This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/bmesh/operators/bmo_connect.c
Campbell Barton dbdc76c9d0 code cleanup: make bmesh operator names more consistant since python has access to these as input arguments and return values.
all output values currently have ".out" suffix, this may go in the future, but for now it makes it clear in C code what are inputs and outputs.
2012-11-20 05:50:19 +00:00

534 lines
15 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Joseph Eagar.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/bmesh/operators/bmo_connect.c
* \ingroup bmesh
*/
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_array.h"
#include "BLI_utildefines.h"
#include "bmesh.h"
#include "intern/bmesh_operators_private.h" /* own include */
#define VERT_INPUT 1
#define EDGE_OUT 1
#define FACE_NEW 2
#define EDGE_MARK 4
#define EDGE_DONE 8
#define FACE_OUT 16
void bmo_connect_verts_exec(BMesh *bm, BMOperator *op)
{
BMIter iter, liter;
BMFace *f, *nf;
BMLoop *(*loops_split)[2] = NULL;
BLI_array_declare(loops_split);
BMLoop *l, *nl, *lastl = NULL;
BMVert *(*verts_pair)[2] = NULL;
BLI_array_declare(verts_pair);
int i;
BMO_slot_buffer_flag_enable(bm, op->slots_in, "verts", BM_VERT, VERT_INPUT);
for (f = BM_iter_new(&iter, bm, BM_FACES_OF_MESH, NULL); f; f = BM_iter_step(&iter)) {
BLI_array_empty(loops_split);
BLI_array_empty(verts_pair);
if (BMO_elem_flag_test(bm, f, FACE_NEW)) {
continue;
}
l = BM_iter_new(&liter, bm, BM_LOOPS_OF_FACE, f);
lastl = NULL;
for ( ; l; l = BM_iter_step(&liter)) {
if (BMO_elem_flag_test(bm, l->v, VERT_INPUT)) {
if (!lastl) {
lastl = l;
continue;
}
if (lastl != l->prev && lastl != l->next) {
BLI_array_grow_one(loops_split);
loops_split[BLI_array_count(loops_split) - 1][0] = lastl;
loops_split[BLI_array_count(loops_split) - 1][1] = l;
}
lastl = l;
}
}
if (BLI_array_count(loops_split) == 0) {
continue;
}
if (BLI_array_count(loops_split) > 1) {
BLI_array_grow_one(loops_split);
loops_split[BLI_array_count(loops_split) - 1][0] = loops_split[BLI_array_count(loops_split) - 2][1];
loops_split[BLI_array_count(loops_split) - 1][1] = loops_split[0][0];
}
BM_face_legal_splits(bm, f, loops_split, BLI_array_count(loops_split));
for (i = 0; i < BLI_array_count(loops_split); i++) {
if (loops_split[i][0] == NULL) {
continue;
}
BLI_array_grow_one(verts_pair);
verts_pair[BLI_array_count(verts_pair) - 1][0] = loops_split[i][0]->v;
verts_pair[BLI_array_count(verts_pair) - 1][1] = loops_split[i][1]->v;
}
for (i = 0; i < BLI_array_count(verts_pair); i++) {
nf = BM_face_split(bm, f, verts_pair[i][0], verts_pair[i][1], &nl, NULL, FALSE);
f = nf;
if (!nl || !nf) {
BMO_error_raise(bm, op, BMERR_CONNECTVERT_FAILED, NULL);
BLI_array_free(loops_split);
return;
}
BMO_elem_flag_enable(bm, nf, FACE_NEW);
BMO_elem_flag_enable(bm, nl->e, EDGE_OUT);
}
}
BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "edges.out", BM_EDGE, EDGE_OUT);
BLI_array_free(loops_split);
BLI_array_free(verts_pair);
}
static BMVert *get_outer_vert(BMesh *bm, BMEdge *e)
{
BMIter iter;
BMEdge *e2;
int i;
i = 0;
BM_ITER_ELEM (e2, &iter, e->v1, BM_EDGES_OF_VERT) {
if (BMO_elem_flag_test(bm, e2, EDGE_MARK)) {
i++;
}
}
return (i == 2) ? e->v2 : e->v1;
}
/* Clamp x to the interval {0..len-1}, with wrap-around */
static int clamp_index(const int x, const int len)
{
if (x >= 0) {
return x % len;
}
else {
int r = len - (-x % len);
if (r == len)
return len - 1;
else
return r;
}
}
/* There probably is a better way to swap BLI_arrays, or if there
* isn't there should be... */
#define ARRAY_SWAP(elemtype, arr1, arr2) \
{ \
int i; \
elemtype *arr_tmp = NULL; \
BLI_array_declare(arr_tmp); \
for (i = 0; i < BLI_array_count(arr1); i++) { \
BLI_array_append(arr_tmp, arr1[i]); \
} \
BLI_array_empty(arr1); \
for (i = 0; i < BLI_array_count(arr2); i++) { \
BLI_array_append(arr1, arr2[i]); \
} \
BLI_array_empty(arr2); \
for (i = 0; i < BLI_array_count(arr_tmp); i++) { \
BLI_array_append(arr2, arr_tmp[i]); \
} \
BLI_array_free(arr_tmp); \
} (void)0
/* get the 2 loops matching 2 verts.
* first attempt to get the face corners that use the edge defined by v1 & v2,
* if that fails just get any loop thats on the vert (the first one) */
static void bm_vert_loop_pair(BMesh *bm, BMVert *v1, BMVert *v2, BMLoop **l1, BMLoop **l2)
{
BMIter liter;
BMLoop *l;
if ((v1->e && v1->e->l) &&
(v2->e && v2->e->l))
{
BM_ITER_ELEM (l, &liter, v1, BM_LOOPS_OF_VERT) {
if (l->prev->v == v2) {
*l1 = l;
*l2 = l->prev;
return;
}
else if (l->next->v == v2) {
*l1 = l;
*l2 = l->next;
return;
}
}
}
/* fallback to _any_ loop */
*l1 = BM_iter_at_index(bm, BM_LOOPS_OF_VERT, v1, 0);
*l2 = BM_iter_at_index(bm, BM_LOOPS_OF_VERT, v2, 0);
}
void bmo_bridge_loops_exec(BMesh *bm, BMOperator *op)
{
BMEdge **ee1 = NULL, **ee2 = NULL;
BMVert **vv1 = NULL, **vv2 = NULL;
BLI_array_declare(ee1);
BLI_array_declare(ee2);
BLI_array_declare(vv1);
BLI_array_declare(vv2);
BMOIter siter;
BMIter iter;
BMEdge *e, *nexte;
int c = 0, cl1 = 0, cl2 = 0;
/* merge-bridge support */
const int use_merge = BMO_slot_bool_get(op->slots_in, "use_merge");
const float merge_factor = BMO_slot_float_get(op->slots_in, "merge_factor");
BMO_slot_buffer_flag_enable(bm, op->slots_in, "edges", BM_EDGE, EDGE_MARK);
BMO_ITER (e, &siter, op->slots_in, "edges", BM_EDGE) {
if (!BMO_elem_flag_test(bm, e, EDGE_DONE)) {
BMVert *v, *ov;
/* BMEdge *e2, *e3, *oe = e; */ /* UNUSED */
BMEdge *e2, *e3;
if (c > 2) {
BMO_error_raise(bm, op, BMERR_INVALID_SELECTION, "Select only two edge loops");
goto cleanup;
}
e2 = e;
v = e->v1;
do {
v = BM_edge_other_vert(e2, v);
nexte = NULL;
BM_ITER_ELEM (e3, &iter, v, BM_EDGES_OF_VERT) {
if (e3 != e2 && BMO_elem_flag_test(bm, e3, EDGE_MARK)) {
if (nexte == NULL) {
nexte = e3;
}
else {
/* edges do not form a loop: there is a disk
* with more than two marked edges. */
BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
"Selection must only contain edges from two edge loops");
goto cleanup;
}
}
}
if (nexte)
e2 = nexte;
} while (nexte && e2 != e);
if (!e2)
e2 = e;
e = e2;
ov = v;
do {
if (c == 0) {
BLI_array_append(ee1, e2);
BLI_array_append(vv1, v);
}
else {
BLI_array_append(ee2, e2);
BLI_array_append(vv2, v);
}
BMO_elem_flag_enable(bm, e2, EDGE_DONE);
v = BM_edge_other_vert(e2, v);
BM_ITER_ELEM (e3, &iter, v, BM_EDGES_OF_VERT) {
if (e3 != e2 && BMO_elem_flag_test(bm, e3, EDGE_MARK) && !BMO_elem_flag_test(bm, e3, EDGE_DONE)) {
break;
}
}
if (e3)
e2 = e3;
} while (e3 && e2 != e);
if (v && !e3) {
if (c == 0) {
if (BLI_array_count(vv1) && v == vv1[BLI_array_count(vv1) - 1]) {
printf("%s: internal state waning *TODO DESCRIPTION!*\n", __func__);
}
BLI_array_append(vv1, v);
}
else {
BLI_array_append(vv2, v);
}
}
/* test for connected loops, and set cl1 or cl2 if so */
if (v == ov) {
if (c == 0) {
cl1 = 1;
}
else {
cl2 = 1;
}
}
c++;
}
}
if (ee1 && ee2) {
int i, j;
BMVert *v1, *v2, *v3, *v4;
int starti = 0, dir1 = 1, wdir = 0, lenv1, lenv2;
/* Simplify code below by avoiding the (!cl1 && cl2) case */
if (!cl1 && cl2) {
SWAP(int, cl1, cl2);
ARRAY_SWAP(BMVert *, vv1, vv2);
ARRAY_SWAP(BMEdge *, ee1, ee2);
}
lenv1 = lenv2 = BLI_array_count(vv1);
/* Below code assumes vv1/vv2 each have at least two verts. should always be
* a safe assumption, since ee1/ee2 are non-empty and an edge has two verts. */
BLI_assert((lenv1 > 1) && (lenv2 > 1));
/* BMESH_TODO: Would be nice to handle cases where the edge loops
* have different edge counts by generating triangles & quads for
* the bridge instead of quads only. */
if (BLI_array_count(ee1) != BLI_array_count(ee2)) {
BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
"Selected loops must have equal edge counts");
goto cleanup;
}
if (vv1[0] == vv1[lenv1 - 1]) {
lenv1--;
}
if (vv2[0] == vv2[lenv2 - 1]) {
lenv2--;
}
/* Find starting point and winding direction for two unclosed loops */
if (!cl1 && !cl2) {
/* First point of loop 1 */
v1 = get_outer_vert(bm, ee1[0]);
/* Last point of loop 1 */
v2 = get_outer_vert(bm, ee1[clamp_index(-1, BLI_array_count(ee1))]);
/* First point of loop 2 */
v3 = get_outer_vert(bm, ee2[0]);
/* Last point of loop 2 */
v4 = get_outer_vert(bm, ee2[clamp_index(-1, BLI_array_count(ee2))]);
/* If v1 is a better match for v4 than v3, AND v2 is a better match
* for v3 than v4, the loops are in opposite directions, so reverse
* the order of reads from vv1. We can avoid sqrt for comparison */
if (len_squared_v3v3(v1->co, v3->co) > len_squared_v3v3(v1->co, v4->co) &&
len_squared_v3v3(v2->co, v4->co) > len_squared_v3v3(v2->co, v3->co))
{
dir1 = -1;
starti = clamp_index(-1, lenv1);
}
}
/* Find the smallest sum of distances from verts in vv1 to verts in vv2,
* finding a starting point in the first loop, to start with vv2[0] in the
* second loop. This is a simplistic attempt to get a better edge-to-edge
* match between two loops. */
if (cl1) {
float min = 1e32;
for (i = 0; i < lenv1; i++) {
float len;
/* compute summed length between vertices in forward direction */
len = 0.0f;
for (j = 0; j < lenv2; j++) {
len += len_v3v3(vv1[clamp_index(i + j, lenv1)]->co, vv2[j]->co);
}
if (len < min) {
min = len;
starti = i;
}
/* compute summed length between vertices in backward direction */
len = 0.0f;
for (j = 0; j < lenv2; j++) {
len += len_v3v3(vv1[clamp_index(i - j, lenv1)]->co, vv2[j]->co);
}
if (len < min) {
min = len;
starti = i;
dir1 = -1;
}
}
}
/* Vert rough attempt to determine proper winding for the bridge quads:
* just uses the first loop it finds for any of the edges of ee2 or ee1 */
if (wdir == 0) {
for (i = 0; i < BLI_array_count(ee2); i++) {
if (ee2[i]->l) {
wdir = (ee2[i]->l->v == vv2[i]) ? (-1) : (1);
break;
}
}
}
if (wdir == 0) {
for (i = 0; i < BLI_array_count(ee1); i++) {
j = clamp_index((i * dir1) + starti, BLI_array_count(ee1));
if (ee1[j]->l && ee2[j]->l) {
wdir = (ee2[j]->l->v == vv2[j]) ? (1) : (-1);
break;
}
}
}
/* merge loops of bridge faces */
if (use_merge) {
const int vert_len = min_ii(BLI_array_count(vv1), BLI_array_count(vv2)) - ((cl1 || cl2) ? 1 : 0);
const int edge_len = min_ii(BLI_array_count(ee1), BLI_array_count(ee2));
if (merge_factor <= 0.0f) {
/* 2 --> 1 */
for (i = 0; i < vert_len; i++) {
BM_vert_splice(bm, vv2[i], vv1[i]);
}
for (i = 0; i < edge_len; i++) {
BM_edge_splice(bm, ee2[i], ee1[i]);
}
}
else if (merge_factor >= 1.0f) {
/* 1 --> 2 */
for (i = 0; i < vert_len; i++) {
BM_vert_splice(bm, vv1[i], vv2[i]);
}
for (i = 0; i < edge_len; i++) {
BM_edge_splice(bm, ee1[i], ee2[i]);
}
}
else {
/* mid factor, be tricky */
/* 1 --> 2 */
for (i = 0; i < vert_len; i++) {
BM_data_interp_from_verts(bm, vv1[i], vv2[i], vv2[i], merge_factor);
interp_v3_v3v3(vv2[i]->co, vv1[i]->co, vv2[i]->co, merge_factor);
BM_elem_flag_merge(vv1[i], vv2[i]);
BM_vert_splice(bm, vv1[i], vv2[i]);
}
for (i = 0; i < edge_len; i++) {
BM_data_interp_from_edges(bm, ee1[i], ee2[i], ee2[i], merge_factor);
BM_elem_flag_merge(ee1[i], ee2[i]);
BM_edge_splice(bm, ee1[i], ee2[i]);
}
}
}
else {
/* Generate the bridge quads */
for (i = 0; i < BLI_array_count(ee1) && i < BLI_array_count(ee2); i++) {
BMFace *f;
BMLoop *l_1 = NULL;
BMLoop *l_2 = NULL;
BMLoop *l_1_next = NULL;
BMLoop *l_2_next = NULL;
BMLoop *l_iter;
BMFace *f_example;
int i1, i1next, i2, i2next;
i1 = clamp_index(i * dir1 + starti, lenv1);
i1next = clamp_index((i + 1) * dir1 + starti, lenv1);
i2 = i;
i2next = clamp_index(i + 1, lenv2);
if (vv1[i1] == vv1[i1next]) {
continue;
}
if (wdir < 0) {
SWAP(int, i1, i1next);
SWAP(int, i2, i2next);
}
/* get loop data - before making the face */
bm_vert_loop_pair(bm, vv1[i1], vv2[i2], &l_1, &l_2);
bm_vert_loop_pair(bm, vv1[i1next], vv2[i2next], &l_1_next, &l_2_next);
/* copy if loop data if its is missing on one ring */
if (l_1 && l_1_next == NULL) l_1_next = l_1;
if (l_1_next && l_1 == NULL) l_1 = l_1_next;
if (l_2 && l_2_next == NULL) l_2_next = l_2;
if (l_2_next && l_2 == NULL) l_2 = l_2_next;
f_example = l_1 ? l_1->f : (l_2 ? l_2->f : NULL);
f = BM_face_create_quad_tri(bm,
vv1[i1],
vv2[i2],
vv2[i2next],
vv1[i1next],
f_example, TRUE);
if (UNLIKELY((f == NULL) || (f->len != 4))) {
fprintf(stderr, "%s: in bridge! (bmesh internal error)\n", __func__);
}
else {
BMO_elem_flag_enable(bm, f, FACE_OUT);
l_iter = BM_FACE_FIRST_LOOP(f);
if (l_1) BM_elem_attrs_copy(bm, bm, l_1, l_iter); l_iter = l_iter->next;
if (l_2) BM_elem_attrs_copy(bm, bm, l_2, l_iter); l_iter = l_iter->next;
if (l_2_next) BM_elem_attrs_copy(bm, bm, l_2_next, l_iter); l_iter = l_iter->next;
if (l_1_next) BM_elem_attrs_copy(bm, bm, l_1_next, l_iter);
}
}
}
}
BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "faces.out", BM_FACE, FACE_OUT);
cleanup:
BLI_array_free(ee1);
BLI_array_free(ee2);
BLI_array_free(vv1);
BLI_array_free(vv2);
}