This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/generic/Geometry.c
2010-02-12 13:34:04 +00:00

847 lines
26 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Joseph Gilbert, Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "Geometry.h"
/* - Not needed for now though other geometry functions will probably need them
#include "BLI_math.h"
#include "BKE_utildefines.h"
*/
/* Used for PolyFill */
#include "BKE_displist.h"
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BKE_utildefines.h"
#include "BKE_curve.h"
#include "BLI_boxpack2d.h"
#include "BLI_math.h"
#define SWAP_FLOAT(a,b,tmp) tmp=a; a=b; b=tmp
#define eps 0.000001
/*-------------------------DOC STRINGS ---------------------------*/
static char M_Geometry_doc[] = "The Blender Geometry module\n\n";
static char M_Geometry_Intersect_doc[] = "(v1, v2, v3, ray, orig, clip=1) - returns the intersection between a ray and a triangle, if possible, returns None otherwise";
static char M_Geometry_TriangleArea_doc[] = "(v1, v2, v3) - returns the area size of the 2D or 3D triangle defined";
static char M_Geometry_TriangleNormal_doc[] = "(v1, v2, v3) - returns the normal of the 3D triangle defined";
static char M_Geometry_QuadNormal_doc[] = "(v1, v2, v3, v4) - returns the normal of the 3D quad defined";
static char M_Geometry_LineIntersect_doc[] = "(v1, v2, v3, v4) - returns a tuple with the points on each line respectively closest to the other";
static char M_Geometry_PolyFill_doc[] = "(veclist_list) - takes a list of polylines (each point a vector) and returns the point indicies for a polyline filled with triangles";
static char M_Geometry_LineIntersect2D_doc[] = "(lineA_p1, lineA_p2, lineB_p1, lineB_p2) - takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None";
static char M_Geometry_ClosestPointOnLine_doc[] = "(pt, line_p1, line_p2) - takes a point and a line and returns a (Vector, float) for the point on the line, and the bool so you can know if the point was between the 2 points";
static char M_Geometry_PointInTriangle2D_doc[] = "(pt, tri_p1, tri_p2, tri_p3) - takes 4 vectors, one is the point and the next 3 define the triangle, only the x and y are used from the vectors";
static char M_Geometry_PointInQuad2D_doc[] = "(pt, quad_p1, quad_p2, quad_p3, quad_p4) - takes 5 vectors, one is the point and the next 4 define the quad, only the x and y are used from the vectors";
static char M_Geometry_BoxPack2D_doc[] = "";
static char M_Geometry_BezierInterp_doc[] = "";
//---------------------------------INTERSECTION FUNCTIONS--------------------
//----------------------------------Mathutils.Intersect() -------------------
static PyObject *M_Geometry_Intersect( PyObject * self, PyObject * args )
{
VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
float det, inv_det, u, v, t;
int clip = 1;
if(!PyArg_ParseTuple(args, "O!O!O!O!O!|i", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip)) {
PyErr_SetString( PyExc_TypeError, "expected 5 vector types\n" );
return NULL;
}
if(vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) {
PyErr_SetString( PyExc_TypeError, "only 3D vectors for all parameters\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(ray) || !BaseMath_ReadCallback(ray_off))
return NULL;
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
VECCOPY(dir, ray->vec);
normalize_v3(dir);
VECCOPY(orig, ray_off->vec);
/* find vectors for two edges sharing v1 */
sub_v3_v3v3(e1, v2, v1);
sub_v3_v3v3(e2, v3, v1);
/* begin calculating determinant - also used to calculated U parameter */
cross_v3_v3v3(pvec, dir, e2);
/* if determinant is near zero, ray lies in plane of triangle */
det = dot_v3v3(e1, pvec);
if (det > -0.000001 && det < 0.000001) {
Py_RETURN_NONE;
}
inv_det = 1.0f / det;
/* calculate distance from v1 to ray origin */
sub_v3_v3v3(tvec, orig, v1);
/* calculate U parameter and test bounds */
u = dot_v3v3(tvec, pvec) * inv_det;
if (clip && (u < 0.0f || u > 1.0f)) {
Py_RETURN_NONE;
}
/* prepare to test the V parameter */
cross_v3_v3v3(qvec, tvec, e1);
/* calculate V parameter and test bounds */
v = dot_v3v3(dir, qvec) * inv_det;
if (clip && (v < 0.0f || u + v > 1.0f)) {
Py_RETURN_NONE;
}
/* calculate t, ray intersects triangle */
t = dot_v3v3(e2, qvec) * inv_det;
mul_v3_fl(dir, t);
add_v3_v3v3(pvec, orig, dir);
return newVectorObject(pvec, 3, Py_NEW, NULL);
}
//----------------------------------Mathutils.LineIntersect() -------------------
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
static PyObject *M_Geometry_LineIntersect( PyObject * self, PyObject * args )
{
PyObject * tuple;
VectorObject *vec1, *vec2, *vec3, *vec4;
float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3];
if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
return NULL;
}
if( vec1->size != vec2->size || vec1->size != vec3->size || vec3->size != vec2->size) {
PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" );
return NULL;
}
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
return NULL;
if( vec1->size == 3 || vec1->size == 2) {
int result;
if (vec1->size == 3) {
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
VECCOPY(v4, vec4->vec);
}
else {
v1[0] = vec1->vec[0];
v1[1] = vec1->vec[1];
v1[2] = 0.0f;
v2[0] = vec2->vec[0];
v2[1] = vec2->vec[1];
v2[2] = 0.0f;
v3[0] = vec3->vec[0];
v3[1] = vec3->vec[1];
v3[2] = 0.0f;
v4[0] = vec4->vec[0];
v4[1] = vec4->vec[1];
v4[2] = 0.0f;
}
result = isect_line_line_v3(v1, v2, v3, v4, i1, i2);
if (result == 0) {
/* colinear */
Py_RETURN_NONE;
}
else {
tuple = PyTuple_New( 2 );
PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW, NULL) );
PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW, NULL) );
return tuple;
}
}
else {
PyErr_SetString( PyExc_TypeError, "2D/3D vectors only\n" );
return NULL;
}
}
//---------------------------------NORMALS FUNCTIONS--------------------
//----------------------------------Mathutils.QuadNormal() -------------------
static PyObject *M_Geometry_QuadNormal( PyObject * self, PyObject * args )
{
VectorObject *vec1;
VectorObject *vec2;
VectorObject *vec3;
VectorObject *vec4;
float v1[3], v2[3], v3[3], v4[3], e1[3], e2[3], n1[3], n2[3];
if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
return NULL;
}
if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) {
PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" );
return NULL;
}
if( vec1->size != 3 ) {
PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" );
return NULL;
}
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
return NULL;
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
VECCOPY(v4, vec4->vec);
/* find vectors for two edges sharing v2 */
sub_v3_v3v3(e1, v1, v2);
sub_v3_v3v3(e2, v3, v2);
cross_v3_v3v3(n1, e2, e1);
normalize_v3(n1);
/* find vectors for two edges sharing v4 */
sub_v3_v3v3(e1, v3, v4);
sub_v3_v3v3(e2, v1, v4);
cross_v3_v3v3(n2, e2, e1);
normalize_v3(n2);
/* adding and averaging the normals of both triangles */
add_v3_v3v3(n1, n2, n1);
normalize_v3(n1);
return newVectorObject(n1, 3, Py_NEW, NULL);
}
//----------------------------Mathutils.TriangleNormal() -------------------
static PyObject *M_Geometry_TriangleNormal( PyObject * self, PyObject * args )
{
VectorObject *vec1, *vec2, *vec3;
float v1[3], v2[3], v3[3], e1[3], e2[3], n[3];
if( !PyArg_ParseTuple( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3 ) ) {
PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n" );
return NULL;
}
if( vec1->size != vec2->size || vec1->size != vec3->size ) {
PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" );
return NULL;
}
if( vec1->size != 3 ) {
PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" );
return NULL;
}
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
return NULL;
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
/* find vectors for two edges sharing v2 */
sub_v3_v3v3(e1, v1, v2);
sub_v3_v3v3(e2, v3, v2);
cross_v3_v3v3(n, e2, e1);
normalize_v3(n);
return newVectorObject(n, 3, Py_NEW, NULL);
}
//--------------------------------- AREA FUNCTIONS--------------------
//----------------------------------Mathutils.TriangleArea() -------------------
static PyObject *M_Geometry_TriangleArea( PyObject * self, PyObject * args )
{
VectorObject *vec1, *vec2, *vec3;
float v1[3], v2[3], v3[3];
if( !PyArg_ParseTuple
( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
, &vector_Type, &vec3 ) ) {
PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n");
return NULL;
}
if( vec1->size != vec2->size || vec1->size != vec3->size ) {
PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" );
return NULL;
}
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
return NULL;
if (vec1->size == 3) {
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
return PyFloat_FromDouble( area_tri_v3(v1, v2, v3) );
}
else if (vec1->size == 2) {
v1[0] = vec1->vec[0];
v1[1] = vec1->vec[1];
v2[0] = vec2->vec[0];
v2[1] = vec2->vec[1];
v3[0] = vec3->vec[0];
v3[1] = vec3->vec[1];
return PyFloat_FromDouble( area_tri_v2(v1, v2, v3) );
}
else {
PyErr_SetString( PyExc_TypeError, "only 2D,3D vectors are supported\n" );
return NULL;
}
}
/*----------------------------------Geometry.PolyFill() -------------------*/
/* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq )
{
PyObject *tri_list; /*return this list of tri's */
PyObject *polyLine, *polyVec;
int i, len_polylines, len_polypoints, ls_error = 0;
/* display listbase */
ListBase dispbase={NULL, NULL};
DispList *dl;
float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
int index, *dl_face, totpoints=0;
dispbase.first= dispbase.last= NULL;
if(!PySequence_Check(polyLineSeq)) {
PyErr_SetString( PyExc_TypeError, "expected a sequence of poly lines" );
return NULL;
}
len_polylines = PySequence_Size( polyLineSeq );
for( i = 0; i < len_polylines; ++i ) {
polyLine= PySequence_GetItem( polyLineSeq, i );
if (!PySequence_Check(polyLine)) {
freedisplist(&dispbase);
Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
PyErr_SetString( PyExc_TypeError, "One or more of the polylines is not a sequence of Mathutils.Vector's" );
return NULL;
}
len_polypoints= PySequence_Size( polyLine );
if (len_polypoints>0) { /* dont bother adding edges as polylines */
#if 0
if (EXPP_check_sequence_consistency( polyLine, &vector_Type ) != 1) {
freedisplist(&dispbase);
Py_DECREF(polyLine);
PyErr_SetString( PyExc_TypeError, "A point in one of the polylines is not a Mathutils.Vector type" );
return NULL;
}
#endif
dl= MEM_callocN(sizeof(DispList), "poly disp");
BLI_addtail(&dispbase, dl);
dl->type= DL_INDEX3;
dl->nr= len_polypoints;
dl->type= DL_POLY;
dl->parts= 1; /* no faces, 1 edge loop */
dl->col= 0; /* no material */
dl->verts= fp= MEM_callocN( sizeof(float)*3*len_polypoints, "dl verts");
dl->index= MEM_callocN(sizeof(int)*3*len_polypoints, "dl index");
for( index = 0; index<len_polypoints; ++index, fp+=3) {
polyVec= PySequence_GetItem( polyLine, index );
if(VectorObject_Check(polyVec)) {
if(!BaseMath_ReadCallback((VectorObject *)polyVec))
ls_error= 1;
fp[0] = ((VectorObject *)polyVec)->vec[0];
fp[1] = ((VectorObject *)polyVec)->vec[1];
if( ((VectorObject *)polyVec)->size > 2 )
fp[2] = ((VectorObject *)polyVec)->vec[2];
else
fp[2]= 0.0f; /* if its a 2d vector then set the z to be zero */
}
else {
ls_error= 1;
}
totpoints++;
Py_DECREF(polyVec);
}
}
Py_DECREF(polyLine);
}
if(ls_error) {
freedisplist(&dispbase); /* possible some dl was allocated */
PyErr_SetString( PyExc_TypeError, "A point in one of the polylines is not a Mathutils.Vector type" );
return NULL;
}
else if (totpoints) {
/* now make the list to return */
filldisplist(&dispbase, &dispbase);
/* The faces are stored in a new DisplayList
thats added to the head of the listbase */
dl= dispbase.first;
tri_list= PyList_New(dl->parts);
if( !tri_list ) {
freedisplist(&dispbase);
PyErr_SetString( PyExc_RuntimeError, "Geometry.PolyFill failed to make a new list" );
return NULL;
}
index= 0;
dl_face= dl->index;
while(index < dl->parts) {
PyList_SetItem(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]) );
dl_face+= 3;
index++;
}
freedisplist(&dispbase);
} else {
/* no points, do this so scripts dont barf */
freedisplist(&dispbase); /* possible some dl was allocated */
tri_list= PyList_New(0);
}
return tri_list;
}
static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args )
{
VectorObject *line_a1, *line_a2, *line_b1, *line_b2;
float a1x, a1y, a2x, a2y, b1x, b1y, b2x, b2y, xi, yi, a1,a2,b1,b2, newvec[2];
if( !PyArg_ParseTuple ( args, "O!O!O!O!",
&vector_Type, &line_a1,
&vector_Type, &line_a2,
&vector_Type, &line_b1,
&vector_Type, &line_b2)
) {
PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
return NULL;
}
if(!BaseMath_ReadCallback(line_a1) || !BaseMath_ReadCallback(line_a2) || !BaseMath_ReadCallback(line_b1) || !BaseMath_ReadCallback(line_b2))
return NULL;
a1x= line_a1->vec[0];
a1y= line_a1->vec[1];
a2x= line_a2->vec[0];
a2y= line_a2->vec[1];
b1x= line_b1->vec[0];
b1y= line_b1->vec[1];
b2x= line_b2->vec[0];
b2y= line_b2->vec[1];
if((MIN2(a1x, a2x) > MAX2(b1x, b2x)) ||
(MAX2(a1x, a2x) < MIN2(b1x, b2x)) ||
(MIN2(a1y, a2y) > MAX2(b1y, b2y)) ||
(MAX2(a1y, a2y) < MIN2(b1y, b2y)) ) {
Py_RETURN_NONE;
}
/* Make sure the hoz/vert line comes first. */
if (fabs(b1x - b2x) < eps || fabs(b1y - b2y) < eps) {
SWAP_FLOAT(a1x, b1x, xi); /*abuse xi*/
SWAP_FLOAT(a1y, b1y, xi);
SWAP_FLOAT(a2x, b2x, xi);
SWAP_FLOAT(a2y, b2y, xi);
}
if (fabs(a1x-a2x) < eps) { /* verticle line */
if (fabs(b1x-b2x) < eps){ /*verticle second line */
Py_RETURN_NONE; /* 2 verticle lines dont intersect. */
}
else if (fabs(b1y-b2y) < eps) {
/*X of vert, Y of hoz. no calculation needed */
newvec[0]= a1x;
newvec[1]= b1y;
return newVectorObject(newvec, 2, Py_NEW, NULL);
}
yi = (float)(((b1y / fabs(b1x - b2x)) * fabs(b2x - a1x)) + ((b2y / fabs(b1x - b2x)) * fabs(b1x - a1x)));
if (yi > MAX2(a1y, a2y)) {/* New point above seg1's vert line */
Py_RETURN_NONE;
} else if (yi < MIN2(a1y, a2y)) { /* New point below seg1's vert line */
Py_RETURN_NONE;
}
newvec[0]= a1x;
newvec[1]= yi;
return newVectorObject(newvec, 2, Py_NEW, NULL);
} else if (fabs(a2y-a1y) < eps) { /* hoz line1 */
if (fabs(b2y-b1y) < eps) { /*hoz line2*/
Py_RETURN_NONE; /*2 hoz lines dont intersect*/
}
/* Can skip vert line check for seg 2 since its covered above. */
xi = (float)(((b1x / fabs(b1y - b2y)) * fabs(b2y - a1y)) + ((b2x / fabs(b1y - b2y)) * fabs(b1y - a1y)));
if (xi > MAX2(a1x, a2x)) { /* New point right of hoz line1's */
Py_RETURN_NONE;
} else if (xi < MIN2(a1x, a2x)) { /*New point left of seg1's hoz line */
Py_RETURN_NONE;
}
newvec[0]= xi;
newvec[1]= a1y;
return newVectorObject(newvec, 2, Py_NEW, NULL);
}
b1 = (a2y-a1y)/(a2x-a1x);
b2 = (b2y-b1y)/(b2x-b1x);
a1 = a1y-b1*a1x;
a2 = b1y-b2*b1x;
if (b1 - b2 == 0.0) {
Py_RETURN_NONE;
}
xi = - (a1-a2)/(b1-b2);
yi = a1+b1*xi;
if ((a1x-xi)*(xi-a2x) >= 0 && (b1x-xi)*(xi-b2x) >= 0 && (a1y-yi)*(yi-a2y) >= 0 && (b1y-yi)*(yi-b2y)>=0) {
newvec[0]= xi;
newvec[1]= yi;
return newVectorObject(newvec, 2, Py_NEW, NULL);
}
Py_RETURN_NONE;
}
static PyObject *M_Geometry_ClosestPointOnLine( PyObject * self, PyObject * args )
{
VectorObject *pt, *line_1, *line_2;
float pt_in[3], pt_out[3], l1[3], l2[3];
float lambda;
PyObject *ret;
if( !PyArg_ParseTuple ( args, "O!O!O!",
&vector_Type, &pt,
&vector_Type, &line_1,
&vector_Type, &line_2)
) {
PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n" );
return NULL;
}
if(!BaseMath_ReadCallback(pt) || !BaseMath_ReadCallback(line_1) || !BaseMath_ReadCallback(line_2))
return NULL;
/* accept 2d verts */
if (pt->size==3) { VECCOPY(pt_in, pt->vec);}
else { pt_in[2]=0.0; VECCOPY2D(pt_in, pt->vec) }
if (line_1->size==3) { VECCOPY(l1, line_1->vec);}
else { l1[2]=0.0; VECCOPY2D(l1, line_1->vec) }
if (line_2->size==3) { VECCOPY(l2, line_2->vec);}
else { l2[2]=0.0; VECCOPY2D(l2, line_2->vec) }
/* do the calculation */
lambda = closest_to_line_v3( pt_out,pt_in, l1, l2);
ret = PyTuple_New(2);
PyTuple_SET_ITEM( ret, 0, newVectorObject(pt_out, 3, Py_NEW, NULL) );
PyTuple_SET_ITEM( ret, 1, PyFloat_FromDouble(lambda) );
return ret;
}
static PyObject *M_Geometry_PointInTriangle2D( PyObject * self, PyObject * args )
{
VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3;
if( !PyArg_ParseTuple ( args, "O!O!O!O!",
&vector_Type, &pt_vec,
&vector_Type, &tri_p1,
&vector_Type, &tri_p2,
&vector_Type, &tri_p3)
) {
PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
return NULL;
}
if(!BaseMath_ReadCallback(pt_vec) || !BaseMath_ReadCallback(tri_p1) || !BaseMath_ReadCallback(tri_p2) || !BaseMath_ReadCallback(tri_p3))
return NULL;
return PyLong_FromLong(isect_point_tri_v2(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec));
}
static PyObject *M_Geometry_PointInQuad2D( PyObject * self, PyObject * args )
{
VectorObject *pt_vec, *quad_p1, *quad_p2, *quad_p3, *quad_p4;
if( !PyArg_ParseTuple ( args, "O!O!O!O!O!",
&vector_Type, &pt_vec,
&vector_Type, &quad_p1,
&vector_Type, &quad_p2,
&vector_Type, &quad_p3,
&vector_Type, &quad_p4)
) {
PyErr_SetString( PyExc_TypeError, "expected 5 vector types\n" );
return NULL;
}
if(!BaseMath_ReadCallback(pt_vec) || !BaseMath_ReadCallback(quad_p1) || !BaseMath_ReadCallback(quad_p2) || !BaseMath_ReadCallback(quad_p3) || !BaseMath_ReadCallback(quad_p4))
return NULL;
return PyLong_FromLong(isect_point_quad_v2(pt_vec->vec, quad_p1->vec, quad_p2->vec, quad_p3->vec, quad_p4->vec));
}
static int boxPack_FromPyObject(PyObject * value, boxPack **boxarray )
{
int len, i;
PyObject *list_item, *item_1, *item_2;
boxPack *box;
/* Error checking must alredy be done */
if( !PyList_Check( value ) ) {
PyErr_SetString( PyExc_TypeError, "can only back a list of [x,y,x,w]" );
return -1;
}
len = PyList_Size( value );
(*boxarray) = MEM_mallocN( len*sizeof(boxPack), "boxPack box");
for( i = 0; i < len; i++ ) {
list_item = PyList_GET_ITEM( value, i );
if( !PyList_Check( list_item ) || PyList_Size( list_item ) < 4 ) {
MEM_freeN(*boxarray);
PyErr_SetString( PyExc_TypeError, "can only back a list of [x,y,x,w]" );
return -1;
}
box = (*boxarray)+i;
item_1 = PyList_GET_ITEM(list_item, 2);
item_2 = PyList_GET_ITEM(list_item, 3);
if (!PyNumber_Check(item_1) || !PyNumber_Check(item_2)) {
MEM_freeN(*boxarray);
PyErr_SetString( PyExc_TypeError, "can only back a list of 2d boxes [x,y,x,w]" );
return -1;
}
box->w = (float)PyFloat_AsDouble( item_1 );
box->h = (float)PyFloat_AsDouble( item_2 );
box->index = i;
/* verts will be added later */
}
return 0;
}
static void boxPack_ToPyObject(PyObject * value, boxPack **boxarray)
{
int len, i;
PyObject *list_item;
boxPack *box;
len = PyList_Size( value );
for( i = 0; i < len; i++ ) {
box = (*boxarray)+i;
list_item = PyList_GET_ITEM( value, box->index );
PyList_SET_ITEM( list_item, 0, PyFloat_FromDouble( box->x ));
PyList_SET_ITEM( list_item, 1, PyFloat_FromDouble( box->y ));
}
MEM_freeN(*boxarray);
}
static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * boxlist )
{
boxPack *boxarray = NULL;
float tot_width, tot_height;
int len;
int error;
if(!PyList_Check(boxlist)) {
PyErr_SetString( PyExc_TypeError, "expected a sequence of boxes [[x,y,w,h], ... ]" );
return NULL;
}
len = PyList_Size( boxlist );
if (!len)
return Py_BuildValue( "ff", 0.0, 0.0);
error = boxPack_FromPyObject(boxlist, &boxarray);
if (error!=0) return NULL;
/* Non Python function */
boxPack2D(boxarray, len, &tot_width, &tot_height);
boxPack_ToPyObject(boxlist, &boxarray);
return Py_BuildValue( "ff", tot_width, tot_height);
}
static PyObject *M_Geometry_BezierInterp( PyObject * self, PyObject * args )
{
VectorObject *vec_k1, *vec_h1, *vec_k2, *vec_h2;
int resolu;
int dims;
int i;
float *coord_array, *fp;
PyObject *list;
float k1[4] = {0.0, 0.0, 0.0, 0.0};
float h1[4] = {0.0, 0.0, 0.0, 0.0};
float k2[4] = {0.0, 0.0, 0.0, 0.0};
float h2[4] = {0.0, 0.0, 0.0, 0.0};
if( !PyArg_ParseTuple ( args, "O!O!O!O!i",
&vector_Type, &vec_k1,
&vector_Type, &vec_h1,
&vector_Type, &vec_h2,
&vector_Type, &vec_k2, &resolu) || (resolu<=1)
) {
PyErr_SetString( PyExc_TypeError, "expected 4 vector types and an int greater then 1\n" );
return NULL;
}
if(!BaseMath_ReadCallback(vec_k1) || !BaseMath_ReadCallback(vec_h1) || !BaseMath_ReadCallback(vec_k2) || !BaseMath_ReadCallback(vec_h2))
return NULL;
dims= MAX4(vec_k1->size, vec_h1->size, vec_h2->size, vec_k2->size);
for(i=0; i < vec_k1->size; i++) k1[i]= vec_k1->vec[i];
for(i=0; i < vec_h1->size; i++) h1[i]= vec_h1->vec[i];
for(i=0; i < vec_k2->size; i++) k2[i]= vec_k2->vec[i];
for(i=0; i < vec_h2->size; i++) h2[i]= vec_h2->vec[i];
coord_array = MEM_callocN(dims * (resolu) * sizeof(float), "BezierInterp");
for(i=0; i<dims; i++) {
forward_diff_bezier(k1[i], h1[i], h2[i], k2[i], coord_array+i, resolu-1, sizeof(float)*dims);
}
list= PyList_New(resolu);
fp= coord_array;
for(i=0; i<resolu; i++, fp= fp+dims) {
PyList_SET_ITEM(list, i, newVectorObject(fp, dims, Py_NEW, NULL));
}
MEM_freeN(coord_array);
return list;
}
static PyObject *M_Geometry_BarycentricTransform(PyObject * self, PyObject * args)
{
VectorObject *vec_pt;
VectorObject *vec_t1_tar, *vec_t2_tar, *vec_t3_tar;
VectorObject *vec_t1_src, *vec_t2_src, *vec_t3_src;
float vec[3];
if( !PyArg_ParseTuple ( args, "O!O!O!O!O!O!O!",
&vector_Type, &vec_pt,
&vector_Type, &vec_t1_src,
&vector_Type, &vec_t2_src,
&vector_Type, &vec_t3_src,
&vector_Type, &vec_t1_tar,
&vector_Type, &vec_t2_tar,
&vector_Type, &vec_t3_tar) || ( vec_pt->size != 3 ||
vec_t1_src->size != 3 ||
vec_t2_src->size != 3 ||
vec_t3_src->size != 3 ||
vec_t1_tar->size != 3 ||
vec_t2_tar->size != 3 ||
vec_t3_tar->size != 3)
) {
PyErr_SetString( PyExc_TypeError, "expected 7, 3D vector types\n" );
return NULL;
}
barycentric_transform(vec, vec_pt->vec,
vec_t1_tar->vec, vec_t2_tar->vec, vec_t3_tar->vec,
vec_t1_src->vec, vec_t2_src->vec, vec_t3_src->vec);
return newVectorObject(vec, 3, Py_NEW, NULL);
}
struct PyMethodDef M_Geometry_methods[] = {
{"Intersect", ( PyCFunction ) M_Geometry_Intersect, METH_VARARGS, M_Geometry_Intersect_doc},
{"TriangleArea", ( PyCFunction ) M_Geometry_TriangleArea, METH_VARARGS, M_Geometry_TriangleArea_doc},
{"TriangleNormal", ( PyCFunction ) M_Geometry_TriangleNormal, METH_VARARGS, M_Geometry_TriangleNormal_doc},
{"QuadNormal", ( PyCFunction ) M_Geometry_QuadNormal, METH_VARARGS, M_Geometry_QuadNormal_doc},
{"LineIntersect", ( PyCFunction ) M_Geometry_LineIntersect, METH_VARARGS, M_Geometry_LineIntersect_doc},
{"PolyFill", ( PyCFunction ) M_Geometry_PolyFill, METH_O, M_Geometry_PolyFill_doc},
{"LineIntersect2D", ( PyCFunction ) M_Geometry_LineIntersect2D, METH_VARARGS, M_Geometry_LineIntersect2D_doc},
{"ClosestPointOnLine", ( PyCFunction ) M_Geometry_ClosestPointOnLine, METH_VARARGS, M_Geometry_ClosestPointOnLine_doc},
{"PointInTriangle2D", ( PyCFunction ) M_Geometry_PointInTriangle2D, METH_VARARGS, M_Geometry_PointInTriangle2D_doc},
{"PointInQuad2D", ( PyCFunction ) M_Geometry_PointInQuad2D, METH_VARARGS, M_Geometry_PointInQuad2D_doc},
{"BoxPack2D", ( PyCFunction ) M_Geometry_BoxPack2D, METH_O, M_Geometry_BoxPack2D_doc},
{"BezierInterp", ( PyCFunction ) M_Geometry_BezierInterp, METH_VARARGS, M_Geometry_BezierInterp_doc},
{"BarycentricTransform", ( PyCFunction ) M_Geometry_BarycentricTransform, METH_VARARGS, NULL},
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef M_Geometry_module_def = {
PyModuleDef_HEAD_INIT,
"Geometry", /* m_name */
M_Geometry_doc, /* m_doc */
0, /* m_size */
M_Geometry_methods, /* m_methods */
0, /* m_reload */
0, /* m_traverse */
0, /* m_clear */
0, /* m_free */
};
/*----------------------------MODULE INIT-------------------------*/
PyObject *Geometry_Init(void)
{
PyObject *submodule;
submodule = PyModule_Create(&M_Geometry_module_def);
PyDict_SetItemString(PySys_GetObject("modules"), M_Geometry_module_def.m_name, submodule);
return (submodule);
}