This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/draw/intern/draw_curves.cc
Jacques Lucke b876ce2a4a Geometry Nodes: new geometry attribute API
Currently, there are two attribute API. The first, defined in `BKE_attribute.h` is
accessible from RNA and C code. The second is implemented with `GeometryComponent`
and is only accessible in C++ code. The second is widely used, but only being
accessible through the `GeometrySet` API makes it awkward to use, and even impossible
for types that don't correspond directly to a geometry component like `CurvesGeometry`.

This patch adds a new attribute API, designed to replace the `GeometryComponent`
attribute API now, and to eventually replace or be the basis of the other one.

The basic idea is that there is an `AttributeAccessor` class that allows code to
interact with a set of attributes owned by some geometry. The accessor itself has
no ownership. `AttributeAccessor` is a simple type that can be passed around by
value. That makes it easy to return it from functions and to store it in containers.

For const-correctness, there is also a `MutableAttributeAccessor` that allows
changing individual and can add or remove attributes.

Currently, `AttributeAccessor` is composed of two pointers. The first is a pointer
to the owner of the attribute data. The second is a pointer to a struct with
function pointers, that is similar to a virtual function table. The functions
know how to access attributes on the owner.

The actual attribute access for geometries is still implemented with the `AttributeProvider`
pattern, which makes it easy to support different sources of attributes on a
geometry and simplifies dealing with built-in attributes.

There are different ways to get an attribute accessor for a geometry:
* `GeometryComponent.attributes()`
* `CurvesGeometry.attributes()`
* `bke::mesh_attributes(const Mesh &)`
* `bke::pointcloud_attributes(const PointCloud &)`

All of these also have a `_for_write` variant that returns a `MutabelAttributeAccessor`.

Differential Revision: https://developer.blender.org/D15280
2022-07-08 16:16:56 +02:00

499 lines
17 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2017 Blender Foundation. All rights reserved. */
/** \file
* \ingroup draw
*
* \brief Contains procedural GPU hair drawing methods.
*/
#include "BLI_string_utils.h"
#include "BLI_utildefines.h"
#include "DNA_curves_types.h"
#include "DNA_customdata_types.h"
#include "BKE_curves.hh"
#include "BKE_geometry_set.hh"
#include "GPU_batch.h"
#include "GPU_capabilities.h"
#include "GPU_compute.h"
#include "GPU_material.h"
#include "GPU_shader.h"
#include "GPU_texture.h"
#include "GPU_vertex_buffer.h"
#include "DRW_gpu_wrapper.hh"
#include "DRW_render.h"
#include "draw_cache_impl.h"
#include "draw_curves_private.h"
#include "draw_hair_private.h"
#include "draw_manager.h"
#include "draw_shader.h"
#ifndef __APPLE__
# define USE_TRANSFORM_FEEDBACK
# define USE_COMPUTE_SHADERS
#endif
BLI_INLINE eParticleRefineShaderType drw_curves_shader_type_get()
{
#ifdef USE_COMPUTE_SHADERS
if (GPU_compute_shader_support() && GPU_shader_storage_buffer_objects_support()) {
return PART_REFINE_SHADER_COMPUTE;
}
#endif
#ifdef USE_TRANSFORM_FEEDBACK
return PART_REFINE_SHADER_TRANSFORM_FEEDBACK;
#endif
return PART_REFINE_SHADER_TRANSFORM_FEEDBACK_WORKAROUND;
}
#ifndef USE_TRANSFORM_FEEDBACK
struct CurvesEvalCall {
struct CurvesEvalCall *next;
GPUVertBuf *vbo;
DRWShadingGroup *shgrp;
uint vert_len;
};
static CurvesEvalCall *g_tf_calls = nullptr;
static int g_tf_id_offset;
static int g_tf_target_width;
static int g_tf_target_height;
#endif
static GPUVertBuf *g_dummy_vbo = nullptr;
static GPUTexture *g_dummy_texture = nullptr;
static DRWPass *g_tf_pass; /* XXX can be a problem with multiple DRWManager in the future */
using CurvesInfosBuf = blender::draw::UniformBuffer<CurvesInfos>;
struct CurvesUniformBufPool {
blender::Vector<std::unique_ptr<CurvesInfosBuf>> ubos;
int used = 0;
void reset()
{
used = 0;
}
CurvesInfosBuf &alloc()
{
if (used >= ubos.size()) {
ubos.append(std::make_unique<CurvesInfosBuf>());
return *ubos.last();
}
return *ubos[used++];
}
};
static GPUShader *curves_eval_shader_get(CurvesEvalShader type)
{
return DRW_shader_curves_refine_get(type, drw_curves_shader_type_get());
}
void DRW_curves_init(DRWData *drw_data)
{
/* Initialize legacy hair too, to avoid verbosity in callers. */
DRW_hair_init();
if (drw_data->curves_ubos == nullptr) {
drw_data->curves_ubos = MEM_new<CurvesUniformBufPool>("CurvesUniformBufPool");
}
CurvesUniformBufPool *pool = drw_data->curves_ubos;
pool->reset();
#if defined(USE_TRANSFORM_FEEDBACK) || defined(USE_COMPUTE_SHADERS)
g_tf_pass = DRW_pass_create("Update Curves Pass", (DRWState)0);
#else
g_tf_pass = DRW_pass_create("Update Curves Pass", DRW_STATE_WRITE_COLOR);
#endif
if (g_dummy_vbo == nullptr) {
/* initialize vertex format */
GPUVertFormat format = {0};
uint dummy_id = GPU_vertformat_attr_add(&format, "dummy", GPU_COMP_F32, 4, GPU_FETCH_FLOAT);
g_dummy_vbo = GPU_vertbuf_create_with_format(&format);
const float vert[4] = {0.0f, 0.0f, 0.0f, 0.0f};
GPU_vertbuf_data_alloc(g_dummy_vbo, 1);
GPU_vertbuf_attr_fill(g_dummy_vbo, dummy_id, vert);
/* Create vbo immediately to bind to texture buffer. */
GPU_vertbuf_use(g_dummy_vbo);
g_dummy_texture = GPU_texture_create_from_vertbuf("hair_dummy_attr", g_dummy_vbo);
}
}
void DRW_curves_ubos_pool_free(CurvesUniformBufPool *pool)
{
MEM_delete(pool);
}
static void drw_curves_cache_shgrp_attach_resources(DRWShadingGroup *shgrp,
CurvesEvalCache *cache,
GPUTexture *tex,
const int subdiv)
{
DRW_shgroup_uniform_texture(shgrp, "hairPointBuffer", tex);
DRW_shgroup_uniform_texture(shgrp, "hairStrandBuffer", cache->strand_tex);
DRW_shgroup_uniform_texture(shgrp, "hairStrandSegBuffer", cache->strand_seg_tex);
DRW_shgroup_uniform_int(shgrp, "hairStrandsRes", &cache->final[subdiv].strands_res, 1);
}
static void drw_curves_cache_update_compute(CurvesEvalCache *cache,
const int subdiv,
const int strands_len,
GPUVertBuf *buffer,
GPUTexture *tex)
{
GPUShader *shader = curves_eval_shader_get(CURVES_EVAL_CATMULL_ROM);
DRWShadingGroup *shgrp = DRW_shgroup_create(shader, g_tf_pass);
drw_curves_cache_shgrp_attach_resources(shgrp, cache, tex, subdiv);
DRW_shgroup_vertex_buffer(shgrp, "posTime", buffer);
const int max_strands_per_call = GPU_max_work_group_count(0);
int strands_start = 0;
while (strands_start < strands_len) {
int batch_strands_len = MIN2(strands_len - strands_start, max_strands_per_call);
DRWShadingGroup *subgroup = DRW_shgroup_create_sub(shgrp);
DRW_shgroup_uniform_int_copy(subgroup, "hairStrandOffset", strands_start);
DRW_shgroup_call_compute(subgroup, batch_strands_len, cache->final[subdiv].strands_res, 1);
strands_start += batch_strands_len;
}
}
static void drw_curves_cache_update_compute(CurvesEvalCache *cache, const int subdiv)
{
const int strands_len = cache->strands_len;
const int final_points_len = cache->final[subdiv].strands_res * strands_len;
if (final_points_len == 0) {
return;
}
drw_curves_cache_update_compute(
cache, subdiv, strands_len, cache->final[subdiv].proc_buf, cache->point_tex);
const DRW_Attributes &attrs = cache->final[subdiv].attr_used;
for (int i = 0; i < attrs.num_requests; i++) {
/* Only refine point attributes. */
if (attrs.requests[i].domain == ATTR_DOMAIN_CURVE) {
continue;
}
drw_curves_cache_update_compute(cache,
subdiv,
strands_len,
cache->final[subdiv].attributes_buf[i],
cache->proc_attributes_tex[i]);
}
}
static void drw_curves_cache_update_transform_feedback(CurvesEvalCache *cache,
GPUVertBuf *vbo,
GPUTexture *tex,
const int subdiv,
const int final_points_len)
{
GPUShader *tf_shader = curves_eval_shader_get(CURVES_EVAL_CATMULL_ROM);
#ifdef USE_TRANSFORM_FEEDBACK
DRWShadingGroup *tf_shgrp = DRW_shgroup_transform_feedback_create(tf_shader, g_tf_pass, vbo);
#else
DRWShadingGroup *tf_shgrp = DRW_shgroup_create(tf_shader, g_tf_pass);
CurvesEvalCall *pr_call = MEM_new<CurvesEvalCall>(__func__);
pr_call->next = g_tf_calls;
pr_call->vbo = vbo;
pr_call->shgrp = tf_shgrp;
pr_call->vert_len = final_points_len;
g_tf_calls = pr_call;
DRW_shgroup_uniform_int(tf_shgrp, "targetHeight", &g_tf_target_height, 1);
DRW_shgroup_uniform_int(tf_shgrp, "targetWidth", &g_tf_target_width, 1);
DRW_shgroup_uniform_int(tf_shgrp, "idOffset", &g_tf_id_offset, 1);
#endif
drw_curves_cache_shgrp_attach_resources(tf_shgrp, cache, tex, subdiv);
DRW_shgroup_call_procedural_points(tf_shgrp, nullptr, final_points_len);
}
static void drw_curves_cache_update_transform_feedback(CurvesEvalCache *cache, const int subdiv)
{
const int final_points_len = cache->final[subdiv].strands_res * cache->strands_len;
if (final_points_len == 0) {
return;
}
drw_curves_cache_update_transform_feedback(
cache, cache->final[subdiv].proc_buf, cache->point_tex, subdiv, final_points_len);
const DRW_Attributes &attrs = cache->final[subdiv].attr_used;
for (int i = 0; i < attrs.num_requests; i++) {
/* Only refine point attributes. */
if (attrs.requests[i].domain == ATTR_DOMAIN_CURVE) {
continue;
}
drw_curves_cache_update_transform_feedback(cache,
cache->final[subdiv].attributes_buf[i],
cache->proc_attributes_tex[i],
subdiv,
final_points_len);
}
}
static CurvesEvalCache *drw_curves_cache_get(Curves &curves,
GPUMaterial *gpu_material,
int subdiv,
int thickness_res)
{
CurvesEvalCache *cache;
const bool update = curves_ensure_procedural_data(
&curves, &cache, gpu_material, subdiv, thickness_res);
if (update) {
if (drw_curves_shader_type_get() == PART_REFINE_SHADER_COMPUTE) {
drw_curves_cache_update_compute(cache, subdiv);
}
else {
drw_curves_cache_update_transform_feedback(cache, subdiv);
}
}
return cache;
}
GPUVertBuf *DRW_curves_pos_buffer_get(Object *object)
{
const DRWContextState *draw_ctx = DRW_context_state_get();
const Scene *scene = draw_ctx->scene;
const int subdiv = scene->r.hair_subdiv;
const int thickness_res = (scene->r.hair_type == SCE_HAIR_SHAPE_STRAND) ? 1 : 2;
Curves &curves = *static_cast<Curves *>(object->data);
CurvesEvalCache *cache = drw_curves_cache_get(curves, nullptr, subdiv, thickness_res);
return cache->final[subdiv].proc_buf;
}
static int attribute_index_in_material(GPUMaterial *gpu_material, const char *name)
{
if (!gpu_material) {
return -1;
}
int index = 0;
ListBase gpu_attrs = GPU_material_attributes(gpu_material);
LISTBASE_FOREACH (GPUMaterialAttribute *, gpu_attr, &gpu_attrs) {
if (STREQ(gpu_attr->name, name)) {
return index;
}
index++;
}
return -1;
}
DRWShadingGroup *DRW_shgroup_curves_create_sub(Object *object,
DRWShadingGroup *shgrp_parent,
GPUMaterial *gpu_material)
{
const DRWContextState *draw_ctx = DRW_context_state_get();
const Scene *scene = draw_ctx->scene;
CurvesUniformBufPool *pool = DST.vmempool->curves_ubos;
CurvesInfosBuf &curves_infos = pool->alloc();
Curves &curves_id = *static_cast<Curves *>(object->data);
const int subdiv = scene->r.hair_subdiv;
const int thickness_res = (scene->r.hair_type == SCE_HAIR_SHAPE_STRAND) ? 1 : 2;
CurvesEvalCache *curves_cache = drw_curves_cache_get(
curves_id, gpu_material, subdiv, thickness_res);
DRWShadingGroup *shgrp = DRW_shgroup_create_sub(shgrp_parent);
/* Fix issue with certain driver not drawing anything if there is no texture bound to
* "ac", "au", "u" or "c". */
DRW_shgroup_uniform_texture(shgrp, "u", g_dummy_texture);
DRW_shgroup_uniform_texture(shgrp, "au", g_dummy_texture);
DRW_shgroup_uniform_texture(shgrp, "c", g_dummy_texture);
DRW_shgroup_uniform_texture(shgrp, "ac", g_dummy_texture);
/* TODO: Generalize radius implementation for curves data type. */
float hair_rad_shape = 0.0f;
float hair_rad_root = 0.005f;
float hair_rad_tip = 0.0f;
bool hair_close_tip = true;
/* Use the radius of the root and tip of the first curve for now. This is a workaround that we
* use for now because we can't use a per-point radius yet. */
const blender::bke::CurvesGeometry &curves = blender::bke::CurvesGeometry::wrap(
curves_id.geometry);
if (curves.curves_num() >= 1) {
blender::VArray<float> radii = curves.attributes().lookup_or_default(
"radius", ATTR_DOMAIN_POINT, 0.005f);
const blender::IndexRange first_curve_points = curves.points_for_curve(0);
const float first_radius = radii[first_curve_points.first()];
const float last_radius = radii[first_curve_points.last()];
const float middle_radius = radii[first_curve_points.size() / 2];
hair_rad_root = radii[first_curve_points.first()];
hair_rad_tip = radii[first_curve_points.last()];
hair_rad_shape = std::clamp(
safe_divide(middle_radius - first_radius, last_radius - first_radius) * 2.0f - 1.0f,
-1.0f,
1.0f);
}
DRW_shgroup_uniform_texture(shgrp, "hairPointBuffer", curves_cache->final[subdiv].proc_tex);
if (curves_cache->length_tex) {
DRW_shgroup_uniform_texture(shgrp, "hairLen", curves_cache->length_tex);
}
const DRW_Attributes &attrs = curves_cache->final[subdiv].attr_used;
for (int i = 0; i < attrs.num_requests; i++) {
const DRW_AttributeRequest &request = attrs.requests[i];
char sampler_name[32];
drw_curves_get_attribute_sampler_name(request.attribute_name, sampler_name);
if (request.domain == ATTR_DOMAIN_CURVE) {
if (!curves_cache->proc_attributes_tex[i]) {
continue;
}
DRW_shgroup_uniform_texture(shgrp, sampler_name, curves_cache->proc_attributes_tex[i]);
}
else {
if (!curves_cache->final[subdiv].attributes_tex[i]) {
continue;
}
DRW_shgroup_uniform_texture(
shgrp, sampler_name, curves_cache->final[subdiv].attributes_tex[i]);
}
/* Some attributes may not be used in the shader anymore and were not garbage collected yet, so
* we need to find the right index for this attribute as uniforms defining the scope of the
* attributes are based on attribute loading order, which is itself based on the material's
* attributes. */
const int index = attribute_index_in_material(gpu_material, request.attribute_name);
if (index != -1) {
curves_infos.is_point_attribute[index][0] = request.domain == ATTR_DOMAIN_POINT;
}
}
curves_infos.push_update();
DRW_shgroup_uniform_block(shgrp, "drw_curves", curves_infos);
DRW_shgroup_uniform_int(shgrp, "hairStrandsRes", &curves_cache->final[subdiv].strands_res, 1);
DRW_shgroup_uniform_int_copy(shgrp, "hairThicknessRes", thickness_res);
DRW_shgroup_uniform_float_copy(shgrp, "hairRadShape", hair_rad_shape);
DRW_shgroup_uniform_mat4_copy(shgrp, "hairDupliMatrix", object->obmat);
DRW_shgroup_uniform_float_copy(shgrp, "hairRadRoot", hair_rad_root);
DRW_shgroup_uniform_float_copy(shgrp, "hairRadTip", hair_rad_tip);
DRW_shgroup_uniform_bool_copy(shgrp, "hairCloseTip", hair_close_tip);
/* TODO(fclem): Until we have a better way to cull the curves and render with orco, bypass
* culling test. */
GPUBatch *geom = curves_cache->final[subdiv].proc_hairs[thickness_res - 1];
DRW_shgroup_call_no_cull(shgrp, geom, object);
return shgrp;
}
void DRW_curves_update()
{
/* Update legacy hair too, to avoid verbosity in callers. */
DRW_hair_update();
#ifndef USE_TRANSFORM_FEEDBACK
/**
* Workaround to transform feedback not working on mac.
* On some system it crashes (see T58489) and on some other it renders garbage (see T60171).
*
* So instead of using transform feedback we render to a texture,
* read back the result to system memory and re-upload as VBO data.
* It is really not ideal performance wise, but it is the simplest
* and the most local workaround that still uses the power of the GPU.
*/
if (g_tf_calls == nullptr) {
return;
}
/* Search ideal buffer size. */
uint max_size = 0;
for (CurvesEvalCall *pr_call = g_tf_calls; pr_call; pr_call = pr_call->next) {
max_size = max_ii(max_size, pr_call->vert_len);
}
/* Create target Texture / Frame-buffer */
/* Don't use max size as it can be really heavy and fail.
* Do chunks of maximum 2048 * 2048 hair points. */
int width = 2048;
int height = min_ii(width, 1 + max_size / width);
GPUTexture *tex = DRW_texture_pool_query_2d(
width, height, GPU_RGBA32F, (DrawEngineType *)DRW_curves_update);
g_tf_target_height = height;
g_tf_target_width = width;
GPUFrameBuffer *fb = nullptr;
GPU_framebuffer_ensure_config(&fb,
{
GPU_ATTACHMENT_NONE,
GPU_ATTACHMENT_TEXTURE(tex),
});
float *data = static_cast<float *>(
MEM_mallocN(sizeof(float[4]) * width * height, "tf fallback buffer"));
GPU_framebuffer_bind(fb);
while (g_tf_calls != nullptr) {
CurvesEvalCall *pr_call = g_tf_calls;
g_tf_calls = g_tf_calls->next;
g_tf_id_offset = 0;
while (pr_call->vert_len > 0) {
int max_read_px_len = min_ii(width * height, pr_call->vert_len);
DRW_draw_pass_subset(g_tf_pass, pr_call->shgrp, pr_call->shgrp);
/* Read back result to main memory. */
GPU_framebuffer_read_color(fb, 0, 0, width, height, 4, 0, GPU_DATA_FLOAT, data);
/* Upload back to VBO. */
GPU_vertbuf_use(pr_call->vbo);
GPU_vertbuf_update_sub(pr_call->vbo,
sizeof(float[4]) * g_tf_id_offset,
sizeof(float[4]) * max_read_px_len,
data);
g_tf_id_offset += max_read_px_len;
pr_call->vert_len -= max_read_px_len;
}
MEM_freeN(pr_call);
}
MEM_freeN(data);
GPU_framebuffer_free(fb);
#else
/* Just render the pass when using compute shaders or transform feedback. */
DRW_draw_pass(g_tf_pass);
if (drw_curves_shader_type_get() == PART_REFINE_SHADER_COMPUTE) {
GPU_memory_barrier(GPU_BARRIER_SHADER_STORAGE);
}
#endif
}
void DRW_curves_free()
{
DRW_hair_free();
GPU_VERTBUF_DISCARD_SAFE(g_dummy_vbo);
DRW_TEXTURE_FREE_SAFE(g_dummy_texture);
}