This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/cycles/blender/blender_camera.cpp
Sergey Sharybin 0579eaae1f Cycles: Make all #include statements relative to cycles source directory
The idea is to make include statements more explicit and obvious where the
file is coming from, additionally reducing chance of wrong header being
picked up.

For example, it was not obvious whether bvh.h was refferring to builder
or traversal, whenter node.h is a generic graph node or a shader node
and cases like that.

Surely this might look obvious for the active developers, but after some
time of not touching the code it becomes less obvious where file is coming
from.

This was briefly mentioned in T50824 and seems @brecht is fine with such
explicitness, but need to agree with all active developers before committing
this.

Please note that this patch is lacking changes related on GPU/OpenCL
support. This will be solved if/when we all agree this is a good idea to move
forward.

Reviewers: brecht, lukasstockner97, maiself, nirved, dingto, juicyfruit, swerner

Reviewed By: lukasstockner97, maiself, nirved, dingto

Subscribers: brecht

Differential Revision: https://developer.blender.org/D2586
2017-03-29 13:41:11 +02:00

857 lines
27 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/camera.h"
#include "render/scene.h"
#include "blender/blender_sync.h"
#include "blender/blender_util.h"
#include "util/util_logging.h"
CCL_NAMESPACE_BEGIN
/* Blender Camera Intermediate: we first convert both the offline and 3d view
* render camera to this, and from there convert to our native camera format. */
struct BlenderCamera {
float nearclip;
float farclip;
CameraType type;
float ortho_scale;
float lens;
float shuttertime;
Camera::MotionPosition motion_position;
array<float> shutter_curve;
Camera::RollingShutterType rolling_shutter_type;
float rolling_shutter_duration;
float aperturesize;
uint apertureblades;
float aperturerotation;
float focaldistance;
float2 shift;
float2 offset;
float zoom;
float2 pixelaspect;
float aperture_ratio;
PanoramaType panorama_type;
float fisheye_fov;
float fisheye_lens;
float latitude_min;
float latitude_max;
float longitude_min;
float longitude_max;
bool use_spherical_stereo;
float interocular_distance;
float convergence_distance;
bool use_pole_merge;
float pole_merge_angle_from;
float pole_merge_angle_to;
enum { AUTO, HORIZONTAL, VERTICAL } sensor_fit;
float sensor_width;
float sensor_height;
int full_width;
int full_height;
BoundBox2D border;
BoundBox2D pano_viewplane;
BoundBox2D viewport_camera_border;
Transform matrix;
};
static void blender_camera_init(BlenderCamera *bcam,
BL::RenderSettings& b_render)
{
memset(bcam, 0, sizeof(BlenderCamera));
bcam->type = CAMERA_PERSPECTIVE;
bcam->zoom = 1.0f;
bcam->pixelaspect = make_float2(1.0f, 1.0f);
bcam->sensor_width = 32.0f;
bcam->sensor_height = 18.0f;
bcam->sensor_fit = BlenderCamera::AUTO;
bcam->shuttertime = 1.0f;
bcam->motion_position = Camera::MOTION_POSITION_CENTER;
bcam->rolling_shutter_type = Camera::ROLLING_SHUTTER_NONE;
bcam->rolling_shutter_duration = 0.1f;
bcam->border.right = 1.0f;
bcam->border.top = 1.0f;
bcam->pano_viewplane.right = 1.0f;
bcam->pano_viewplane.top = 1.0f;
bcam->viewport_camera_border.right = 1.0f;
bcam->viewport_camera_border.top = 1.0f;
/* render resolution */
bcam->full_width = render_resolution_x(b_render);
bcam->full_height = render_resolution_y(b_render);
}
static float blender_camera_focal_distance(BL::RenderEngine& b_engine,
BL::Object& b_ob,
BL::Camera& b_camera,
BlenderCamera *bcam)
{
BL::Object b_dof_object = b_camera.dof_object();
if(!b_dof_object)
return b_camera.dof_distance();
/* for dof object, return distance along camera Z direction */
BL::Array<float, 16> b_ob_matrix;
b_engine.camera_model_matrix(b_ob, bcam->use_spherical_stereo, b_ob_matrix);
Transform obmat = transform_clear_scale(get_transform(b_ob_matrix));
Transform dofmat = get_transform(b_dof_object.matrix_world());
float3 view_dir = normalize(transform_get_column(&obmat, 2));
float3 dof_dir = transform_get_column(&obmat, 3) - transform_get_column(&dofmat, 3);
return fabsf(dot(view_dir, dof_dir));
}
static void blender_camera_from_object(BlenderCamera *bcam,
BL::RenderEngine& b_engine,
BL::Object& b_ob,
bool skip_panorama = false)
{
BL::ID b_ob_data = b_ob.data();
if(b_ob_data.is_a(&RNA_Camera)) {
BL::Camera b_camera(b_ob_data);
PointerRNA ccamera = RNA_pointer_get(&b_camera.ptr, "cycles");
bcam->nearclip = b_camera.clip_start();
bcam->farclip = b_camera.clip_end();
switch(b_camera.type())
{
case BL::Camera::type_ORTHO:
bcam->type = CAMERA_ORTHOGRAPHIC;
break;
case BL::Camera::type_PANO:
if(!skip_panorama)
bcam->type = CAMERA_PANORAMA;
else
bcam->type = CAMERA_PERSPECTIVE;
break;
case BL::Camera::type_PERSP:
default:
bcam->type = CAMERA_PERSPECTIVE;
break;
}
bcam->panorama_type = (PanoramaType)get_enum(ccamera,
"panorama_type",
PANORAMA_NUM_TYPES,
PANORAMA_EQUIRECTANGULAR);
bcam->fisheye_fov = RNA_float_get(&ccamera, "fisheye_fov");
bcam->fisheye_lens = RNA_float_get(&ccamera, "fisheye_lens");
bcam->latitude_min = RNA_float_get(&ccamera, "latitude_min");
bcam->latitude_max = RNA_float_get(&ccamera, "latitude_max");
bcam->longitude_min = RNA_float_get(&ccamera, "longitude_min");
bcam->longitude_max = RNA_float_get(&ccamera, "longitude_max");
bcam->interocular_distance = b_camera.stereo().interocular_distance();
if(b_camera.stereo().convergence_mode() == BL::CameraStereoData::convergence_mode_PARALLEL) {
bcam->convergence_distance = FLT_MAX;
}
else {
bcam->convergence_distance = b_camera.stereo().convergence_distance();
}
bcam->use_spherical_stereo = b_engine.use_spherical_stereo(b_ob);
bcam->use_pole_merge = b_camera.stereo().use_pole_merge();
bcam->pole_merge_angle_from = b_camera.stereo().pole_merge_angle_from();
bcam->pole_merge_angle_to = b_camera.stereo().pole_merge_angle_to();
bcam->ortho_scale = b_camera.ortho_scale();
bcam->lens = b_camera.lens();
/* allow f/stop number to change aperture_size but still
* give manual control over aperture radius */
int aperture_type = get_enum(ccamera, "aperture_type");
if(aperture_type == 1) {
float fstop = RNA_float_get(&ccamera, "aperture_fstop");
fstop = max(fstop, 1e-5f);
if(bcam->type == CAMERA_ORTHOGRAPHIC)
bcam->aperturesize = 1.0f/(2.0f*fstop);
else
bcam->aperturesize = (bcam->lens*1e-3f)/(2.0f*fstop);
}
else
bcam->aperturesize = RNA_float_get(&ccamera, "aperture_size");
bcam->apertureblades = RNA_int_get(&ccamera, "aperture_blades");
bcam->aperturerotation = RNA_float_get(&ccamera, "aperture_rotation");
bcam->focaldistance = blender_camera_focal_distance(b_engine, b_ob, b_camera, bcam);
bcam->aperture_ratio = RNA_float_get(&ccamera, "aperture_ratio");
bcam->shift.x = b_engine.camera_shift_x(b_ob, bcam->use_spherical_stereo);
bcam->shift.y = b_camera.shift_y();
bcam->sensor_width = b_camera.sensor_width();
bcam->sensor_height = b_camera.sensor_height();
if(b_camera.sensor_fit() == BL::Camera::sensor_fit_AUTO)
bcam->sensor_fit = BlenderCamera::AUTO;
else if(b_camera.sensor_fit() == BL::Camera::sensor_fit_HORIZONTAL)
bcam->sensor_fit = BlenderCamera::HORIZONTAL;
else
bcam->sensor_fit = BlenderCamera::VERTICAL;
}
else {
/* from lamp not implemented yet */
}
}
static Transform blender_camera_matrix(const Transform& tfm,
const CameraType type,
const PanoramaType panorama_type)
{
Transform result;
if(type == CAMERA_PANORAMA) {
if(panorama_type == PANORAMA_MIRRORBALL) {
/* Mirror ball camera is looking into the negative Y direction
* which matches texture mirror ball mapping.
*/
result = tfm *
make_transform(1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f);
}
else {
/* Make it so environment camera needs to be pointed in the direction
* of the positive x-axis to match an environment texture, this way
* it is looking at the center of the texture
*/
result = tfm *
make_transform( 0.0f, -1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
-1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f);
}
}
else {
/* note the blender camera points along the negative z-axis */
result = tfm * transform_scale(1.0f, 1.0f, -1.0f);
}
return transform_clear_scale(result);
}
static void blender_camera_viewplane(BlenderCamera *bcam,
int width, int height,
BoundBox2D *viewplane,
float *aspectratio,
float *sensor_size)
{
/* dimensions */
float xratio = (float)width*bcam->pixelaspect.x;
float yratio = (float)height*bcam->pixelaspect.y;
/* compute x/y aspect and ratio */
float xaspect, yaspect;
bool horizontal_fit;
/* sensor fitting */
if(bcam->sensor_fit == BlenderCamera::AUTO) {
horizontal_fit = (xratio > yratio);
if(sensor_size != NULL) {
*sensor_size = bcam->sensor_width;
}
}
else if(bcam->sensor_fit == BlenderCamera::HORIZONTAL) {
horizontal_fit = true;
if(sensor_size != NULL) {
*sensor_size = bcam->sensor_width;
}
}
else {
horizontal_fit = false;
if(sensor_size != NULL) {
*sensor_size = bcam->sensor_height;
}
}
if(horizontal_fit) {
if(aspectratio != NULL) {
*aspectratio = xratio/yratio;
}
xaspect = *aspectratio;
yaspect = 1.0f;
}
else {
if(aspectratio != NULL) {
*aspectratio = yratio/xratio;
}
xaspect = 1.0f;
yaspect = *aspectratio;
}
/* modify aspect for orthographic scale */
if(bcam->type == CAMERA_ORTHOGRAPHIC) {
xaspect = xaspect*bcam->ortho_scale/(*aspectratio*2.0f);
yaspect = yaspect*bcam->ortho_scale/(*aspectratio*2.0f);
if(aspectratio != NULL) {
*aspectratio = bcam->ortho_scale/2.0f;
}
}
if(bcam->type == CAMERA_PANORAMA) {
/* set viewplane */
if(viewplane != NULL) {
*viewplane = bcam->pano_viewplane;
}
}
else {
/* set viewplane */
if(viewplane != NULL) {
viewplane->left = -xaspect;
viewplane->right = xaspect;
viewplane->bottom = -yaspect;
viewplane->top = yaspect;
/* zoom for 3d camera view */
*viewplane = (*viewplane) * bcam->zoom;
/* modify viewplane with camera shift and 3d camera view offset */
float dx = 2.0f*(*aspectratio*bcam->shift.x + bcam->offset.x*xaspect*2.0f);
float dy = 2.0f*(*aspectratio*bcam->shift.y + bcam->offset.y*yaspect*2.0f);
viewplane->left += dx;
viewplane->right += dx;
viewplane->bottom += dy;
viewplane->top += dy;
}
}
}
static void blender_camera_sync(Camera *cam, BlenderCamera *bcam, int width, int height, const char *viewname)
{
/* copy camera to compare later */
Camera prevcam = *cam;
float aspectratio, sensor_size;
/* viewplane */
blender_camera_viewplane(bcam, width, height,
&cam->viewplane, &aspectratio, &sensor_size);
cam->width = bcam->full_width;
cam->height = bcam->full_height;
cam->full_width = width;
cam->full_height = height;
/* panorama sensor */
if(bcam->type == CAMERA_PANORAMA && bcam->panorama_type == PANORAMA_FISHEYE_EQUISOLID) {
float fit_xratio = (float)bcam->full_width*bcam->pixelaspect.x;
float fit_yratio = (float)bcam->full_height*bcam->pixelaspect.y;
bool horizontal_fit;
float sensor_size;
if(bcam->sensor_fit == BlenderCamera::AUTO) {
horizontal_fit = (fit_xratio > fit_yratio);
sensor_size = bcam->sensor_width;
}
else if(bcam->sensor_fit == BlenderCamera::HORIZONTAL) {
horizontal_fit = true;
sensor_size = bcam->sensor_width;
}
else { /* vertical */
horizontal_fit = false;
sensor_size = bcam->sensor_height;
}
if(horizontal_fit) {
cam->sensorwidth = sensor_size;
cam->sensorheight = sensor_size * fit_yratio / fit_xratio;
}
else {
cam->sensorwidth = sensor_size * fit_xratio / fit_yratio;
cam->sensorheight = sensor_size;
}
}
/* clipping distances */
cam->nearclip = bcam->nearclip;
cam->farclip = bcam->farclip;
/* type */
cam->type = bcam->type;
/* panorama */
cam->panorama_type = bcam->panorama_type;
cam->fisheye_fov = bcam->fisheye_fov;
cam->fisheye_lens = bcam->fisheye_lens;
cam->latitude_min = bcam->latitude_min;
cam->latitude_max = bcam->latitude_max;
cam->longitude_min = bcam->longitude_min;
cam->longitude_max = bcam->longitude_max;
/* panorama stereo */
cam->interocular_distance = bcam->interocular_distance;
cam->convergence_distance = bcam->convergence_distance;
cam->use_spherical_stereo = bcam->use_spherical_stereo;
if(cam->use_spherical_stereo) {
if(strcmp(viewname, "left") == 0)
cam->stereo_eye = Camera::STEREO_LEFT;
else if(strcmp(viewname, "right") == 0)
cam->stereo_eye = Camera::STEREO_RIGHT;
else
cam->stereo_eye = Camera::STEREO_NONE;
}
cam->use_pole_merge = bcam->use_pole_merge;
cam->pole_merge_angle_from = bcam->pole_merge_angle_from;
cam->pole_merge_angle_to = bcam->pole_merge_angle_to;
/* anamorphic lens bokeh */
cam->aperture_ratio = bcam->aperture_ratio;
/* perspective */
cam->fov = 2.0f * atanf((0.5f * sensor_size) / bcam->lens / aspectratio);
cam->focaldistance = bcam->focaldistance;
cam->aperturesize = bcam->aperturesize;
cam->blades = bcam->apertureblades;
cam->bladesrotation = bcam->aperturerotation;
/* transform */
cam->matrix = blender_camera_matrix(bcam->matrix,
bcam->type,
bcam->panorama_type);
cam->motion.pre = cam->matrix;
cam->motion.post = cam->matrix;
cam->use_motion = false;
cam->use_perspective_motion = false;
cam->shuttertime = bcam->shuttertime;
cam->fov_pre = cam->fov;
cam->fov_post = cam->fov;
cam->motion_position = bcam->motion_position;
cam->rolling_shutter_type = bcam->rolling_shutter_type;
cam->rolling_shutter_duration = bcam->rolling_shutter_duration;
cam->shutter_curve = bcam->shutter_curve;
/* border */
cam->border = bcam->border;
cam->viewport_camera_border = bcam->viewport_camera_border;
/* set update flag */
if(cam->modified(prevcam))
cam->tag_update();
}
/* Sync Render Camera */
void BlenderSync::sync_camera(BL::RenderSettings& b_render,
BL::Object& b_override,
int width, int height,
const char *viewname)
{
BlenderCamera bcam;
blender_camera_init(&bcam, b_render);
/* pixel aspect */
bcam.pixelaspect.x = b_render.pixel_aspect_x();
bcam.pixelaspect.y = b_render.pixel_aspect_y();
bcam.shuttertime = b_render.motion_blur_shutter();
BL::CurveMapping b_shutter_curve(b_render.motion_blur_shutter_curve());
curvemapping_to_array(b_shutter_curve, bcam.shutter_curve, RAMP_TABLE_SIZE);
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
bcam.motion_position =
(Camera::MotionPosition)get_enum(cscene,
"motion_blur_position",
Camera::MOTION_NUM_POSITIONS,
Camera::MOTION_POSITION_CENTER);
bcam.rolling_shutter_type =
(Camera::RollingShutterType)get_enum(cscene,
"rolling_shutter_type",
Camera::ROLLING_SHUTTER_NUM_TYPES,
Camera::ROLLING_SHUTTER_NONE);
bcam.rolling_shutter_duration = RNA_float_get(&cscene, "rolling_shutter_duration");
/* border */
if(b_render.use_border()) {
bcam.border.left = b_render.border_min_x();
bcam.border.right = b_render.border_max_x();
bcam.border.bottom = b_render.border_min_y();
bcam.border.top = b_render.border_max_y();
}
/* camera object */
BL::Object b_ob = b_scene.camera();
if(b_override)
b_ob = b_override;
if(b_ob) {
BL::Array<float, 16> b_ob_matrix;
blender_camera_from_object(&bcam, b_engine, b_ob);
b_engine.camera_model_matrix(b_ob, bcam.use_spherical_stereo, b_ob_matrix);
bcam.matrix = get_transform(b_ob_matrix);
}
/* sync */
Camera *cam = scene->camera;
blender_camera_sync(cam, &bcam, width, height, viewname);
}
void BlenderSync::sync_camera_motion(BL::RenderSettings& b_render,
BL::Object& b_ob,
int width, int height,
float motion_time)
{
if(!b_ob)
return;
Camera *cam = scene->camera;
BL::Array<float, 16> b_ob_matrix;
b_engine.camera_model_matrix(b_ob, cam->use_spherical_stereo, b_ob_matrix);
Transform tfm = get_transform(b_ob_matrix);
tfm = blender_camera_matrix(tfm, cam->type, cam->panorama_type);
if(tfm != cam->matrix) {
VLOG(1) << "Camera " << b_ob.name() << " motion detected.";
if(motion_time == -1.0f) {
cam->motion.pre = tfm;
cam->use_motion = true;
}
else if(motion_time == 1.0f) {
cam->motion.post = tfm;
cam->use_motion = true;
}
}
if(cam->type == CAMERA_PERSPECTIVE) {
BlenderCamera bcam;
float aspectratio, sensor_size;
blender_camera_init(&bcam, b_render);
/* TODO(sergey): Consider making it a part of blender_camera_init(). */
bcam.pixelaspect.x = b_render.pixel_aspect_x();
bcam.pixelaspect.y = b_render.pixel_aspect_y();
blender_camera_from_object(&bcam, b_engine, b_ob);
blender_camera_viewplane(&bcam,
width, height,
NULL,
&aspectratio,
&sensor_size);
/* TODO(sergey): De-duplicate calculation with camera sync. */
float fov = 2.0f * atanf((0.5f * sensor_size) / bcam.lens / aspectratio);
if(fov != cam->fov) {
VLOG(1) << "Camera " << b_ob.name() << " FOV change detected.";
if(motion_time == -1.0f) {
cam->fov_pre = fov;
cam->use_perspective_motion = true;
}
else if(motion_time == 1.0f) {
cam->fov_post = fov;
cam->use_perspective_motion = true;
}
}
}
}
/* Sync 3D View Camera */
static void blender_camera_view_subset(BL::RenderEngine& b_engine,
BL::RenderSettings& b_render,
BL::Scene& b_scene,
BL::Object& b_ob,
BL::SpaceView3D& b_v3d,
BL::RegionView3D& b_rv3d,
int width, int height,
BoundBox2D *view_box,
BoundBox2D *cam_box);
static void blender_camera_from_view(BlenderCamera *bcam,
BL::RenderEngine& b_engine,
BL::Scene& b_scene,
BL::SpaceView3D& b_v3d,
BL::RegionView3D& b_rv3d,
int width, int height,
bool skip_panorama = false)
{
/* 3d view parameters */
bcam->nearclip = b_v3d.clip_start();
bcam->farclip = b_v3d.clip_end();
bcam->lens = b_v3d.lens();
bcam->shuttertime = b_scene.render().motion_blur_shutter();
BL::CurveMapping b_shutter_curve(b_scene.render().motion_blur_shutter_curve());
curvemapping_to_array(b_shutter_curve, bcam->shutter_curve, RAMP_TABLE_SIZE);
if(b_rv3d.view_perspective() == BL::RegionView3D::view_perspective_CAMERA) {
/* camera view */
BL::Object b_ob = (b_v3d.lock_camera_and_layers())? b_scene.camera(): b_v3d.camera();
if(b_ob) {
blender_camera_from_object(bcam, b_engine, b_ob, skip_panorama);
if(!skip_panorama && bcam->type == CAMERA_PANORAMA) {
/* in panorama camera view, we map viewplane to camera border */
BoundBox2D view_box, cam_box;
BL::RenderSettings b_render_settings(b_scene.render());
blender_camera_view_subset(b_engine,
b_render_settings,
b_scene,
b_ob,
b_v3d,
b_rv3d,
width, height,
&view_box,
&cam_box);
bcam->pano_viewplane = view_box.make_relative_to(cam_box);
}
else {
/* magic zoom formula */
bcam->zoom = (float)b_rv3d.view_camera_zoom();
bcam->zoom = (1.41421f + bcam->zoom/50.0f);
bcam->zoom *= bcam->zoom;
bcam->zoom = 2.0f/bcam->zoom;
/* offset */
bcam->offset = get_float2(b_rv3d.view_camera_offset());
}
}
}
else if(b_rv3d.view_perspective() == BL::RegionView3D::view_perspective_ORTHO) {
/* orthographic view */
bcam->farclip *= 0.5f;
bcam->nearclip = -bcam->farclip;
float sensor_size;
if(bcam->sensor_fit == BlenderCamera::VERTICAL)
sensor_size = bcam->sensor_height;
else
sensor_size = bcam->sensor_width;
bcam->type = CAMERA_ORTHOGRAPHIC;
bcam->ortho_scale = b_rv3d.view_distance() * sensor_size / b_v3d.lens();
}
bcam->zoom *= 2.0f;
/* 3d view transform */
bcam->matrix = transform_inverse(get_transform(b_rv3d.view_matrix()));
}
static void blender_camera_view_subset(BL::RenderEngine& b_engine,
BL::RenderSettings& b_render,
BL::Scene& b_scene,
BL::Object& b_ob,
BL::SpaceView3D& b_v3d,
BL::RegionView3D& b_rv3d,
int width, int height,
BoundBox2D *view_box,
BoundBox2D *cam_box)
{
BoundBox2D cam, view;
float view_aspect, cam_aspect, sensor_size;
/* get viewport viewplane */
BlenderCamera view_bcam;
blender_camera_init(&view_bcam, b_render);
blender_camera_from_view(&view_bcam, b_engine, b_scene, b_v3d, b_rv3d, width, height, true);
blender_camera_viewplane(&view_bcam, width, height,
&view, &view_aspect, &sensor_size);
/* get camera viewplane */
BlenderCamera cam_bcam;
blender_camera_init(&cam_bcam, b_render);
blender_camera_from_object(&cam_bcam, b_engine, b_ob, true);
blender_camera_viewplane(&cam_bcam, cam_bcam.full_width, cam_bcam.full_height,
&cam, &cam_aspect, &sensor_size);
/* return */
*view_box = view * (1.0f/view_aspect);
*cam_box = cam * (1.0f/cam_aspect);
}
static void blender_camera_border_subset(BL::RenderEngine& b_engine,
BL::RenderSettings& b_render,
BL::Scene& b_scene,
BL::SpaceView3D& b_v3d,
BL::RegionView3D& b_rv3d,
BL::Object& b_ob,
int width, int height,
const BoundBox2D &border,
BoundBox2D *result)
{
/* Determine camera viewport subset. */
BoundBox2D view_box, cam_box;
blender_camera_view_subset(b_engine, b_render, b_scene, b_ob, b_v3d, b_rv3d, width, height,
&view_box, &cam_box);
/* Determine viewport subset matching given border. */
cam_box = cam_box.make_relative_to(view_box);
*result = cam_box.subset(border);
}
static void blender_camera_border(BlenderCamera *bcam,
BL::RenderEngine& b_engine,
BL::RenderSettings& b_render,
BL::Scene& b_scene,
BL::SpaceView3D& b_v3d,
BL::RegionView3D& b_rv3d,
int width, int height)
{
bool is_camera_view;
/* camera view? */
is_camera_view = b_rv3d.view_perspective() == BL::RegionView3D::view_perspective_CAMERA;
if(!is_camera_view) {
/* for non-camera view check whether render border is enabled for viewport
* and if so use border from 3d viewport
* assume viewport has got correctly clamped border already
*/
if(b_v3d.use_render_border()) {
bcam->border.left = b_v3d.render_border_min_x();
bcam->border.right = b_v3d.render_border_max_x();
bcam->border.bottom = b_v3d.render_border_min_y();
bcam->border.top = b_v3d.render_border_max_y();
}
return;
}
BL::Object b_ob = (b_v3d.lock_camera_and_layers())? b_scene.camera(): b_v3d.camera();
if(!b_ob)
return;
/* Determine camera border inside the viewport. */
BoundBox2D full_border;
blender_camera_border_subset(b_engine,
b_render,
b_scene,
b_v3d,
b_rv3d,
b_ob,
width, height,
full_border,
&bcam->viewport_camera_border);
if(!b_render.use_border()) {
return;
}
bcam->border.left = b_render.border_min_x();
bcam->border.right = b_render.border_max_x();
bcam->border.bottom = b_render.border_min_y();
bcam->border.top = b_render.border_max_y();
/* Determine viewport subset matching camera border. */
blender_camera_border_subset(b_engine,
b_render,
b_scene,
b_v3d,
b_rv3d,
b_ob,
width, height,
bcam->border,
&bcam->border);
bcam->border = bcam->border.clamp();
}
void BlenderSync::sync_view(BL::SpaceView3D& b_v3d,
BL::RegionView3D& b_rv3d,
int width, int height)
{
BlenderCamera bcam;
BL::RenderSettings b_render_settings(b_scene.render());
blender_camera_init(&bcam, b_render_settings);
blender_camera_from_view(&bcam,
b_engine,
b_scene,
b_v3d,
b_rv3d,
width, height);
blender_camera_border(&bcam,
b_engine,
b_render_settings,
b_scene,
b_v3d,
b_rv3d,
width, height);
blender_camera_sync(scene->camera, &bcam, width, height, "");
}
BufferParams BlenderSync::get_buffer_params(BL::RenderSettings& b_render,
BL::SpaceView3D& b_v3d,
BL::RegionView3D& b_rv3d,
Camera *cam,
int width, int height)
{
BufferParams params;
bool use_border = false;
params.full_width = width;
params.full_height = height;
if(b_v3d && b_rv3d && b_rv3d.view_perspective() != BL::RegionView3D::view_perspective_CAMERA)
use_border = b_v3d.use_render_border();
else
use_border = b_render.use_border();
if(use_border) {
/* border render */
/* the viewport may offset the border outside the view */
BoundBox2D border = cam->border.clamp();
params.full_x = (int)(border.left * (float)width);
params.full_y = (int)(border.bottom * (float)height);
params.width = (int)(border.right * (float)width) - params.full_x;
params.height = (int)(border.top * (float)height) - params.full_y;
/* survive in case border goes out of view or becomes too small */
params.width = max(params.width, 1);
params.height = max(params.height, 1);
}
else {
params.width = width;
params.height = height;
}
return params;
}
CCL_NAMESPACE_END