Juho Vepsäläinen
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "../CMP_util.h"
/* **************** BLUR ******************** */
static bNodeSocketType cmp_node_blur_in[]= {
{ SOCK_RGBA, 1, "Image", 0.8f, 0.8f, 0.8f, 1.0f, 0.0f, 1.0f},
{ SOCK_VALUE, 1, "Size", 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f},
{ -1, 0, "" }
};
static bNodeSocketType cmp_node_blur_out[]= {
{ SOCK_RGBA, 0, "Image", 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f},
{ -1, 0, "" }
};
static float *make_gausstab(int filtertype, int rad)
{
float *gausstab, sum, val;
int i, n;
n = 2 * rad + 1;
gausstab = (float *) MEM_mallocN(n * sizeof(float), "gauss");
sum = 0.0f;
for (i = -rad; i <= rad; i++) {
val= RE_filter_value(filtertype, (float)i/(float)rad);
sum += val;
gausstab[i+rad] = val;
}
sum= 1.0f/sum;
for(i=0; i<n; i++)
gausstab[i]*= sum;
return gausstab;
}
static float *make_bloomtab(int rad)
{
float *bloomtab, val;
int i, n;
n = 2 * rad + 1;
bloomtab = (float *) MEM_mallocN(n * sizeof(float), "bloom");
for (i = -rad; i <= rad; i++) {
val = pow(1.0 - fabs((float)i)/((float)rad), 4.0);
bloomtab[i+rad] = val;
}
return bloomtab;
}
/* both input images of same type, either 4 or 1 channel */
static void blur_single_image(bNode *node, CompBuf *new, CompBuf *img, float scale)
{
NodeBlurData *nbd= node->storage;
CompBuf *work;
register float sum, val;
float rval, gval, bval, aval;
float *gausstab, *gausstabcent;
int rad, imgx= img->x, imgy= img->y;
int x, y, pix= img->type;
int i, bigstep;
float *src, *dest;
/* helper image */
work= alloc_compbuf(imgx, imgy, img->type, 1); /* allocs */
/* horizontal */
rad = scale*(float)nbd->sizex;
if(rad>imgx/2)
rad= imgx/2;
else if(rad<1)
rad= 1;
gausstab= make_gausstab(nbd->filtertype, rad);
gausstabcent= gausstab+rad;
for (y = 0; y < imgy; y++) {
float *srcd= img->rect + pix*(y*img->x);
dest = work->rect + pix*(y * img->x);
for (x = 0; x < imgx ; x++) {
int minr= x-rad<0?-x:-rad;
int maxr= x+rad>imgx?imgx-x:rad;
src= srcd + pix*(x+minr);
sum= gval = rval= bval= aval= 0.0f;
for (i= minr; i < maxr; i++) {
val= gausstabcent[i];
sum+= val;
rval += val * (*src++);
if(pix==4) {
gval += val * (*src++);
bval += val * (*src++);
aval += val * (*src++);
}
}
sum= 1.0f/sum;
*dest++ = rval*sum;
if(pix==4) {
*dest++ = gval*sum;
*dest++ = bval*sum;
*dest++ = aval*sum;
}
}
if(node->exec & NODE_BREAK)
break;
}
/* vertical */
MEM_freeN(gausstab);
rad = scale*(float)nbd->sizey;
if(rad>imgy/2)
rad= imgy/2;
else if(rad<1)
rad= 1;
gausstab= make_gausstab(nbd->filtertype, rad);
gausstabcent= gausstab+rad;
bigstep = pix*imgx;
for (x = 0; x < imgx; x++) {
float *srcd= work->rect + pix*x;
dest = new->rect + pix*x;
for (y = 0; y < imgy ; y++) {
int minr= y-rad<0?-y:-rad;
int maxr= y+rad>imgy?imgy-y:rad;
src= srcd + bigstep*(y+minr);
sum= gval = rval= bval= aval= 0.0f;
for (i= minr; i < maxr; i++) {
val= gausstabcent[i];
sum+= val;
rval += val * src[0];
if(pix==4) {
gval += val * src[1];
bval += val * src[2];
aval += val * src[3];
}
src += bigstep;
}
sum= 1.0f/sum;
dest[0] = rval*sum;
if(pix==4) {
dest[1] = gval*sum;
dest[2] = bval*sum;
dest[3] = aval*sum;
}
dest+= bigstep;
}
if(node->exec & NODE_BREAK)
break;
}
free_compbuf(work);
MEM_freeN(gausstab);
}
/* reference has to be mapped 0-1, and equal in size */
static void bloom_with_reference(CompBuf *new, CompBuf *img, CompBuf *ref, float fac, NodeBlurData *nbd)
{
CompBuf *wbuf;
register float val;
float radxf, radyf;
float **maintabs;
float *gausstabx, *gausstabcenty;
float *gausstaby, *gausstabcentx;
int radx, rady, imgx= img->x, imgy= img->y;
int x, y;
int i, j;
float *src, *dest, *wb;
wbuf= alloc_compbuf(imgx, imgy, CB_VAL, 1);
/* horizontal */
radx = (float)nbd->sizex;
if(radx>imgx/2)
radx= imgx/2;
else if(radx<1)
radx= 1;
/* vertical */
rady = (float)nbd->sizey;
if(rady>imgy/2)
rady= imgy/2;
else if(rady<1)
rady= 1;
x= MAX2(radx, rady);
maintabs= MEM_mallocN(x*sizeof(void *), "gauss array");
for(i= 0; i<x; i++)
maintabs[i]= make_bloomtab(i+1);
/* vars to store before we go */
// refd= ref->rect;
src= img->rect;
radxf= (float)radx;
radyf= (float)rady;
for (y = 0; y < imgy; y++) {
for (x = 0; x < imgx ; x++, src+=4) {//, refd++) {
// int refradx= (int)(refd[0]*radxf);
// int refrady= (int)(refd[0]*radyf);
int refradx= (int)(radxf*0.3f*src[3]*(src[0]+src[1]+src[2]));
int refrady= (int)(radyf*0.3f*src[3]*(src[0]+src[1]+src[2]));
if(refradx>radx) refradx= radx;
else if(refradx<1) refradx= 1;
if(refrady>rady) refrady= rady;
else if(refrady<1) refrady= 1;
if(refradx==1 && refrady==1) {
wb= wbuf->rect + ( y*imgx + x);
dest= new->rect + 4*( y*imgx + x);
wb[0]+= 1.0f;
dest[0] += src[0];
dest[1] += src[1];
dest[2] += src[2];
dest[3] += src[3];
}
else {
int minxr= x-refradx<0?-x:-refradx;
int maxxr= x+refradx>imgx?imgx-x:refradx;
int minyr= y-refrady<0?-y:-refrady;
int maxyr= y+refrady>imgy?imgy-y:refrady;
float *destd= new->rect + 4*( (y + minyr)*imgx + x + minxr);
float *wbufd= wbuf->rect + ( (y + minyr)*imgx + x + minxr);
gausstabx= maintabs[refradx-1];
gausstabcentx= gausstabx+refradx;
gausstaby= maintabs[refrady-1];
gausstabcenty= gausstaby+refrady;
for (i= minyr; i < maxyr; i++, destd+= 4*imgx, wbufd+= imgx) {
dest= destd;
wb= wbufd;
for (j= minxr; j < maxxr; j++, dest+=4, wb++) {
val= gausstabcenty[i]*gausstabcentx[j];
wb[0]+= val;
dest[0] += val * src[0];
dest[1] += val * src[1];
dest[2] += val * src[2];
dest[3] += val * src[3];
}
}
}
}
}
x= imgx*imgy;
dest= new->rect;
wb= wbuf->rect;
while(x--) {
val= 1.0f/wb[0];
dest[0]*= val;
dest[1]*= val;
dest[2]*= val;
dest[3]*= val;
wb++;
dest+= 4;
}
free_compbuf(wbuf);
x= MAX2(radx, rady);
for(i= 0; i<x; i++)
MEM_freeN(maintabs[i]);
MEM_freeN(maintabs);
}
#if 0
static float hexagon_filter(float fi, float fj)
{
fi= fabs(fi);
fj= fabs(fj);
if(fj>0.33f) {
fj= (fj-0.33f)/0.66f;
if(fi+fj>1.0f)
return 0.0f;
else
return 1.0f;
}
else return 1.0f;
}
#endif
/* uses full filter, no horizontal/vertical optimize possible */
/* both images same type, either 1 or 4 channels */
static void bokeh_single_image(bNode *node, CompBuf *new, CompBuf *img, float fac)
{
NodeBlurData *nbd= node->storage;
register float val;
float radxf, radyf;
float *gausstab, *dgauss;
int radx, rady, imgx= img->x, imgy= img->y;
int x, y, pix= img->type;
int i, j, n;
float *src= NULL, *dest, *srcd= NULL;
/* horizontal */
radxf = fac*(float)nbd->sizex;
if(radxf>imgx/2.0f)
radxf= imgx/2.0f;
else if(radxf<1.0f)
radxf= 1.0f;
/* vertical */
radyf = fac*(float)nbd->sizey;
if(radyf>imgy/2.0f)
radyf= imgy/2.0f;
else if(radyf<1.0f)
radyf= 1.0f;
radx= ceil(radxf);
rady= ceil(radyf);
n = (2*radx+1)*(2*rady+1);
/* create a full filter image */
gausstab= MEM_mallocN(sizeof(float)*n, "filter tab");
dgauss= gausstab;
val= 0.0f;
for(j=-rady; j<=rady; j++) {
for(i=-radx; i<=radx; i++, dgauss++) {
float fj= (float)j/radyf;
float fi= (float)i/radxf;
float dist= sqrt(fj*fj + fi*fi);
//*dgauss= hexagon_filter(fi, fj);
*dgauss= RE_filter_value(nbd->filtertype, 2.0f*dist - 1.0f);
val+= *dgauss;
}
}
if(val!=0.0f) {
val= 1.0f/val;
for(j= n -1; j>=0; j--)
gausstab[j]*= val;
}
else gausstab[4]= 1.0f;
for (y = -rady+1; y < imgy+rady-1; y++) {
if(y<=0) srcd= img->rect;
else if(y<imgy) srcd+= pix*imgx;
else srcd= img->rect + pix*(imgy-1)*imgx;
for (x = -radx+1; x < imgx+radx-1 ; x++) {
int minxr= x-radx<0?-x:-radx;
int maxxr= x+radx>=imgx?imgx-x-1:radx;
int minyr= y-rady<0?-y:-rady;
int maxyr= y+rady>imgy-1?imgy-y-1:rady;
float *destd= new->rect + pix*( (y + minyr)*imgx + x + minxr);
float *dgausd= gausstab + (minyr+rady)*(2*radx+1) + minxr+radx;
if(x<=0) src= srcd;
else if(x<imgx) src+= pix;
else src= srcd + pix*(imgx-1);
for (i= minyr; i <=maxyr; i++, destd+= pix*imgx, dgausd+= 2*radx + 1) {
dest= destd;
dgauss= dgausd;
for (j= minxr; j <=maxxr; j++, dest+=pix, dgauss++) {
val= *dgauss;
if(val!=0.0f) {
dest[0] += val * src[0];
if(pix>1) {
dest[1] += val * src[1];
dest[2] += val * src[2];
dest[3] += val * src[3];
}
}
}
}
}
if(node->exec & NODE_BREAK)
break;
}
MEM_freeN(gausstab);
}
/* reference has to be mapped 0-1, and equal in size */
static void blur_with_reference(bNode *node, CompBuf *new, CompBuf *img, CompBuf *ref)
{
NodeBlurData *nbd= node->storage;
CompBuf *blurbuf, *ref_use;
register float sum, val;
float rval, gval, bval, aval, radxf, radyf;
float **maintabs;
float *gausstabx, *gausstabcenty;
float *gausstaby, *gausstabcentx;
int radx, rady, imgx= img->x, imgy= img->y;
int x, y, pix= img->type;
int i, j;
float *src, *dest, *refd, *blurd;
if(ref->x!=img->x && ref->y!=img->y)
return;
ref_use= typecheck_compbuf(ref, CB_VAL);
/* trick is; we blur the reference image... but only works with clipped values*/
blurbuf= alloc_compbuf(imgx, imgy, CB_VAL, 1);
blurd= blurbuf->rect;
refd= ref_use->rect;
for(x= imgx*imgy; x>0; x--, refd++, blurd++) {
if(refd[0]<0.0f) blurd[0]= 0.0f;
else if(refd[0]>1.0f) blurd[0]= 1.0f;
else blurd[0]= refd[0];
}
blur_single_image(node, blurbuf, blurbuf, 1.0f);
/* horizontal */
radx = (float)nbd->sizex;
if(radx>imgx/2)
radx= imgx/2;
else if(radx<1)
radx= 1;
/* vertical */
rady = (float)nbd->sizey;
if(rady>imgy/2)
rady= imgy/2;
else if(rady<1)
rady= 1;
x= MAX2(radx, rady);
maintabs= MEM_mallocN(x*sizeof(void *), "gauss array");
for(i= 0; i<x; i++)
maintabs[i]= make_gausstab(nbd->filtertype, i+1);
refd= blurbuf->rect;
dest= new->rect;
radxf= (float)radx;
radyf= (float)rady;
for (y = 0; y < imgy; y++) {
for (x = 0; x < imgx ; x++, dest+=pix, refd++) {
int refradx= (int)(refd[0]*radxf);
int refrady= (int)(refd[0]*radyf);
if(refradx>radx) refradx= radx;
else if(refradx<1) refradx= 1;
if(refrady>rady) refrady= rady;
else if(refrady<1) refrady= 1;
if(refradx==1 && refrady==1) {
src= img->rect + pix*( y*imgx + x);
if(pix==1)
dest[0]= src[0];
else
QUATCOPY(dest, src);
}
else {
int minxr= x-refradx<0?-x:-refradx;
int maxxr= x+refradx>imgx?imgx-x:refradx;
int minyr= y-refrady<0?-y:-refrady;
int maxyr= y+refrady>imgy?imgy-y:refrady;
float *srcd= img->rect + pix*( (y + minyr)*imgx + x + minxr);
gausstabx= maintabs[refradx-1];
gausstabcentx= gausstabx+refradx;
gausstaby= maintabs[refrady-1];
gausstabcenty= gausstaby+refrady;
sum= gval = rval= bval= aval= 0.0f;
for (i= minyr; i < maxyr; i++, srcd+= pix*imgx) {
src= srcd;
for (j= minxr; j < maxxr; j++, src+=pix) {
val= gausstabcenty[i]*gausstabcentx[j];
sum+= val;
rval += val * src[0];
if(pix>1) {
gval += val * src[1];
bval += val * src[2];
aval += val * src[3];
}
}
}
sum= 1.0f/sum;
dest[0] = rval*sum;
if(pix>1) {
dest[1] = gval*sum;
dest[2] = bval*sum;
dest[3] = aval*sum;
}
}
}
if(node->exec & NODE_BREAK)
break;
}
free_compbuf(blurbuf);
x= MAX2(radx, rady);
for(i= 0; i<x; i++)
MEM_freeN(maintabs[i]);
MEM_freeN(maintabs);
if(ref_use!=ref)
free_compbuf(ref_use);
}
static void node_composit_exec_blur(void *data, bNode *node, bNodeStack **in, bNodeStack **out)
{
CompBuf *new, *img= in[0]->data;
NodeBlurData *nbd= node->storage;
if(img==NULL) return;
/* store image in size that is needed for absolute/relative conversions on ui level */
nbd->image_in_width= img->x;
nbd->image_in_height= img->y;
if(out[0]->hasoutput==0) return;
if (((NodeBlurData *)node->storage)->filtertype == R_FILTER_FAST_GAUSS) {
CompBuf *new, *img = in[0]->data;
/*from eeshlo's original patch, removed to fit in with the existing blur node */
/*const float sx = in[1]->vec[0], sy = in[2]->vec[0];*/
const float sx = ((float)nbd->sizex)/2.0f, sy = ((float)nbd->sizey)/2.0f;
int c;
if ((img==NULL) || (out[0]->hasoutput==0)) return;
if (img->type == CB_VEC2)
new = typecheck_compbuf(img, CB_VAL);
else if (img->type == CB_VEC3)
new = typecheck_compbuf(img, CB_RGBA);
else
new = dupalloc_compbuf(img);
if ((sx == sy) && (sx > 0.f)) {
for (c=0; c<new->type; ++c)
IIR_gauss(new, sx, c, 3);
}
else {
if (sx > 0.f) {
for (c=0; c<new->type; ++c)
IIR_gauss(new, sx, c, 1);
}
if (sy > 0.f) {
for (c=0; c<new->type; ++c)
IIR_gauss(new, sy, c, 2);
}
}
out[0]->data = new;
} else {
/* All non fast gauss blur methods */
if(img->type==CB_VEC2 || img->type==CB_VEC3) {
img= typecheck_compbuf(in[0]->data, CB_RGBA);
}
/* if fac input, we do it different */
if(in[1]->data) {
/* make output size of input image */
new= alloc_compbuf(img->x, img->y, img->type, 1); /* allocs */
/* accept image offsets from other nodes */
new->xof = img->xof;
new->yof = img->yof;
blur_with_reference(node, new, img, in[1]->data);
if(node->exec & NODE_BREAK) {
free_compbuf(new);
new= NULL;
}
out[0]->data= new;
}
else {
if(in[1]->vec[0]<=0.001f) { /* time node inputs can be a tiny value */
new= pass_on_compbuf(img);
}
else {
NodeBlurData *nbd= node->storage;
CompBuf *gammabuf;
/* make output size of input image */
new= alloc_compbuf(img->x, img->y, img->type, 1); /* allocs */
/* accept image offsets from other nodes */
new->xof = img->xof;
new->yof = img->yof;
if(nbd->gamma) {
gammabuf= dupalloc_compbuf(img);
gamma_correct_compbuf(gammabuf, 0);
}
else gammabuf= img;
if(nbd->bokeh)
bokeh_single_image(node, new, gammabuf, in[1]->vec[0]);
else if(1)
blur_single_image(node, new, gammabuf, in[1]->vec[0]);
else /* bloom experimental... */
bloom_with_reference(new, gammabuf, NULL, in[1]->vec[0], nbd);
if(nbd->gamma) {
gamma_correct_compbuf(new, 1);
free_compbuf(gammabuf);
}
if(node->exec & NODE_BREAK) {
free_compbuf(new);
new= NULL;
}
}
out[0]->data= new;
}
if(img!=in[0]->data)
free_compbuf(img);
}
}
static void node_composit_init_blur(bNode* node)
{
node->storage= MEM_callocN(sizeof(NodeBlurData), "node blur data");
}
bNodeType cmp_node_blur= {
/* *next,*prev */ NULL, NULL,
/* type code */ CMP_NODE_BLUR,
/* name */ "Blur",
/* width+range */ 120, 80, 200,
/* class+opts */ NODE_CLASS_OP_FILTER, NODE_OPTIONS,
/* input sock */ cmp_node_blur_in,
/* output sock */ cmp_node_blur_out,
/* storage */ "NodeBlurData",
/* execfunc */ node_composit_exec_blur,
/* butfunc */ NULL,
/* initfunc */ node_composit_init_blur,
/* freestoragefunc */ node_free_standard_storage,
/* copystoragefunc */ node_copy_standard_storage,
/* id */ NULL
};