This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/math_matrix.c

2097 lines
49 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: some of this file.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenlib/intern/math_matrix.c
* \ingroup bli
*/
#include <assert.h>
#include "BLI_math.h"
#include "BLI_strict_flags.h"
/********************************* Init **************************************/
void zero_m3(float m[3][3])
{
memset(m, 0, 3 * 3 * sizeof(float));
}
void zero_m4(float m[4][4])
{
memset(m, 0, 4 * 4 * sizeof(float));
}
void unit_m3(float m[3][3])
{
m[0][0] = m[1][1] = m[2][2] = 1.0;
m[0][1] = m[0][2] = 0.0;
m[1][0] = m[1][2] = 0.0;
m[2][0] = m[2][1] = 0.0;
}
void unit_m4(float m[4][4])
{
m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0;
m[0][1] = m[0][2] = m[0][3] = 0.0;
m[1][0] = m[1][2] = m[1][3] = 0.0;
m[2][0] = m[2][1] = m[2][3] = 0.0;
m[3][0] = m[3][1] = m[3][2] = 0.0;
}
void copy_m3_m3(float m1[3][3], float m2[3][3])
{
/* destination comes first: */
memcpy(&m1[0], &m2[0], 9 * sizeof(float));
}
void copy_m4_m4(float m1[4][4], float m2[4][4])
{
memcpy(m1, m2, 4 * 4 * sizeof(float));
}
void copy_m3_m4(float m1[3][3], float m2[4][4])
{
m1[0][0] = m2[0][0];
m1[0][1] = m2[0][1];
m1[0][2] = m2[0][2];
m1[1][0] = m2[1][0];
m1[1][1] = m2[1][1];
m1[1][2] = m2[1][2];
m1[2][0] = m2[2][0];
m1[2][1] = m2[2][1];
m1[2][2] = m2[2][2];
}
void copy_m4_m3(float m1[4][4], float m2[3][3]) /* no clear */
{
m1[0][0] = m2[0][0];
m1[0][1] = m2[0][1];
m1[0][2] = m2[0][2];
m1[1][0] = m2[1][0];
m1[1][1] = m2[1][1];
m1[1][2] = m2[1][2];
m1[2][0] = m2[2][0];
m1[2][1] = m2[2][1];
m1[2][2] = m2[2][2];
/* Reevan's Bugfix */
m1[0][3] = 0.0F;
m1[1][3] = 0.0F;
m1[2][3] = 0.0F;
m1[3][0] = 0.0F;
m1[3][1] = 0.0F;
m1[3][2] = 0.0F;
m1[3][3] = 1.0F;
}
void copy_m3_m3d(float R[3][3], double A[3][3])
{
/* Keep it stupid simple for better data flow in CPU. */
R[0][0] = (float)A[0][0];
R[0][1] = (float)A[0][1];
R[0][2] = (float)A[0][2];
R[1][0] = (float)A[1][0];
R[1][1] = (float)A[1][1];
R[1][2] = (float)A[1][2];
R[2][0] = (float)A[2][0];
R[2][1] = (float)A[2][1];
R[2][2] = (float)A[2][2];
}
void swap_m3m3(float m1[3][3], float m2[3][3])
{
float t;
int i, j;
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
t = m1[i][j];
m1[i][j] = m2[i][j];
m2[i][j] = t;
}
}
}
void swap_m4m4(float m1[4][4], float m2[4][4])
{
float t;
int i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
t = m1[i][j];
m1[i][j] = m2[i][j];
m2[i][j] = t;
}
}
}
/******************************** Arithmetic *********************************/
void mul_m4_m4m4(float m1[4][4], float m3_[4][4], float m2_[4][4])
{
float m2[4][4], m3[4][4];
/* copy so it works when m1 is the same pointer as m2 or m3 */
copy_m4_m4(m2, m2_);
copy_m4_m4(m3, m3_);
/* matrix product: m1[j][k] = m2[j][i].m3[i][k] */
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0] + m2[0][3] * m3[3][0];
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1] + m2[0][3] * m3[3][1];
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2] + m2[0][3] * m3[3][2];
m1[0][3] = m2[0][0] * m3[0][3] + m2[0][1] * m3[1][3] + m2[0][2] * m3[2][3] + m2[0][3] * m3[3][3];
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0] + m2[1][3] * m3[3][0];
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1] + m2[1][3] * m3[3][1];
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2] + m2[1][3] * m3[3][2];
m1[1][3] = m2[1][0] * m3[0][3] + m2[1][1] * m3[1][3] + m2[1][2] * m3[2][3] + m2[1][3] * m3[3][3];
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0] + m2[2][3] * m3[3][0];
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1] + m2[2][3] * m3[3][1];
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2] + m2[2][3] * m3[3][2];
m1[2][3] = m2[2][0] * m3[0][3] + m2[2][1] * m3[1][3] + m2[2][2] * m3[2][3] + m2[2][3] * m3[3][3];
m1[3][0] = m2[3][0] * m3[0][0] + m2[3][1] * m3[1][0] + m2[3][2] * m3[2][0] + m2[3][3] * m3[3][0];
m1[3][1] = m2[3][0] * m3[0][1] + m2[3][1] * m3[1][1] + m2[3][2] * m3[2][1] + m2[3][3] * m3[3][1];
m1[3][2] = m2[3][0] * m3[0][2] + m2[3][1] * m3[1][2] + m2[3][2] * m3[2][2] + m2[3][3] * m3[3][2];
m1[3][3] = m2[3][0] * m3[0][3] + m2[3][1] * m3[1][3] + m2[3][2] * m3[2][3] + m2[3][3] * m3[3][3];
}
void mul_m3_m3m3(float m1[3][3], float m3_[3][3], float m2_[3][3])
{
float m2[3][3], m3[3][3];
/* copy so it works when m1 is the same pointer as m2 or m3 */
copy_m3_m3(m2, m2_);
copy_m3_m3(m3, m3_);
/* m1[i][j] = m2[i][k] * m3[k][j], args are flipped! */
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
}
void mul_m4_m4m3(float m1[4][4], float m3_[4][4], float m2_[3][3])
{
float m2[3][3], m3[4][4];
/* copy so it works when m1 is the same pointer as m2 or m3 */
copy_m3_m3(m2, m2_);
copy_m4_m4(m3, m3_);
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
}
/* m1 = m2 * m3, ignore the elements on the 4th row/column of m3 */
void mul_m3_m3m4(float m1[3][3], float m3_[4][4], float m2_[3][3])
{
float m2[3][3], m3[4][4];
/* copy so it works when m1 is the same pointer as m2 or m3 */
copy_m3_m3(m2, m2_);
copy_m4_m4(m3, m3_);
/* m1[i][j] = m2[i][k] * m3[k][j] */
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
}
void mul_m4_m3m4(float m1[4][4], float m3_[3][3], float m2_[4][4])
{
float m2[4][4], m3[3][3];
/* copy so it works when m1 is the same pointer as m2 or m3 */
copy_m4_m4(m2, m2_);
copy_m3_m3(m3, m3_);
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
}
void mul_serie_m3(float answ[3][3],
float m1[3][3], float m2[3][3], float m3[3][3],
float m4[3][3], float m5[3][3], float m6[3][3],
float m7[3][3], float m8[3][3])
{
float temp[3][3];
if (m1 == NULL || m2 == NULL) return;
mul_m3_m3m3(answ, m2, m1);
if (m3) {
mul_m3_m3m3(temp, m3, answ);
if (m4) {
mul_m3_m3m3(answ, m4, temp);
if (m5) {
mul_m3_m3m3(temp, m5, answ);
if (m6) {
mul_m3_m3m3(answ, m6, temp);
if (m7) {
mul_m3_m3m3(temp, m7, answ);
if (m8) {
mul_m3_m3m3(answ, m8, temp);
}
else copy_m3_m3(answ, temp);
}
}
else copy_m3_m3(answ, temp);
}
}
else copy_m3_m3(answ, temp);
}
}
void mul_serie_m4(float answ[4][4], float m1[4][4],
float m2[4][4], float m3[4][4], float m4[4][4],
float m5[4][4], float m6[4][4], float m7[4][4],
float m8[4][4])
{
float temp[4][4];
if (m1 == NULL || m2 == NULL) return;
mul_m4_m4m4(answ, m1, m2);
if (m3) {
mul_m4_m4m4(temp, answ, m3);
if (m4) {
mul_m4_m4m4(answ, temp, m4);
if (m5) {
mul_m4_m4m4(temp, answ, m5);
if (m6) {
mul_m4_m4m4(answ, temp, m6);
if (m7) {
mul_m4_m4m4(temp, answ, m7);
if (m8) {
mul_m4_m4m4(answ, temp, m8);
}
else copy_m4_m4(answ, temp);
}
}
else copy_m4_m4(answ, temp);
}
}
else copy_m4_m4(answ, temp);
}
}
void mul_v2_m3v2(float r[2], float m[3][3], float v[2])
{
float temp[3], warped[3];
copy_v2_v2(temp, v);
temp[2] = 1.0f;
mul_v3_m3v3(warped, m, temp);
r[0] = warped[0] / warped[2];
r[1] = warped[1] / warped[2];
}
void mul_m3_v2(float m[3][3], float r[2])
{
mul_v2_m3v2(r, m, r);
}
void mul_m4_v3(float mat[4][4], float vec[3])
{
float x, y;
x = vec[0];
y = vec[1];
vec[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
vec[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
vec[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2] + mat[3][2];
}
void mul_v3_m4v3(float r[3], float mat[4][4], const float vec[3])
{
float x, y;
x = vec[0];
y = vec[1];
r[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
r[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
r[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2] + mat[3][2];
}
void mul_v2_m4v3(float r[2], float mat[4][4], const float vec[3])
{
float x;
x = vec[0];
r[0] = x * mat[0][0] + vec[1] * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
r[1] = x * mat[0][1] + vec[1] * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
}
void mul_v2_m2v2(float r[2], float mat[2][2], const float vec[2])
{
float x;
x = vec[0];
r[0] = mat[0][0] * x + mat[1][0] * vec[1];
r[1] = mat[0][1] * x + mat[1][1] * vec[1];
}
/* same as mul_m4_v3() but doesnt apply translation component */
void mul_mat3_m4_v3(float mat[4][4], float vec[3])
{
float x, y;
x = vec[0];
y = vec[1];
vec[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2];
vec[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2];
vec[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2];
}
void mul_project_m4_v3(float mat[4][4], float vec[3])
{
const float w = mul_project_m4_v3_zfac(mat, vec);
mul_m4_v3(mat, vec);
vec[0] /= w;
vec[1] /= w;
vec[2] /= w;
}
void mul_v2_project_m4_v3(float r[2], float mat[4][4], const float vec[3])
{
const float w = mul_project_m4_v3_zfac(mat, vec);
mul_v2_m4v3(r, mat, vec);
r[0] /= w;
r[1] /= w;
}
void mul_v4_m4v4(float r[4], float mat[4][4], const float v[4])
{
float x, y, z;
x = v[0];
y = v[1];
z = v[2];
r[0] = x * mat[0][0] + y * mat[1][0] + z * mat[2][0] + mat[3][0] * v[3];
r[1] = x * mat[0][1] + y * mat[1][1] + z * mat[2][1] + mat[3][1] * v[3];
r[2] = x * mat[0][2] + y * mat[1][2] + z * mat[2][2] + mat[3][2] * v[3];
r[3] = x * mat[0][3] + y * mat[1][3] + z * mat[2][3] + mat[3][3] * v[3];
}
void mul_m4_v4(float mat[4][4], float r[4])
{
mul_v4_m4v4(r, mat, r);
}
void mul_v4d_m4v4d(double r[4], float mat[4][4], double v[4])
{
double x, y, z;
x = v[0];
y = v[1];
z = v[2];
r[0] = x * (double)mat[0][0] + y * (double)mat[1][0] + z * (double)mat[2][0] + (double)mat[3][0] * v[3];
r[1] = x * (double)mat[0][1] + y * (double)mat[1][1] + z * (double)mat[2][1] + (double)mat[3][1] * v[3];
r[2] = x * (double)mat[0][2] + y * (double)mat[1][2] + z * (double)mat[2][2] + (double)mat[3][2] * v[3];
r[3] = x * (double)mat[0][3] + y * (double)mat[1][3] + z * (double)mat[2][3] + (double)mat[3][3] * v[3];
}
void mul_m4_v4d(float mat[4][4], double r[4])
{
mul_v4d_m4v4d(r, mat, r);
}
void mul_v3_m3v3(float r[3], float M[3][3], const float a[3])
{
BLI_assert(r != a);
r[0] = M[0][0] * a[0] + M[1][0] * a[1] + M[2][0] * a[2];
r[1] = M[0][1] * a[0] + M[1][1] * a[1] + M[2][1] * a[2];
r[2] = M[0][2] * a[0] + M[1][2] * a[1] + M[2][2] * a[2];
}
void mul_v2_m3v3(float r[2], float M[3][3], const float a[3])
{
BLI_assert(r != a);
r[0] = M[0][0] * a[0] + M[1][0] * a[1] + M[2][0] * a[2];
r[1] = M[0][1] * a[0] + M[1][1] * a[1] + M[2][1] * a[2];
}
void mul_m3_v3(float M[3][3], float r[3])
{
float tmp[3];
mul_v3_m3v3(tmp, M, r);
copy_v3_v3(r, tmp);
}
void mul_transposed_m3_v3(float mat[3][3], float vec[3])
{
float x, y;
x = vec[0];
y = vec[1];
vec[0] = x * mat[0][0] + y * mat[0][1] + mat[0][2] * vec[2];
vec[1] = x * mat[1][0] + y * mat[1][1] + mat[1][2] * vec[2];
vec[2] = x * mat[2][0] + y * mat[2][1] + mat[2][2] * vec[2];
}
void mul_transposed_mat3_m4_v3(float mat[4][4], float vec[3])
{
float x, y;
x = vec[0];
y = vec[1];
vec[0] = x * mat[0][0] + y * mat[0][1] + mat[0][2] * vec[2];
vec[1] = x * mat[1][0] + y * mat[1][1] + mat[1][2] * vec[2];
vec[2] = x * mat[2][0] + y * mat[2][1] + mat[2][2] * vec[2];
}
void mul_m3_fl(float m[3][3], float f)
{
int i, j;
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
m[i][j] *= f;
}
void mul_m4_fl(float m[4][4], float f)
{
int i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
m[i][j] *= f;
}
void mul_mat3_m4_fl(float m[4][4], float f)
{
int i, j;
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
m[i][j] *= f;
}
void mul_m3_v3_double(float mat[3][3], double vec[3])
{
double x, y;
x = vec[0];
y = vec[1];
vec[0] = x * (double)mat[0][0] + y * (double)mat[1][0] + (double)mat[2][0] * vec[2];
vec[1] = x * (double)mat[0][1] + y * (double)mat[1][1] + (double)mat[2][1] * vec[2];
vec[2] = x * (double)mat[0][2] + y * (double)mat[1][2] + (double)mat[2][2] * vec[2];
}
void add_m3_m3m3(float m1[3][3], float m2[3][3], float m3[3][3])
{
int i, j;
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
m1[i][j] = m2[i][j] + m3[i][j];
}
void add_m4_m4m4(float m1[4][4], float m2[4][4], float m3[4][4])
{
int i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
m1[i][j] = m2[i][j] + m3[i][j];
}
void sub_m3_m3m3(float m1[3][3], float m2[3][3], float m3[3][3])
{
int i, j;
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
m1[i][j] = m2[i][j] - m3[i][j];
}
void sub_m4_m4m4(float m1[4][4], float m2[4][4], float m3[4][4])
{
int i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
m1[i][j] = m2[i][j] - m3[i][j];
}
float determinant_m3_array(float m[3][3])
{
return (m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) -
m[1][0] * (m[0][1] * m[2][2] - m[0][2] * m[2][1]) +
m[2][0] * (m[0][1] * m[1][2] - m[0][2] * m[1][1]));
}
int invert_m3_ex(float m[3][3], const float epsilon)
{
float tmp[3][3];
int success;
success = invert_m3_m3_ex(tmp, m, epsilon);
copy_m3_m3(m, tmp);
return success;
}
int invert_m3_m3_ex(float m1[3][3], float m2[3][3], const float epsilon)
{
float det;
int a, b, success;
BLI_assert(epsilon >= 0.0f);
/* calc adjoint */
adjoint_m3_m3(m1, m2);
/* then determinant old matrix! */
det = determinant_m3_array(m2);
success = (fabsf(det) > epsilon);
if (LIKELY(det != 0.0f)) {
det = 1.0f / det;
for (a = 0; a < 3; a++) {
for (b = 0; b < 3; b++) {
m1[a][b] *= det;
}
}
}
return success;
}
int invert_m3(float m[3][3])
{
float tmp[3][3];
int success;
success = invert_m3_m3(tmp, m);
copy_m3_m3(m, tmp);
return success;
}
int invert_m3_m3(float m1[3][3], float m2[3][3])
{
float det;
int a, b, success;
/* calc adjoint */
adjoint_m3_m3(m1, m2);
/* then determinant old matrix! */
det = determinant_m3_array(m2);
success = (det != 0.0f);
if (LIKELY(det != 0.0f)) {
det = 1.0f / det;
for (a = 0; a < 3; a++) {
for (b = 0; b < 3; b++) {
m1[a][b] *= det;
}
}
}
return success;
}
int invert_m4(float m[4][4])
{
float tmp[4][4];
int success;
success = invert_m4_m4(tmp, m);
copy_m4_m4(m, tmp);
return success;
}
/*
* invertmat -
* computes the inverse of mat and puts it in inverse. Returns
* TRUE on success (i.e. can always find a pivot) and FALSE on failure.
* Uses Gaussian Elimination with partial (maximal column) pivoting.
*
* Mark Segal - 1992
*/
int invert_m4_m4(float inverse[4][4], float mat[4][4])
{
int i, j, k;
double temp;
float tempmat[4][4];
float max;
int maxj;
BLI_assert(inverse != mat);
/* Set inverse to identity */
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
inverse[i][j] = 0;
for (i = 0; i < 4; i++)
inverse[i][i] = 1;
/* Copy original matrix so we don't mess it up */
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
tempmat[i][j] = mat[i][j];
for (i = 0; i < 4; i++) {
/* Look for row with max pivot */
max = fabsf(tempmat[i][i]);
maxj = i;
for (j = i + 1; j < 4; j++) {
if (fabsf(tempmat[j][i]) > max) {
max = fabsf(tempmat[j][i]);
maxj = j;
}
}
/* Swap rows if necessary */
if (maxj != i) {
for (k = 0; k < 4; k++) {
SWAP(float, tempmat[i][k], tempmat[maxj][k]);
SWAP(float, inverse[i][k], inverse[maxj][k]);
}
}
temp = tempmat[i][i];
if (temp == 0)
return 0; /* No non-zero pivot */
for (k = 0; k < 4; k++) {
tempmat[i][k] = (float)((double)tempmat[i][k] / temp);
inverse[i][k] = (float)((double)inverse[i][k] / temp);
}
for (j = 0; j < 4; j++) {
if (j != i) {
temp = tempmat[j][i];
for (k = 0; k < 4; k++) {
tempmat[j][k] -= (float)((double)tempmat[i][k] * temp);
inverse[j][k] -= (float)((double)inverse[i][k] * temp);
}
}
}
}
return 1;
}
/****************************** Linear Algebra *******************************/
void transpose_m3(float mat[3][3])
{
float t;
t = mat[0][1];
mat[0][1] = mat[1][0];
mat[1][0] = t;
t = mat[0][2];
mat[0][2] = mat[2][0];
mat[2][0] = t;
t = mat[1][2];
mat[1][2] = mat[2][1];
mat[2][1] = t;
}
void transpose_m4(float mat[4][4])
{
float t;
t = mat[0][1];
mat[0][1] = mat[1][0];
mat[1][0] = t;
t = mat[0][2];
mat[0][2] = mat[2][0];
mat[2][0] = t;
t = mat[0][3];
mat[0][3] = mat[3][0];
mat[3][0] = t;
t = mat[1][2];
mat[1][2] = mat[2][1];
mat[2][1] = t;
t = mat[1][3];
mat[1][3] = mat[3][1];
mat[3][1] = t;
t = mat[2][3];
mat[2][3] = mat[3][2];
mat[3][2] = t;
}
int compare_m4m4(float mat1[4][4], float mat2[4][4], float limit)
{
if (compare_v4v4(mat1[0], mat2[0], limit))
if (compare_v4v4(mat1[1], mat2[1], limit))
if (compare_v4v4(mat1[2], mat2[2], limit))
if (compare_v4v4(mat1[3], mat2[3], limit))
return 1;
return 0;
}
void orthogonalize_m3(float mat[3][3], int axis)
{
float size[3];
mat3_to_size(size, mat);
normalize_v3(mat[axis]);
switch (axis) {
case 0:
if (dot_v3v3(mat[0], mat[1]) < 1) {
cross_v3_v3v3(mat[2], mat[0], mat[1]);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
}
else if (dot_v3v3(mat[0], mat[2]) < 1) {
cross_v3_v3v3(mat[1], mat[2], mat[0]);
normalize_v3(mat[1]);
cross_v3_v3v3(mat[2], mat[0], mat[1]);
}
else {
float vec[3];
vec[0] = mat[0][1];
vec[1] = mat[0][2];
vec[2] = mat[0][0];
cross_v3_v3v3(mat[2], mat[0], vec);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
}
break;
case 1:
if (dot_v3v3(mat[1], mat[0]) < 1) {
cross_v3_v3v3(mat[2], mat[0], mat[1]);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[0], mat[1], mat[2]);
}
else if (dot_v3v3(mat[0], mat[2]) < 1) {
cross_v3_v3v3(mat[0], mat[1], mat[2]);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[2], mat[0], mat[1]);
}
else {
float vec[3];
vec[0] = mat[1][1];
vec[1] = mat[1][2];
vec[2] = mat[1][0];
cross_v3_v3v3(mat[0], mat[1], vec);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[2], mat[0], mat[1]);
}
break;
case 2:
if (dot_v3v3(mat[2], mat[0]) < 1) {
cross_v3_v3v3(mat[1], mat[2], mat[0]);
normalize_v3(mat[1]);
cross_v3_v3v3(mat[0], mat[1], mat[2]);
}
else if (dot_v3v3(mat[2], mat[1]) < 1) {
cross_v3_v3v3(mat[0], mat[1], mat[2]);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
}
else {
float vec[3];
vec[0] = mat[2][1];
vec[1] = mat[2][2];
vec[2] = mat[2][0];
cross_v3_v3v3(mat[0], vec, mat[2]);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
}
break;
default:
BLI_assert(0);
break;
}
mul_v3_fl(mat[0], size[0]);
mul_v3_fl(mat[1], size[1]);
mul_v3_fl(mat[2], size[2]);
}
void orthogonalize_m4(float mat[4][4], int axis)
{
float size[3];
mat4_to_size(size, mat);
normalize_v3(mat[axis]);
switch (axis) {
case 0:
if (dot_v3v3(mat[0], mat[1]) < 1) {
cross_v3_v3v3(mat[2], mat[0], mat[1]);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
}
else if (dot_v3v3(mat[0], mat[2]) < 1) {
cross_v3_v3v3(mat[1], mat[2], mat[0]);
normalize_v3(mat[1]);
cross_v3_v3v3(mat[2], mat[0], mat[1]);
}
else {
float vec[3];
vec[0] = mat[0][1];
vec[1] = mat[0][2];
vec[2] = mat[0][0];
cross_v3_v3v3(mat[2], mat[0], vec);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
}
break;
case 1:
if (dot_v3v3(mat[1], mat[0]) < 1) {
cross_v3_v3v3(mat[2], mat[0], mat[1]);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[0], mat[1], mat[2]);
}
else if (dot_v3v3(mat[0], mat[2]) < 1) {
cross_v3_v3v3(mat[0], mat[1], mat[2]);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[2], mat[0], mat[1]);
}
else {
float vec[3];
vec[0] = mat[1][1];
vec[1] = mat[1][2];
vec[2] = mat[1][0];
cross_v3_v3v3(mat[0], mat[1], vec);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[2], mat[0], mat[1]);
}
break;
case 2:
if (dot_v3v3(mat[2], mat[0]) < 1) {
cross_v3_v3v3(mat[1], mat[2], mat[0]);
normalize_v3(mat[1]);
cross_v3_v3v3(mat[0], mat[1], mat[2]);
}
else if (dot_v3v3(mat[2], mat[1]) < 1) {
cross_v3_v3v3(mat[0], mat[1], mat[2]);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
}
else {
float vec[3];
vec[0] = mat[2][1];
vec[1] = mat[2][2];
vec[2] = mat[2][0];
cross_v3_v3v3(mat[0], vec, mat[2]);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
}
break;
default:
BLI_assert(0);
break;
}
mul_v3_fl(mat[0], size[0]);
mul_v3_fl(mat[1], size[1]);
mul_v3_fl(mat[2], size[2]);
}
bool is_orthogonal_m3(float m[3][3])
{
int i, j;
for (i = 0; i < 3; i++) {
for (j = 0; j < i; j++) {
if (fabsf(dot_v3v3(m[i], m[j])) > 1.5f * FLT_EPSILON)
return 0;
}
}
return 1;
}
bool is_orthogonal_m4(float m[4][4])
{
int i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < i; j++) {
if (fabsf(dot_v4v4(m[i], m[j])) > 1.5f * FLT_EPSILON)
return 0;
}
}
return 1;
}
bool is_orthonormal_m3(float m[3][3])
{
if (is_orthogonal_m3(m)) {
int i;
for (i = 0; i < 3; i++)
if (fabsf(dot_v3v3(m[i], m[i]) - 1) > 1.5f * FLT_EPSILON)
return 0;
return 1;
}
return 0;
}
bool is_orthonormal_m4(float m[4][4])
{
if (is_orthogonal_m4(m)) {
int i;
for (i = 0; i < 4; i++)
if (fabsf(dot_v4v4(m[i], m[i]) - 1) > 1.5f * FLT_EPSILON)
return 0;
return 1;
}
return 0;
}
bool is_uniform_scaled_m3(float m[3][3])
{
const float eps = 1e-7f;
float t[3][3];
float l1, l2, l3, l4, l5, l6;
copy_m3_m3(t, m);
transpose_m3(t);
l1 = len_squared_v3(m[0]);
l2 = len_squared_v3(m[1]);
l3 = len_squared_v3(m[2]);
l4 = len_squared_v3(t[0]);
l5 = len_squared_v3(t[1]);
l6 = len_squared_v3(t[2]);
if (fabsf(l2 - l1) <= eps &&
fabsf(l3 - l1) <= eps &&
fabsf(l4 - l1) <= eps &&
fabsf(l5 - l1) <= eps &&
fabsf(l6 - l1) <= eps)
{
return 1;
}
return 0;
}
void normalize_m3(float mat[3][3])
{
normalize_v3(mat[0]);
normalize_v3(mat[1]);
normalize_v3(mat[2]);
}
void normalize_m3_m3(float rmat[3][3], float mat[3][3])
{
normalize_v3_v3(rmat[0], mat[0]);
normalize_v3_v3(rmat[1], mat[1]);
normalize_v3_v3(rmat[2], mat[2]);
}
void normalize_m4(float mat[4][4])
{
float len;
len = normalize_v3(mat[0]);
if (len != 0.0f) mat[0][3] /= len;
len = normalize_v3(mat[1]);
if (len != 0.0f) mat[1][3] /= len;
len = normalize_v3(mat[2]);
if (len != 0.0f) mat[2][3] /= len;
}
void normalize_m4_m4(float rmat[4][4], float mat[4][4])
{
copy_m4_m4(rmat, mat);
normalize_m4(rmat);
}
void adjoint_m2_m2(float m1[2][2], float m[2][2])
{
BLI_assert(m1 != m);
m1[0][0] = m[1][1];
m1[0][1] = -m[0][1];
m1[1][0] = -m[1][0];
m1[1][1] = m[0][0];
}
void adjoint_m3_m3(float m1[3][3], float m[3][3])
{
BLI_assert(m1 != m);
m1[0][0] = m[1][1] * m[2][2] - m[1][2] * m[2][1];
m1[0][1] = -m[0][1] * m[2][2] + m[0][2] * m[2][1];
m1[0][2] = m[0][1] * m[1][2] - m[0][2] * m[1][1];
m1[1][0] = -m[1][0] * m[2][2] + m[1][2] * m[2][0];
m1[1][1] = m[0][0] * m[2][2] - m[0][2] * m[2][0];
m1[1][2] = -m[0][0] * m[1][2] + m[0][2] * m[1][0];
m1[2][0] = m[1][0] * m[2][1] - m[1][1] * m[2][0];
m1[2][1] = -m[0][0] * m[2][1] + m[0][1] * m[2][0];
m1[2][2] = m[0][0] * m[1][1] - m[0][1] * m[1][0];
}
void adjoint_m4_m4(float out[4][4], float in[4][4]) /* out = ADJ(in) */
{
float a1, a2, a3, a4, b1, b2, b3, b4;
float c1, c2, c3, c4, d1, d2, d3, d4;
a1 = in[0][0];
b1 = in[0][1];
c1 = in[0][2];
d1 = in[0][3];
a2 = in[1][0];
b2 = in[1][1];
c2 = in[1][2];
d2 = in[1][3];
a3 = in[2][0];
b3 = in[2][1];
c3 = in[2][2];
d3 = in[2][3];
a4 = in[3][0];
b4 = in[3][1];
c4 = in[3][2];
d4 = in[3][3];
out[0][0] = determinant_m3(b2, b3, b4, c2, c3, c4, d2, d3, d4);
out[1][0] = -determinant_m3(a2, a3, a4, c2, c3, c4, d2, d3, d4);
out[2][0] = determinant_m3(a2, a3, a4, b2, b3, b4, d2, d3, d4);
out[3][0] = -determinant_m3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
out[0][1] = -determinant_m3(b1, b3, b4, c1, c3, c4, d1, d3, d4);
out[1][1] = determinant_m3(a1, a3, a4, c1, c3, c4, d1, d3, d4);
out[2][1] = -determinant_m3(a1, a3, a4, b1, b3, b4, d1, d3, d4);
out[3][1] = determinant_m3(a1, a3, a4, b1, b3, b4, c1, c3, c4);
out[0][2] = determinant_m3(b1, b2, b4, c1, c2, c4, d1, d2, d4);
out[1][2] = -determinant_m3(a1, a2, a4, c1, c2, c4, d1, d2, d4);
out[2][2] = determinant_m3(a1, a2, a4, b1, b2, b4, d1, d2, d4);
out[3][2] = -determinant_m3(a1, a2, a4, b1, b2, b4, c1, c2, c4);
out[0][3] = -determinant_m3(b1, b2, b3, c1, c2, c3, d1, d2, d3);
out[1][3] = determinant_m3(a1, a2, a3, c1, c2, c3, d1, d2, d3);
out[2][3] = -determinant_m3(a1, a2, a3, b1, b2, b3, d1, d2, d3);
out[3][3] = determinant_m3(a1, a2, a3, b1, b2, b3, c1, c2, c3);
}
float determinant_m2(float a, float b, float c, float d)
{
return a * d - b * c;
}
float determinant_m3(float a1, float a2, float a3,
float b1, float b2, float b3,
float c1, float c2, float c3)
{
float ans;
ans = (a1 * determinant_m2(b2, b3, c2, c3) -
b1 * determinant_m2(a2, a3, c2, c3) +
c1 * determinant_m2(a2, a3, b2, b3));
return ans;
}
float determinant_m4(float m[4][4])
{
float ans;
float a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4;
a1 = m[0][0];
b1 = m[0][1];
c1 = m[0][2];
d1 = m[0][3];
a2 = m[1][0];
b2 = m[1][1];
c2 = m[1][2];
d2 = m[1][3];
a3 = m[2][0];
b3 = m[2][1];
c3 = m[2][2];
d3 = m[2][3];
a4 = m[3][0];
b4 = m[3][1];
c4 = m[3][2];
d4 = m[3][3];
ans = (a1 * determinant_m3(b2, b3, b4, c2, c3, c4, d2, d3, d4) -
b1 * determinant_m3(a2, a3, a4, c2, c3, c4, d2, d3, d4) +
c1 * determinant_m3(a2, a3, a4, b2, b3, b4, d2, d3, d4) -
d1 * determinant_m3(a2, a3, a4, b2, b3, b4, c2, c3, c4));
return ans;
}
/****************************** Transformations ******************************/
void size_to_mat3(float mat[3][3], const float size[3])
{
mat[0][0] = size[0];
mat[0][1] = 0.0f;
mat[0][2] = 0.0f;
mat[1][1] = size[1];
mat[1][0] = 0.0f;
mat[1][2] = 0.0f;
mat[2][2] = size[2];
mat[2][1] = 0.0f;
mat[2][0] = 0.0f;
}
void size_to_mat4(float mat[4][4], const float size[3])
{
float tmat[3][3];
size_to_mat3(tmat, size);
unit_m4(mat);
copy_m4_m3(mat, tmat);
}
void mat3_to_size(float size[3], float mat[3][3])
{
size[0] = len_v3(mat[0]);
size[1] = len_v3(mat[1]);
size[2] = len_v3(mat[2]);
}
void mat4_to_size(float size[3], float mat[4][4])
{
size[0] = len_v3(mat[0]);
size[1] = len_v3(mat[1]);
size[2] = len_v3(mat[2]);
}
/* this gets the average scale of a matrix, only use when your scaling
* data that has no idea of scale axis, examples are bone-envelope-radius
* and curve radius */
float mat3_to_scale(float mat[3][3])
{
/* unit length vector */
float unit_vec[3];
copy_v3_fl(unit_vec, 0.577350269189626f);
mul_m3_v3(mat, unit_vec);
return len_v3(unit_vec);
}
float mat4_to_scale(float mat[4][4])
{
/* unit length vector */
float unit_vec[3];
copy_v3_fl(unit_vec, 0.577350269189626f);
mul_mat3_m4_v3(mat, unit_vec);
return len_v3(unit_vec);
}
void mat3_to_rot_size(float rot[3][3], float size[3], float mat3[3][3])
{
float mat3_n[3][3]; /* mat3 -> normalized, 3x3 */
float imat3_n[3][3]; /* mat3 -> normalized & inverted, 3x3 */
/* rotation & scale are linked, we need to create the mat's
* for these together since they are related. */
/* so scale doesn't interfere with rotation [#24291] */
/* note: this is a workaround for negative matrix not working for rotation conversion, FIXME */
normalize_m3_m3(mat3_n, mat3);
if (is_negative_m3(mat3)) {
negate_v3(mat3_n[0]);
negate_v3(mat3_n[1]);
negate_v3(mat3_n[2]);
}
/* rotation */
/* keep rot as a 3x3 matrix, the caller can convert into a quat or euler */
copy_m3_m3(rot, mat3_n);
/* scale */
/* note: mat4_to_size(ob->size, mat) fails for negative scale */
invert_m3_m3(imat3_n, mat3_n);
mul_m3_m3m3(mat3, imat3_n, mat3);
size[0] = mat3[0][0];
size[1] = mat3[1][1];
size[2] = mat3[2][2];
}
void mat4_to_loc_rot_size(float loc[3], float rot[3][3], float size[3], float wmat[4][4])
{
float mat3[3][3]; /* wmat -> 3x3 */
copy_m3_m4(mat3, wmat);
mat3_to_rot_size(rot, size, mat3);
/* location */
copy_v3_v3(loc, wmat[3]);
}
void mat4_to_loc_quat(float loc[3], float quat[4], float wmat[4][4])
{
float mat3[3][3];
float mat3_n[3][3]; /* normalized mat3 */
copy_m3_m4(mat3, wmat);
normalize_m3_m3(mat3_n, mat3);
/* so scale doesn't interfere with rotation [#24291] */
/* note: this is a workaround for negative matrix not working for rotation conversion, FIXME */
if (is_negative_m3(mat3)) {
negate_v3(mat3_n[0]);
negate_v3(mat3_n[1]);
negate_v3(mat3_n[2]);
}
mat3_to_quat(quat, mat3_n);
copy_v3_v3(loc, wmat[3]);
}
void mat4_decompose(float loc[3], float quat[4], float size[3], float wmat[4][4])
{
float rot[3][3];
mat4_to_loc_rot_size(loc, rot, size, wmat);
mat3_to_quat(quat, rot);
}
void scale_m3_fl(float m[3][3], float scale)
{
m[0][0] = m[1][1] = m[2][2] = scale;
m[0][1] = m[0][2] = 0.0;
m[1][0] = m[1][2] = 0.0;
m[2][0] = m[2][1] = 0.0;
}
void scale_m4_fl(float m[4][4], float scale)
{
m[0][0] = m[1][1] = m[2][2] = scale;
m[3][3] = 1.0;
m[0][1] = m[0][2] = m[0][3] = 0.0;
m[1][0] = m[1][2] = m[1][3] = 0.0;
m[2][0] = m[2][1] = m[2][3] = 0.0;
m[3][0] = m[3][1] = m[3][2] = 0.0;
}
void translate_m4(float mat[4][4], float Tx, float Ty, float Tz)
{
mat[3][0] += (Tx * mat[0][0] + Ty * mat[1][0] + Tz * mat[2][0]);
mat[3][1] += (Tx * mat[0][1] + Ty * mat[1][1] + Tz * mat[2][1]);
mat[3][2] += (Tx * mat[0][2] + Ty * mat[1][2] + Tz * mat[2][2]);
}
void rotate_m4(float mat[4][4], const char axis, const float angle)
{
int col;
float temp[4] = {0.0f, 0.0f, 0.0f, 0.0f};
float cosine, sine;
assert(axis >= 'X' && axis <= 'Z');
cosine = cosf(angle);
sine = sinf(angle);
switch (axis) {
case 'X':
for (col = 0; col < 4; col++)
temp[col] = cosine * mat[1][col] + sine * mat[2][col];
for (col = 0; col < 4; col++) {
mat[2][col] = -sine * mat[1][col] + cosine * mat[2][col];
mat[1][col] = temp[col];
}
break;
case 'Y':
for (col = 0; col < 4; col++)
temp[col] = cosine * mat[0][col] - sine * mat[2][col];
for (col = 0; col < 4; col++) {
mat[2][col] = sine * mat[0][col] + cosine * mat[2][col];
mat[0][col] = temp[col];
}
break;
case 'Z':
for (col = 0; col < 4; col++)
temp[col] = cosine * mat[0][col] + sine * mat[1][col];
for (col = 0; col < 4; col++) {
mat[1][col] = -sine * mat[0][col] + cosine * mat[1][col];
mat[0][col] = temp[col];
}
break;
}
}
void rotate_m2(float mat[2][2], const float angle)
{
mat[0][0] = mat[1][1] = cosf(angle);
mat[0][1] = sinf(angle);
mat[1][0] = -mat[0][1];
}
/**
* Scale or rotate around a pivot point,
* a convenience function to avoid having to do inline.
*
* Since its common to make a scale/rotation matrix that pivots around an arbitrary point.
*
* Typical use case is to make 3x3 matrix, copy to 4x4, then pass to this function.
*/
void transform_pivot_set_m4(float mat[4][4], const float pivot[3])
{
float tmat[4][4];
unit_m4(tmat);
copy_v3_v3(tmat[3], pivot);
mul_m4_m4m4(mat, tmat, mat);
/* invert the matrix */
negate_v3(tmat[3]);
mul_m4_m4m4(mat, mat, tmat);
}
void blend_m3_m3m3(float out[3][3], float dst[3][3], float src[3][3], const float srcweight)
{
float srot[3][3], drot[3][3];
float squat[4], dquat[4], fquat[4];
float sscale[3], dscale[3], fsize[3];
float rmat[3][3], smat[3][3];
mat3_to_rot_size(drot, dscale, dst);
mat3_to_rot_size(srot, sscale, src);
mat3_to_quat(dquat, drot);
mat3_to_quat(squat, srot);
/* do blending */
interp_qt_qtqt(fquat, dquat, squat, srcweight);
interp_v3_v3v3(fsize, dscale, sscale, srcweight);
/* compose new matrix */
quat_to_mat3(rmat, fquat);
size_to_mat3(smat, fsize);
mul_m3_m3m3(out, rmat, smat);
}
void blend_m4_m4m4(float out[4][4], float dst[4][4], float src[4][4], const float srcweight)
{
float sloc[3], dloc[3], floc[3];
float srot[3][3], drot[3][3];
float squat[4], dquat[4], fquat[4];
float sscale[3], dscale[3], fsize[3];
mat4_to_loc_rot_size(dloc, drot, dscale, dst);
mat4_to_loc_rot_size(sloc, srot, sscale, src);
mat3_to_quat(dquat, drot);
mat3_to_quat(squat, srot);
/* do blending */
interp_v3_v3v3(floc, dloc, sloc, srcweight);
interp_qt_qtqt(fquat, dquat, squat, srcweight);
interp_v3_v3v3(fsize, dscale, sscale, srcweight);
/* compose new matrix */
loc_quat_size_to_mat4(out, floc, fquat, fsize);
}
bool is_negative_m3(float mat[3][3])
{
float vec[3];
cross_v3_v3v3(vec, mat[0], mat[1]);
return (dot_v3v3(vec, mat[2]) < 0.0f);
}
bool is_negative_m4(float mat[4][4])
{
float vec[3];
cross_v3_v3v3(vec, mat[0], mat[1]);
return (dot_v3v3(vec, mat[2]) < 0.0f);
}
bool is_zero_m3(float mat[3][3])
{
return (is_zero_v3(mat[0]) &&
is_zero_v3(mat[1]) &&
is_zero_v3(mat[2]));
}
bool is_zero_m4(float mat[4][4])
{
return (is_zero_v4(mat[0]) &&
is_zero_v4(mat[1]) &&
is_zero_v4(mat[2]) &&
is_zero_v4(mat[3]));
}
/* make a 4x4 matrix out of 3 transform components */
/* matrices are made in the order: scale * rot * loc */
/* TODO: need to have a version that allows for rotation order... */
void loc_eul_size_to_mat4(float mat[4][4], const float loc[3], const float eul[3], const float size[3])
{
float rmat[3][3], smat[3][3], tmat[3][3];
/* initialize new matrix */
unit_m4(mat);
/* make rotation + scaling part */
eul_to_mat3(rmat, eul);
size_to_mat3(smat, size);
mul_m3_m3m3(tmat, rmat, smat);
/* copy rot/scale part to output matrix*/
copy_m4_m3(mat, tmat);
/* copy location to matrix */
mat[3][0] = loc[0];
mat[3][1] = loc[1];
mat[3][2] = loc[2];
}
/* make a 4x4 matrix out of 3 transform components */
/* matrices are made in the order: scale * rot * loc */
void loc_eulO_size_to_mat4(float mat[4][4], const float loc[3], const float eul[3], const float size[3], const short rotOrder)
{
float rmat[3][3], smat[3][3], tmat[3][3];
/* initialize new matrix */
unit_m4(mat);
/* make rotation + scaling part */
eulO_to_mat3(rmat, eul, rotOrder);
size_to_mat3(smat, size);
mul_m3_m3m3(tmat, rmat, smat);
/* copy rot/scale part to output matrix*/
copy_m4_m3(mat, tmat);
/* copy location to matrix */
mat[3][0] = loc[0];
mat[3][1] = loc[1];
mat[3][2] = loc[2];
}
/* make a 4x4 matrix out of 3 transform components */
/* matrices are made in the order: scale * rot * loc */
void loc_quat_size_to_mat4(float mat[4][4], const float loc[3], const float quat[4], const float size[3])
{
float rmat[3][3], smat[3][3], tmat[3][3];
/* initialize new matrix */
unit_m4(mat);
/* make rotation + scaling part */
quat_to_mat3(rmat, quat);
size_to_mat3(smat, size);
mul_m3_m3m3(tmat, rmat, smat);
/* copy rot/scale part to output matrix*/
copy_m4_m3(mat, tmat);
/* copy location to matrix */
mat[3][0] = loc[0];
mat[3][1] = loc[1];
mat[3][2] = loc[2];
}
void loc_axisangle_size_to_mat4(float mat[4][4], const float loc[3], const float axis[3], const float angle, const float size[3])
{
float q[4];
axis_angle_to_quat(q, axis, angle);
loc_quat_size_to_mat4(mat, loc, q, size);
}
/*********************************** Other ***********************************/
void print_m3(const char *str, float m[3][3])
{
printf("%s\n", str);
printf("%f %f %f\n", m[0][0], m[1][0], m[2][0]);
printf("%f %f %f\n", m[0][1], m[1][1], m[2][1]);
printf("%f %f %f\n", m[0][2], m[1][2], m[2][2]);
printf("\n");
}
void print_m4(const char *str, float m[4][4])
{
printf("%s\n", str);
printf("%f %f %f %f\n", m[0][0], m[1][0], m[2][0], m[3][0]);
printf("%f %f %f %f\n", m[0][1], m[1][1], m[2][1], m[3][1]);
printf("%f %f %f %f\n", m[0][2], m[1][2], m[2][2], m[3][2]);
printf("%f %f %f %f\n", m[0][3], m[1][3], m[2][3], m[3][3]);
printf("\n");
}
/*********************************** SVD ************************************
* from TNT matrix library
*
* Compute the Single Value Decomposition of an arbitrary matrix A
* That is compute the 3 matrices U,W,V with U column orthogonal (m,n)
* ,W a diagonal matrix and V an orthogonal square matrix s.t.
* A = U.W.Vt. From this decomposition it is trivial to compute the
* (pseudo-inverse) of A as Ainv = V.Winv.tranpose(U).
*/
void svd_m4(float U[4][4], float s[4], float V[4][4], float A_[4][4])
{
float A[4][4];
float work1[4], work2[4];
int m = 4;
int n = 4;
int maxiter = 200;
int nu = min_ii(m, n);
float *work = work1;
float *e = work2;
float eps;
int i = 0, j = 0, k = 0, p, pp, iter;
/* Reduce A to bidiagonal form, storing the diagonal elements
* in s and the super-diagonal elements in e. */
int nct = min_ii(m - 1, n);
int nrt = max_ii(0, min_ii(n - 2, m));
copy_m4_m4(A, A_);
zero_m4(U);
zero_v4(s);
for (k = 0; k < max_ii(nct, nrt); k++) {
if (k < nct) {
/* Compute the transformation for the k-th column and
* place the k-th diagonal in s[k].
* Compute 2-norm of k-th column without under/overflow. */
s[k] = 0;
for (i = k; i < m; i++) {
s[k] = hypotf(s[k], A[i][k]);
}
if (s[k] != 0.0f) {
float invsk;
if (A[k][k] < 0.0f) {
s[k] = -s[k];
}
invsk = 1.0f / s[k];
for (i = k; i < m; i++) {
A[i][k] *= invsk;
}
A[k][k] += 1.0f;
}
s[k] = -s[k];
}
for (j = k + 1; j < n; j++) {
if ((k < nct) && (s[k] != 0.0f)) {
/* Apply the transformation. */
float t = 0;
for (i = k; i < m; i++) {
t += A[i][k] * A[i][j];
}
t = -t / A[k][k];
for (i = k; i < m; i++) {
A[i][j] += t * A[i][k];
}
}
/* Place the k-th row of A into e for the */
/* subsequent calculation of the row transformation. */
e[j] = A[k][j];
}
if (k < nct) {
/* Place the transformation in U for subsequent back
* multiplication. */
for (i = k; i < m; i++)
U[i][k] = A[i][k];
}
if (k < nrt) {
/* Compute the k-th row transformation and place the
* k-th super-diagonal in e[k].
* Compute 2-norm without under/overflow. */
e[k] = 0;
for (i = k + 1; i < n; i++) {
e[k] = hypotf(e[k], e[i]);
}
if (e[k] != 0.0f) {
float invek;
if (e[k + 1] < 0.0f) {
e[k] = -e[k];
}
invek = 1.0f / e[k];
for (i = k + 1; i < n; i++) {
e[i] *= invek;
}
e[k + 1] += 1.0f;
}
e[k] = -e[k];
if ((k + 1 < m) & (e[k] != 0.0f)) {
float invek1;
/* Apply the transformation. */
for (i = k + 1; i < m; i++) {
work[i] = 0.0f;
}
for (j = k + 1; j < n; j++) {
for (i = k + 1; i < m; i++) {
work[i] += e[j] * A[i][j];
}
}
invek1 = 1.0f / e[k + 1];
for (j = k + 1; j < n; j++) {
float t = -e[j] * invek1;
for (i = k + 1; i < m; i++) {
A[i][j] += t * work[i];
}
}
}
/* Place the transformation in V for subsequent
* back multiplication. */
for (i = k + 1; i < n; i++)
V[i][k] = e[i];
}
}
/* Set up the final bidiagonal matrix or order p. */
p = min_ii(n, m + 1);
if (nct < n) {
s[nct] = A[nct][nct];
}
if (m < p) {
s[p - 1] = 0.0f;
}
if (nrt + 1 < p) {
e[nrt] = A[nrt][p - 1];
}
e[p - 1] = 0.0f;
/* If required, generate U. */
for (j = nct; j < nu; j++) {
for (i = 0; i < m; i++) {
U[i][j] = 0.0f;
}
U[j][j] = 1.0f;
}
for (k = nct - 1; k >= 0; k--) {
if (s[k] != 0.0f) {
for (j = k + 1; j < nu; j++) {
float t = 0;
for (i = k; i < m; i++) {
t += U[i][k] * U[i][j];
}
t = -t / U[k][k];
for (i = k; i < m; i++) {
U[i][j] += t * U[i][k];
}
}
for (i = k; i < m; i++) {
U[i][k] = -U[i][k];
}
U[k][k] = 1.0f + U[k][k];
for (i = 0; i < k - 1; i++) {
U[i][k] = 0.0f;
}
}
else {
for (i = 0; i < m; i++) {
U[i][k] = 0.0f;
}
U[k][k] = 1.0f;
}
}
/* If required, generate V. */
for (k = n - 1; k >= 0; k--) {
if ((k < nrt) & (e[k] != 0.0f)) {
for (j = k + 1; j < nu; j++) {
float t = 0;
for (i = k + 1; i < n; i++) {
t += V[i][k] * V[i][j];
}
t = -t / V[k + 1][k];
for (i = k + 1; i < n; i++) {
V[i][j] += t * V[i][k];
}
}
}
for (i = 0; i < n; i++) {
V[i][k] = 0.0f;
}
V[k][k] = 1.0f;
}
/* Main iteration loop for the singular values. */
pp = p - 1;
iter = 0;
eps = powf(2.0f, -52.0f);
while (p > 0) {
int kase = 0;
/* Test for maximum iterations to avoid infinite loop */
if (maxiter == 0)
break;
maxiter--;
/* This section of the program inspects for
* negligible elements in the s and e arrays. On
* completion the variables kase and k are set as follows.
*
* kase = 1 if s(p) and e[k - 1] are negligible and k<p
* kase = 2 if s(k) is negligible and k<p
* kase = 3 if e[k - 1] is negligible, k<p, and
* s(k), ..., s(p) are not negligible (qr step).
* kase = 4 if e(p - 1) is negligible (convergence). */
for (k = p - 2; k >= -1; k--) {
if (k == -1) {
break;
}
if (fabsf(e[k]) <= eps * (fabsf(s[k]) + fabsf(s[k + 1]))) {
e[k] = 0.0f;
break;
}
}
if (k == p - 2) {
kase = 4;
}
else {
int ks;
for (ks = p - 1; ks >= k; ks--) {
float t;
if (ks == k) {
break;
}
t = (ks != p ? fabsf(e[ks]) : 0.f) +
(ks != k + 1 ? fabsf(e[ks - 1]) : 0.0f);
if (fabsf(s[ks]) <= eps * t) {
s[ks] = 0.0f;
break;
}
}
if (ks == k) {
kase = 3;
}
else if (ks == p - 1) {
kase = 1;
}
else {
kase = 2;
k = ks;
}
}
k++;
/* Perform the task indicated by kase. */
switch (kase) {
/* Deflate negligible s(p). */
case 1:
{
float f = e[p - 2];
e[p - 2] = 0.0f;
for (j = p - 2; j >= k; j--) {
float t = hypotf(s[j], f);
float invt = 1.0f / t;
float cs = s[j] * invt;
float sn = f * invt;
s[j] = t;
if (j != k) {
f = -sn * e[j - 1];
e[j - 1] = cs * e[j - 1];
}
for (i = 0; i < n; i++) {
t = cs * V[i][j] + sn * V[i][p - 1];
V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1];
V[i][j] = t;
}
}
break;
}
/* Split at negligible s(k). */
case 2:
{
float f = e[k - 1];
e[k - 1] = 0.0f;
for (j = k; j < p; j++) {
float t = hypotf(s[j], f);
float invt = 1.0f / t;
float cs = s[j] * invt;
float sn = f * invt;
s[j] = t;
f = -sn * e[j];
e[j] = cs * e[j];
for (i = 0; i < m; i++) {
t = cs * U[i][j] + sn * U[i][k - 1];
U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1];
U[i][j] = t;
}
}
break;
}
/* Perform one qr step. */
case 3:
{
/* Calculate the shift. */
float scale = max_ff(max_ff(max_ff(max_ff(
fabsf(s[p - 1]), fabsf(s[p - 2])), fabsf(e[p - 2])),
fabsf(s[k])), fabsf(e[k]));
float invscale = 1.0f / scale;
float sp = s[p - 1] * invscale;
float spm1 = s[p - 2] * invscale;
float epm1 = e[p - 2] * invscale;
float sk = s[k] * invscale;
float ek = e[k] * invscale;
float b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) * 0.5f;
float c = (sp * epm1) * (sp * epm1);
float shift = 0.0f;
float f, g;
if ((b != 0.0f) || (c != 0.0f)) {
shift = sqrtf(b * b + c);
if (b < 0.0f) {
shift = -shift;
}
shift = c / (b + shift);
}
f = (sk + sp) * (sk - sp) + shift;
g = sk * ek;
/* Chase zeros. */
for (j = k; j < p - 1; j++) {
float t = hypotf(f, g);
/* division by zero checks added to avoid NaN (brecht) */
float cs = (t == 0.0f) ? 0.0f : f / t;
float sn = (t == 0.0f) ? 0.0f : g / t;
if (j != k) {
e[j - 1] = t;
}
f = cs * s[j] + sn * e[j];
e[j] = cs * e[j] - sn * s[j];
g = sn * s[j + 1];
s[j + 1] = cs * s[j + 1];
for (i = 0; i < n; i++) {
t = cs * V[i][j] + sn * V[i][j + 1];
V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1];
V[i][j] = t;
}
t = hypotf(f, g);
/* division by zero checks added to avoid NaN (brecht) */
cs = (t == 0.0f) ? 0.0f : f / t;
sn = (t == 0.0f) ? 0.0f : g / t;
s[j] = t;
f = cs * e[j] + sn * s[j + 1];
s[j + 1] = -sn * e[j] + cs * s[j + 1];
g = sn * e[j + 1];
e[j + 1] = cs * e[j + 1];
if (j < m - 1) {
for (i = 0; i < m; i++) {
t = cs * U[i][j] + sn * U[i][j + 1];
U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1];
U[i][j] = t;
}
}
}
e[p - 2] = f;
iter = iter + 1;
break;
}
/* Convergence. */
case 4:
{
/* Make the singular values positive. */
if (s[k] <= 0.0f) {
s[k] = (s[k] < 0.0f ? -s[k] : 0.0f);
for (i = 0; i <= pp; i++)
V[i][k] = -V[i][k];
}
/* Order the singular values. */
while (k < pp) {
float t;
if (s[k] >= s[k + 1]) {
break;
}
t = s[k];
s[k] = s[k + 1];
s[k + 1] = t;
if (k < n - 1) {
for (i = 0; i < n; i++) {
t = V[i][k + 1];
V[i][k + 1] = V[i][k];
V[i][k] = t;
}
}
if (k < m - 1) {
for (i = 0; i < m; i++) {
t = U[i][k + 1];
U[i][k + 1] = U[i][k];
U[i][k] = t;
}
}
k++;
}
iter = 0;
p--;
break;
}
}
}
}
void pseudoinverse_m4_m4(float Ainv[4][4], float A[4][4], float epsilon)
{
/* compute moon-penrose pseudo inverse of matrix, singular values
* below epsilon are ignored for stability (truncated SVD) */
float V[4][4], W[4], Wm[4][4], U[4][4];
int i;
transpose_m4(A);
svd_m4(V, W, U, A);
transpose_m4(U);
transpose_m4(V);
zero_m4(Wm);
for (i = 0; i < 4; i++)
Wm[i][i] = (W[i] < epsilon) ? 0.0f : 1.0f / W[i];
transpose_m4(V);
mul_serie_m4(Ainv, U, Wm, V, NULL, NULL, NULL, NULL, NULL);
}
void pseudoinverse_m3_m3(float Ainv[3][3], float A[3][3], float epsilon)
{
/* try regular inverse when possible, otherwise fall back to slow svd */
if (!invert_m3_m3(Ainv, A)) {
float tmp[4][4], tmpinv[4][4];
copy_m4_m3(tmp, A);
pseudoinverse_m4_m4(tmpinv, tmp, epsilon);
copy_m3_m4(Ainv, tmpinv);
}
}
bool has_zero_axis_m4(float matrix[4][4])
{
return len_squared_v3(matrix[0]) < FLT_EPSILON ||
len_squared_v3(matrix[1]) < FLT_EPSILON ||
len_squared_v3(matrix[2]) < FLT_EPSILON;
}