This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/kernel_accumulate.h
Brecht Van Lommel 073bf8bf52 Cycles: remove WITH_CYCLES_DEBUG, add WITH_CYCLES_DEBUG_NAN
WITH_CYCLES_DEBUG was used for rendering BVH debugging passes. But since we
mainly use Embree an OptiX now, this information is no longer important.

WITH_CYCLES_DEBUG_NAN will enable additional checks for NaNs and invalid values
in the kernel, for Cycles developers. Previously these asserts where enabled in
all debug builds, but this is too likely to crash Blender in scenes that render
fine regardless of the NaNs. So this is behind a CMake option now.

Fixes T90240
2021-07-28 19:27:57 +02:00

765 lines
23 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* BSDF Eval
*
* BSDF evaluation result, split per BSDF type. This is used to accumulate
* render passes separately. */
ccl_device float3 shader_bsdf_transparency(KernelGlobals *kg, const ShaderData *sd);
ccl_device_inline void bsdf_eval_init(BsdfEval *eval,
ClosureType type,
float3 value,
int use_light_pass)
{
#ifdef __PASSES__
eval->use_light_pass = use_light_pass;
if (eval->use_light_pass) {
eval->diffuse = zero_float3();
eval->glossy = zero_float3();
eval->transmission = zero_float3();
eval->transparent = zero_float3();
eval->volume = zero_float3();
if (type == CLOSURE_BSDF_TRANSPARENT_ID)
eval->transparent = value;
else if (CLOSURE_IS_BSDF_DIFFUSE(type) || CLOSURE_IS_BSDF_BSSRDF(type))
eval->diffuse = value;
else if (CLOSURE_IS_BSDF_GLOSSY(type))
eval->glossy = value;
else if (CLOSURE_IS_BSDF_TRANSMISSION(type))
eval->transmission = value;
else if (CLOSURE_IS_PHASE(type))
eval->volume = value;
}
else
#endif
{
eval->diffuse = value;
}
#ifdef __SHADOW_TRICKS__
eval->sum_no_mis = zero_float3();
#endif
}
ccl_device_inline void bsdf_eval_accum(BsdfEval *eval,
ClosureType type,
float3 value,
float mis_weight)
{
#ifdef __SHADOW_TRICKS__
eval->sum_no_mis += value;
#endif
value *= mis_weight;
#ifdef __PASSES__
if (eval->use_light_pass) {
if (CLOSURE_IS_BSDF_DIFFUSE(type) || CLOSURE_IS_BSDF_BSSRDF(type))
eval->diffuse += value;
else if (CLOSURE_IS_BSDF_GLOSSY(type))
eval->glossy += value;
else if (CLOSURE_IS_BSDF_TRANSMISSION(type))
eval->transmission += value;
else if (CLOSURE_IS_PHASE(type))
eval->volume += value;
/* skipping transparent, this function is used by for eval(), will be zero then */
}
else
#endif
{
eval->diffuse += value;
}
}
ccl_device_inline bool bsdf_eval_is_zero(BsdfEval *eval)
{
#ifdef __PASSES__
if (eval->use_light_pass) {
return is_zero(eval->diffuse) && is_zero(eval->glossy) && is_zero(eval->transmission) &&
is_zero(eval->transparent) && is_zero(eval->volume);
}
else
#endif
{
return is_zero(eval->diffuse);
}
}
ccl_device_inline void bsdf_eval_mis(BsdfEval *eval, float value)
{
#ifdef __PASSES__
if (eval->use_light_pass) {
eval->diffuse *= value;
eval->glossy *= value;
eval->transmission *= value;
eval->volume *= value;
/* skipping transparent, this function is used by for eval(), will be zero then */
}
else
#endif
{
eval->diffuse *= value;
}
}
ccl_device_inline void bsdf_eval_mul(BsdfEval *eval, float value)
{
#ifdef __SHADOW_TRICKS__
eval->sum_no_mis *= value;
#endif
bsdf_eval_mis(eval, value);
}
ccl_device_inline void bsdf_eval_mul3(BsdfEval *eval, float3 value)
{
#ifdef __SHADOW_TRICKS__
eval->sum_no_mis *= value;
#endif
#ifdef __PASSES__
if (eval->use_light_pass) {
eval->diffuse *= value;
eval->glossy *= value;
eval->transmission *= value;
eval->volume *= value;
/* skipping transparent, this function is used by for eval(), will be zero then */
}
else
eval->diffuse *= value;
#else
eval->diffuse *= value;
#endif
}
ccl_device_inline float3 bsdf_eval_sum(const BsdfEval *eval)
{
#ifdef __PASSES__
if (eval->use_light_pass) {
return eval->diffuse + eval->glossy + eval->transmission + eval->volume;
}
else
#endif
return eval->diffuse;
}
/* Path Radiance
*
* We accumulate different render passes separately. After summing at the end
* to get the combined result, it should be identical. We definite directly
* visible as the first non-transparent hit, while indirectly visible are the
* bounces after that. */
ccl_device_inline void path_radiance_init(KernelGlobals *kg, PathRadiance *L)
{
/* clear all */
#ifdef __PASSES__
L->use_light_pass = kernel_data.film.use_light_pass;
if (kernel_data.film.use_light_pass) {
L->indirect = zero_float3();
L->direct_emission = zero_float3();
L->color_diffuse = zero_float3();
L->color_glossy = zero_float3();
L->color_transmission = zero_float3();
L->direct_diffuse = zero_float3();
L->direct_glossy = zero_float3();
L->direct_transmission = zero_float3();
L->direct_volume = zero_float3();
L->indirect_diffuse = zero_float3();
L->indirect_glossy = zero_float3();
L->indirect_transmission = zero_float3();
L->indirect_volume = zero_float3();
L->transparent = 0.0f;
L->emission = zero_float3();
L->background = zero_float3();
L->ao = zero_float3();
L->shadow = zero_float3();
L->mist = 0.0f;
L->state.diffuse = zero_float3();
L->state.glossy = zero_float3();
L->state.transmission = zero_float3();
L->state.volume = zero_float3();
L->state.direct = zero_float3();
}
else
#endif
{
L->transparent = 0.0f;
L->emission = zero_float3();
}
#ifdef __SHADOW_TRICKS__
L->path_total = zero_float3();
L->path_total_shaded = zero_float3();
L->shadow_background_color = zero_float3();
L->shadow_throughput = 0.0f;
L->shadow_transparency = 1.0f;
L->has_shadow_catcher = 0;
#endif
#ifdef __DENOISING_FEATURES__
L->denoising_normal = zero_float3();
L->denoising_albedo = zero_float3();
L->denoising_depth = 0.0f;
#endif
}
ccl_device_inline void path_radiance_bsdf_bounce(KernelGlobals *kg,
PathRadianceState *L_state,
ccl_addr_space float3 *throughput,
BsdfEval *bsdf_eval,
float bsdf_pdf,
int bounce,
int bsdf_label)
{
float inverse_pdf = 1.0f / bsdf_pdf;
#ifdef __PASSES__
if (kernel_data.film.use_light_pass) {
if (bounce == 0 && !(bsdf_label & LABEL_TRANSPARENT)) {
/* first on directly visible surface */
float3 value = *throughput * inverse_pdf;
L_state->diffuse = bsdf_eval->diffuse * value;
L_state->glossy = bsdf_eval->glossy * value;
L_state->transmission = bsdf_eval->transmission * value;
L_state->volume = bsdf_eval->volume * value;
*throughput = L_state->diffuse + L_state->glossy + L_state->transmission + L_state->volume;
L_state->direct = *throughput;
}
else {
/* transparent bounce before first hit, or indirectly visible through BSDF */
float3 sum = (bsdf_eval_sum(bsdf_eval) + bsdf_eval->transparent) * inverse_pdf;
*throughput *= sum;
}
}
else
#endif
{
*throughput *= bsdf_eval->diffuse * inverse_pdf;
}
}
#ifdef __CLAMP_SAMPLE__
ccl_device_forceinline void path_radiance_clamp(KernelGlobals *kg, float3 *L, int bounce)
{
float limit = (bounce > 0) ? kernel_data.integrator.sample_clamp_indirect :
kernel_data.integrator.sample_clamp_direct;
float sum = reduce_add(fabs(*L));
if (sum > limit) {
*L *= limit / sum;
}
}
ccl_device_forceinline void path_radiance_clamp_throughput(KernelGlobals *kg,
float3 *L,
float3 *throughput,
int bounce)
{
float limit = (bounce > 0) ? kernel_data.integrator.sample_clamp_indirect :
kernel_data.integrator.sample_clamp_direct;
float sum = reduce_add(fabs(*L));
if (sum > limit) {
float clamp_factor = limit / sum;
*L *= clamp_factor;
*throughput *= clamp_factor;
}
}
#endif
ccl_device_inline void path_radiance_accum_emission(KernelGlobals *kg,
PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput,
float3 value)
{
#ifdef __SHADOW_TRICKS__
if (state->flag & PATH_RAY_SHADOW_CATCHER) {
return;
}
#endif
float3 contribution = throughput * value;
#ifdef __CLAMP_SAMPLE__
path_radiance_clamp(kg, &contribution, state->bounce - 1);
#endif
#ifdef __PASSES__
if (L->use_light_pass) {
if (state->bounce == 0)
L->emission += contribution;
else if (state->bounce == 1)
L->direct_emission += contribution;
else
L->indirect += contribution;
}
else
#endif
{
L->emission += contribution;
}
}
ccl_device_inline void path_radiance_accum_ao(KernelGlobals *kg,
PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput,
float3 alpha,
float3 bsdf,
float3 ao)
{
#ifdef __PASSES__
/* Store AO pass. */
if (L->use_light_pass && state->bounce == 0) {
L->ao += alpha * throughput * ao;
}
#endif
#ifdef __SHADOW_TRICKS__
/* For shadow catcher, accumulate ratio. */
if (state->flag & PATH_RAY_STORE_SHADOW_INFO) {
float3 light = throughput * bsdf;
L->path_total += light;
L->path_total_shaded += ao * light;
if (state->flag & PATH_RAY_SHADOW_CATCHER) {
return;
}
}
#endif
float3 contribution = throughput * bsdf * ao;
#ifdef __PASSES__
if (L->use_light_pass) {
if (state->bounce == 0) {
/* Directly visible lighting. */
L->direct_diffuse += contribution;
}
else {
/* Indirectly visible lighting after BSDF bounce. */
L->indirect += contribution;
}
}
else
#endif
{
L->emission += contribution;
}
}
ccl_device_inline void path_radiance_accum_total_ao(PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput,
float3 bsdf)
{
#ifdef __SHADOW_TRICKS__
if (state->flag & PATH_RAY_STORE_SHADOW_INFO) {
L->path_total += throughput * bsdf;
}
#else
(void)L;
(void)state;
(void)throughput;
(void)bsdf;
#endif
}
ccl_device_inline void path_radiance_accum_light(KernelGlobals *kg,
PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput,
BsdfEval *bsdf_eval,
float3 shadow,
float shadow_fac,
bool is_lamp)
{
#ifdef __SHADOW_TRICKS__
if (state->flag & PATH_RAY_STORE_SHADOW_INFO) {
float3 light = throughput * bsdf_eval->sum_no_mis;
L->path_total += light;
L->path_total_shaded += shadow * light;
if (state->flag & PATH_RAY_SHADOW_CATCHER) {
return;
}
}
#endif
float3 shaded_throughput = throughput * shadow;
#ifdef __PASSES__
if (L->use_light_pass) {
/* Compute the clamping based on the total contribution.
* The resulting scale is then be applied to all individual components. */
float3 full_contribution = shaded_throughput * bsdf_eval_sum(bsdf_eval);
# ifdef __CLAMP_SAMPLE__
path_radiance_clamp_throughput(kg, &full_contribution, &shaded_throughput, state->bounce);
# endif
if (state->bounce == 0) {
/* directly visible lighting */
L->direct_diffuse += shaded_throughput * bsdf_eval->diffuse;
L->direct_glossy += shaded_throughput * bsdf_eval->glossy;
L->direct_transmission += shaded_throughput * bsdf_eval->transmission;
L->direct_volume += shaded_throughput * bsdf_eval->volume;
if (is_lamp) {
L->shadow += shadow * shadow_fac;
}
}
else {
/* indirectly visible lighting after BSDF bounce */
L->indirect += full_contribution;
}
}
else
#endif
{
float3 contribution = shaded_throughput * bsdf_eval->diffuse;
path_radiance_clamp(kg, &contribution, state->bounce);
L->emission += contribution;
}
}
ccl_device_inline void path_radiance_accum_total_light(PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput,
const BsdfEval *bsdf_eval)
{
#ifdef __SHADOW_TRICKS__
if (state->flag & PATH_RAY_STORE_SHADOW_INFO) {
L->path_total += throughput * bsdf_eval->sum_no_mis;
}
#else
(void)L;
(void)state;
(void)throughput;
(void)bsdf_eval;
#endif
}
ccl_device_inline void path_radiance_accum_background(KernelGlobals *kg,
PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput,
float3 value)
{
#ifdef __SHADOW_TRICKS__
if (state->flag & PATH_RAY_STORE_SHADOW_INFO) {
L->path_total += throughput * value;
L->path_total_shaded += throughput * value * L->shadow_transparency;
if (state->flag & PATH_RAY_SHADOW_CATCHER) {
return;
}
}
#endif
float3 contribution = throughput * value;
#ifdef __CLAMP_SAMPLE__
path_radiance_clamp(kg, &contribution, state->bounce - 1);
#endif
#ifdef __PASSES__
if (L->use_light_pass) {
if (state->flag & PATH_RAY_TRANSPARENT_BACKGROUND)
L->background += contribution;
else if (state->bounce == 1)
L->direct_emission += contribution;
else
L->indirect += contribution;
}
else
#endif
{
L->emission += contribution;
}
#ifdef __DENOISING_FEATURES__
L->denoising_albedo += state->denoising_feature_weight * state->denoising_feature_throughput *
value;
#endif /* __DENOISING_FEATURES__ */
}
ccl_device_inline void path_radiance_accum_transparent(PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput)
{
L->transparent += average(throughput);
}
#ifdef __SHADOW_TRICKS__
ccl_device_inline void path_radiance_accum_shadowcatcher(PathRadiance *L,
float3 throughput,
float3 background)
{
L->shadow_throughput += average(throughput);
L->shadow_background_color += throughput * background;
L->has_shadow_catcher = 1;
}
#endif
ccl_device_inline void path_radiance_sum_indirect(PathRadiance *L)
{
#ifdef __PASSES__
/* this division is a bit ugly, but means we only have to keep track of
* only a single throughput further along the path, here we recover just
* the indirect path that is not influenced by any particular BSDF type */
if (L->use_light_pass) {
L->direct_emission = safe_divide_color(L->direct_emission, L->state.direct);
L->direct_diffuse += L->state.diffuse * L->direct_emission;
L->direct_glossy += L->state.glossy * L->direct_emission;
L->direct_transmission += L->state.transmission * L->direct_emission;
L->direct_volume += L->state.volume * L->direct_emission;
L->indirect = safe_divide_color(L->indirect, L->state.direct);
L->indirect_diffuse += L->state.diffuse * L->indirect;
L->indirect_glossy += L->state.glossy * L->indirect;
L->indirect_transmission += L->state.transmission * L->indirect;
L->indirect_volume += L->state.volume * L->indirect;
}
#endif
}
ccl_device_inline void path_radiance_reset_indirect(PathRadiance *L)
{
#ifdef __PASSES__
if (L->use_light_pass) {
L->state.diffuse = zero_float3();
L->state.glossy = zero_float3();
L->state.transmission = zero_float3();
L->state.volume = zero_float3();
L->direct_emission = zero_float3();
L->indirect = zero_float3();
}
#endif
}
ccl_device_inline void path_radiance_copy_indirect(PathRadiance *L, const PathRadiance *L_src)
{
#ifdef __PASSES__
if (L->use_light_pass) {
L->state = L_src->state;
L->direct_emission = L_src->direct_emission;
L->indirect = L_src->indirect;
}
#endif
}
#ifdef __SHADOW_TRICKS__
ccl_device_inline void path_radiance_sum_shadowcatcher(KernelGlobals *kg,
PathRadiance *L,
float3 *L_sum,
float *alpha)
{
/* Calculate current shadow of the path. */
float path_total = average(L->path_total);
float shadow;
if (UNLIKELY(!isfinite_safe(path_total))) {
# ifdef __KERNEL_DEBUG_NAN__
kernel_assert(!"Non-finite total radiance along the path");
# endif
shadow = 0.0f;
}
else if (path_total == 0.0f) {
shadow = L->shadow_transparency;
}
else {
float path_total_shaded = average(L->path_total_shaded);
shadow = path_total_shaded / path_total;
}
/* Calculate final light sum and transparency for shadow catcher object. */
if (kernel_data.background.transparent) {
*alpha -= L->shadow_throughput * shadow;
}
else {
L->shadow_background_color *= shadow;
*L_sum += L->shadow_background_color;
}
}
#endif
ccl_device_inline float3 path_radiance_clamp_and_sum(KernelGlobals *kg,
PathRadiance *L,
float *alpha)
{
float3 L_sum;
/* Light Passes are used */
#ifdef __PASSES__
float3 L_direct, L_indirect;
if (L->use_light_pass) {
path_radiance_sum_indirect(L);
L_direct = L->direct_diffuse + L->direct_glossy + L->direct_transmission + L->direct_volume +
L->emission;
L_indirect = L->indirect_diffuse + L->indirect_glossy + L->indirect_transmission +
L->indirect_volume;
if (!kernel_data.background.transparent)
L_direct += L->background;
L_sum = L_direct + L_indirect;
float sum = fabsf((L_sum).x) + fabsf((L_sum).y) + fabsf((L_sum).z);
/* Reject invalid value */
if (!isfinite_safe(sum)) {
# ifdef __KERNEL_DEBUG_NAN__
kernel_assert(!"Non-finite sum in path_radiance_clamp_and_sum!");
# endif
L_sum = zero_float3();
L->direct_diffuse = zero_float3();
L->direct_glossy = zero_float3();
L->direct_transmission = zero_float3();
L->direct_volume = zero_float3();
L->indirect_diffuse = zero_float3();
L->indirect_glossy = zero_float3();
L->indirect_transmission = zero_float3();
L->indirect_volume = zero_float3();
L->emission = zero_float3();
}
}
/* No Light Passes */
else
#endif
{
L_sum = L->emission;
/* Reject invalid value */
float sum = fabsf((L_sum).x) + fabsf((L_sum).y) + fabsf((L_sum).z);
if (!isfinite_safe(sum)) {
#ifdef __KERNEL_DEBUG_NAN__
kernel_assert(!"Non-finite final sum in path_radiance_clamp_and_sum!");
#endif
L_sum = zero_float3();
}
}
/* Compute alpha. */
*alpha = 1.0f - L->transparent;
/* Add shadow catcher contributions. */
#ifdef __SHADOW_TRICKS__
if (L->has_shadow_catcher) {
path_radiance_sum_shadowcatcher(kg, L, &L_sum, alpha);
}
#endif /* __SHADOW_TRICKS__ */
return L_sum;
}
ccl_device_inline void path_radiance_split_denoising(KernelGlobals *kg,
PathRadiance *L,
float3 *noisy,
float3 *clean)
{
#ifdef __PASSES__
kernel_assert(L->use_light_pass);
*clean = L->emission + L->background;
*noisy = L->direct_volume + L->indirect_volume;
# define ADD_COMPONENT(flag, component) \
if (kernel_data.film.denoising_flags & flag) \
*clean += component; \
else \
*noisy += component;
ADD_COMPONENT(DENOISING_CLEAN_DIFFUSE_DIR, L->direct_diffuse);
ADD_COMPONENT(DENOISING_CLEAN_DIFFUSE_IND, L->indirect_diffuse);
ADD_COMPONENT(DENOISING_CLEAN_GLOSSY_DIR, L->direct_glossy);
ADD_COMPONENT(DENOISING_CLEAN_GLOSSY_IND, L->indirect_glossy);
ADD_COMPONENT(DENOISING_CLEAN_TRANSMISSION_DIR, L->direct_transmission);
ADD_COMPONENT(DENOISING_CLEAN_TRANSMISSION_IND, L->indirect_transmission);
# undef ADD_COMPONENT
#else
*noisy = L->emission;
*clean = zero_float3();
#endif
#ifdef __SHADOW_TRICKS__
if (L->has_shadow_catcher) {
*noisy += L->shadow_background_color;
}
#endif
*noisy = ensure_finite3(*noisy);
*clean = ensure_finite3(*clean);
}
ccl_device_inline void path_radiance_accum_sample(PathRadiance *L, PathRadiance *L_sample)
{
#ifdef __SPLIT_KERNEL__
# define safe_float3_add(f, v) \
do { \
ccl_global float *p = (ccl_global float *)(&(f)); \
atomic_add_and_fetch_float(p + 0, (v).x); \
atomic_add_and_fetch_float(p + 1, (v).y); \
atomic_add_and_fetch_float(p + 2, (v).z); \
} while (0)
# define safe_float_add(f, v) atomic_add_and_fetch_float(&(f), (v))
#else
# define safe_float3_add(f, v) (f) += (v)
# define safe_float_add(f, v) (f) += (v)
#endif /* __SPLIT_KERNEL__ */
#ifdef __PASSES__
safe_float3_add(L->direct_diffuse, L_sample->direct_diffuse);
safe_float3_add(L->direct_glossy, L_sample->direct_glossy);
safe_float3_add(L->direct_transmission, L_sample->direct_transmission);
safe_float3_add(L->direct_volume, L_sample->direct_volume);
safe_float3_add(L->indirect_diffuse, L_sample->indirect_diffuse);
safe_float3_add(L->indirect_glossy, L_sample->indirect_glossy);
safe_float3_add(L->indirect_transmission, L_sample->indirect_transmission);
safe_float3_add(L->indirect_volume, L_sample->indirect_volume);
safe_float3_add(L->background, L_sample->background);
safe_float3_add(L->ao, L_sample->ao);
safe_float3_add(L->shadow, L_sample->shadow);
safe_float_add(L->mist, L_sample->mist);
#endif /* __PASSES__ */
safe_float3_add(L->emission, L_sample->emission);
#undef safe_float_add
#undef safe_float3_add
}
CCL_NAMESPACE_END