2336 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2336 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * ***** BEGIN GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * Contributor(s): Jiri Hnidek <jiri.hnidek@vslib.cz>.
 | 
						|
 *
 | 
						|
 * ***** END GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * MetaBalls are created from a single Object (with a name without number in it),
 | 
						|
 * here the DispList and BoundBox also is located.
 | 
						|
 * All objects with the same name (but with a number in it) are added to this.
 | 
						|
 *
 | 
						|
 * texture coordinates are patched within the displist
 | 
						|
 */
 | 
						|
 | 
						|
/** \file blender/blenkernel/intern/mball.c
 | 
						|
 *  \ingroup bke
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <string.h>
 | 
						|
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <ctype.h>
 | 
						|
#include <float.h>
 | 
						|
#include "MEM_guardedalloc.h"
 | 
						|
 | 
						|
#include "DNA_material_types.h"
 | 
						|
#include "DNA_object_types.h"
 | 
						|
#include "DNA_meta_types.h"
 | 
						|
#include "DNA_scene_types.h"
 | 
						|
 | 
						|
 | 
						|
#include "BLI_blenlib.h"
 | 
						|
#include "BLI_math.h"
 | 
						|
#include "BLI_utildefines.h"
 | 
						|
#include "BLI_bpath.h"
 | 
						|
 | 
						|
 | 
						|
#include "BKE_global.h"
 | 
						|
#include "BKE_main.h"
 | 
						|
 | 
						|
/*  #include "BKE_object.h" */
 | 
						|
#include "BKE_animsys.h"
 | 
						|
#include "BKE_scene.h"
 | 
						|
#include "BKE_library.h"
 | 
						|
#include "BKE_displist.h"
 | 
						|
#include "BKE_mball.h"
 | 
						|
#include "BKE_object.h"
 | 
						|
#include "BKE_material.h"
 | 
						|
 | 
						|
/* Global variables */
 | 
						|
 | 
						|
static float thresh= 0.6f;
 | 
						|
static int totelem=0;
 | 
						|
static MetaElem **mainb;
 | 
						|
static octal_tree *metaball_tree = NULL;
 | 
						|
/* Functions */
 | 
						|
 | 
						|
void unlink_mball(MetaBall *mb)
 | 
						|
{
 | 
						|
	int a;
 | 
						|
	
 | 
						|
	for (a=0; a<mb->totcol; a++) {
 | 
						|
		if (mb->mat[a]) mb->mat[a]->id.us--;
 | 
						|
		mb->mat[a]= NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* do not free mball itself */
 | 
						|
void free_mball(MetaBall *mb)
 | 
						|
{
 | 
						|
	unlink_mball(mb);	
 | 
						|
	
 | 
						|
	if (mb->adt) {
 | 
						|
		BKE_free_animdata((ID *)mb);
 | 
						|
		mb->adt = NULL;
 | 
						|
	}
 | 
						|
	if (mb->mat) MEM_freeN(mb->mat);
 | 
						|
	if (mb->bb) MEM_freeN(mb->bb);
 | 
						|
	BLI_freelistN(&mb->elems);
 | 
						|
	if (mb->disp.first) freedisplist(&mb->disp);
 | 
						|
}
 | 
						|
 | 
						|
MetaBall *add_mball(const char *name)
 | 
						|
{
 | 
						|
	MetaBall *mb;
 | 
						|
	
 | 
						|
	mb= alloc_libblock(&G.main->mball, ID_MB, name);
 | 
						|
	
 | 
						|
	mb->size[0]= mb->size[1]= mb->size[2]= 1.0;
 | 
						|
	mb->texflag= MB_AUTOSPACE;
 | 
						|
	
 | 
						|
	mb->wiresize= 0.4f;
 | 
						|
	mb->rendersize= 0.2f;
 | 
						|
	mb->thresh= 0.6f;
 | 
						|
	
 | 
						|
	return mb;
 | 
						|
}
 | 
						|
 | 
						|
MetaBall *copy_mball(MetaBall *mb)
 | 
						|
{
 | 
						|
	MetaBall *mbn;
 | 
						|
	int a;
 | 
						|
	
 | 
						|
	mbn= copy_libblock(&mb->id);
 | 
						|
 | 
						|
	BLI_duplicatelist(&mbn->elems, &mb->elems);
 | 
						|
	
 | 
						|
	mbn->mat= MEM_dupallocN(mb->mat);
 | 
						|
	for (a=0; a<mbn->totcol; a++) {
 | 
						|
		id_us_plus((ID *)mbn->mat[a]);
 | 
						|
	}
 | 
						|
	mbn->bb= MEM_dupallocN(mb->bb);
 | 
						|
 | 
						|
	mbn->editelems= NULL;
 | 
						|
	mbn->lastelem= NULL;
 | 
						|
	
 | 
						|
	return mbn;
 | 
						|
}
 | 
						|
 | 
						|
static void extern_local_mball(MetaBall *mb)
 | 
						|
{
 | 
						|
	if (mb->mat) {
 | 
						|
		extern_local_matarar(mb->mat, mb->totcol);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void make_local_mball(MetaBall *mb)
 | 
						|
{
 | 
						|
	Main *bmain= G.main;
 | 
						|
	Object *ob;
 | 
						|
	int is_local= FALSE, is_lib= FALSE;
 | 
						|
 | 
						|
	/* - only lib users: do nothing
 | 
						|
	 * - only local users: set flag
 | 
						|
	 * - mixed: make copy
 | 
						|
	 */
 | 
						|
	
 | 
						|
	if (mb->id.lib==NULL) return;
 | 
						|
	if (mb->id.us==1) {
 | 
						|
		id_clear_lib_data(bmain, &mb->id);
 | 
						|
		extern_local_mball(mb);
 | 
						|
		
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for (ob= G.main->object.first; ob && ELEM(0, is_lib, is_local); ob= ob->id.next) {
 | 
						|
		if (ob->data == mb) {
 | 
						|
			if (ob->id.lib) is_lib= TRUE;
 | 
						|
			else is_local= TRUE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	if (is_local && is_lib == FALSE) {
 | 
						|
		id_clear_lib_data(bmain, &mb->id);
 | 
						|
		extern_local_mball(mb);
 | 
						|
	}
 | 
						|
	else if (is_local && is_lib) {
 | 
						|
		MetaBall *mb_new= copy_mball(mb);
 | 
						|
		mb_new->id.us= 0;
 | 
						|
 | 
						|
		/* Remap paths of new ID using old library as base. */
 | 
						|
		BKE_id_lib_local_paths(bmain, mb->id.lib, &mb_new->id);
 | 
						|
 | 
						|
		for (ob= G.main->object.first; ob; ob= ob->id.next) {
 | 
						|
			if (ob->data == mb) {
 | 
						|
				if (ob->id.lib==NULL) {
 | 
						|
					ob->data= mb_new;
 | 
						|
					mb_new->id.us++;
 | 
						|
					mb->id.us--;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* most simple meta-element adding function
 | 
						|
 * don't do context manipulation here (rna uses) */
 | 
						|
MetaElem *add_metaball_element(MetaBall *mb, const int type)
 | 
						|
{
 | 
						|
	MetaElem *ml= MEM_callocN(sizeof(MetaElem), "metaelem");
 | 
						|
 | 
						|
	unit_qt(ml->quat);
 | 
						|
 | 
						|
	ml->rad= 2.0;
 | 
						|
	ml->s= 2.0;
 | 
						|
	ml->flag= MB_SCALE_RAD;
 | 
						|
 | 
						|
	switch(type) {
 | 
						|
	case MB_BALL:
 | 
						|
		ml->type = MB_BALL;
 | 
						|
		ml->expx= ml->expy= ml->expz= 1.0;
 | 
						|
 | 
						|
		break;
 | 
						|
	case MB_TUBE:
 | 
						|
		ml->type = MB_TUBE;
 | 
						|
		ml->expx= ml->expy= ml->expz= 1.0;
 | 
						|
 | 
						|
		break;
 | 
						|
	case MB_PLANE:
 | 
						|
		ml->type = MB_PLANE;
 | 
						|
		ml->expx= ml->expy= ml->expz= 1.0;
 | 
						|
 | 
						|
		break;
 | 
						|
	case MB_ELIPSOID:
 | 
						|
		ml->type = MB_ELIPSOID;
 | 
						|
		ml->expx= 1.2f;
 | 
						|
		ml->expy= 0.8f;
 | 
						|
		ml->expz= 1.0;
 | 
						|
		
 | 
						|
		break;
 | 
						|
	case MB_CUBE:
 | 
						|
		ml->type = MB_CUBE;
 | 
						|
		ml->expx= ml->expy= ml->expz= 1.0;
 | 
						|
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	BLI_addtail(&mb->elems, ml);
 | 
						|
 | 
						|
	return ml;
 | 
						|
}
 | 
						|
/** Compute bounding box of all MetaElems/MetaBalls.
 | 
						|
 *
 | 
						|
 * Bounding box is computed from polygonized surface. Object *ob is
 | 
						|
 * basic MetaBall (usually with name Meta). All other MetaBalls (with
 | 
						|
 * names Meta.001, Meta.002, etc) are included in this Bounding Box.
 | 
						|
 */
 | 
						|
void tex_space_mball(Object *ob)
 | 
						|
{
 | 
						|
	DispList *dl;
 | 
						|
	BoundBox *bb;
 | 
						|
	float *data, min[3], max[3] /*, loc[3], size[3] */;
 | 
						|
	int tot, doit=0;
 | 
						|
 | 
						|
	if (ob->bb==NULL) ob->bb= MEM_callocN(sizeof(BoundBox), "mb boundbox");
 | 
						|
	bb= ob->bb;
 | 
						|
	
 | 
						|
	/* Weird one, this. */
 | 
						|
/*  	INIT_MINMAX(min, max); */
 | 
						|
	(min)[0]= (min)[1]= (min)[2]= 1.0e30f;
 | 
						|
	(max)[0]= (max)[1]= (max)[2]= -1.0e30f;
 | 
						|
 | 
						|
	dl= ob->disp.first;
 | 
						|
	while (dl) {
 | 
						|
		tot= dl->nr;
 | 
						|
		if (tot) doit= 1;
 | 
						|
		data= dl->verts;
 | 
						|
		while (tot--) {
 | 
						|
			/* Also weird... but longer. From utildefines. */
 | 
						|
			DO_MINMAX(data, min, max);
 | 
						|
			data+= 3;
 | 
						|
		}
 | 
						|
		dl= dl->next;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!doit) {
 | 
						|
		min[0] = min[1] = min[2] = -1.0f;
 | 
						|
		max[0] = max[1] = max[2] = 1.0f;
 | 
						|
	}
 | 
						|
#if 0
 | 
						|
	loc[0]= (min[0]+max[0])/2.0f;
 | 
						|
	loc[1]= (min[1]+max[1])/2.0f;
 | 
						|
	loc[2]= (min[2]+max[2])/2.0f;
 | 
						|
	
 | 
						|
	size[0]= (max[0]-min[0])/2.0f;
 | 
						|
	size[1]= (max[1]-min[1])/2.0f;
 | 
						|
	size[2]= (max[2]-min[2])/2.0f;
 | 
						|
#endif
 | 
						|
	boundbox_set_from_min_max(bb, min, max);
 | 
						|
}
 | 
						|
 | 
						|
float *make_orco_mball(Object *ob, ListBase *dispbase)
 | 
						|
{
 | 
						|
	BoundBox *bb;
 | 
						|
	DispList *dl;
 | 
						|
	float *data, *orco, *orcodata;
 | 
						|
	float loc[3], size[3];
 | 
						|
	int a;
 | 
						|
 | 
						|
	/* restore size and loc */
 | 
						|
	bb= ob->bb;
 | 
						|
	loc[0]= (bb->vec[0][0]+bb->vec[4][0])/2.0f;
 | 
						|
	size[0]= bb->vec[4][0]-loc[0];
 | 
						|
	loc[1]= (bb->vec[0][1]+bb->vec[2][1])/2.0f;
 | 
						|
	size[1]= bb->vec[2][1]-loc[1];
 | 
						|
	loc[2]= (bb->vec[0][2]+bb->vec[1][2])/2.0f;
 | 
						|
	size[2]= bb->vec[1][2]-loc[2];
 | 
						|
 | 
						|
	dl= dispbase->first;
 | 
						|
	orcodata= MEM_mallocN(sizeof(float)*3*dl->nr, "MballOrco");
 | 
						|
 | 
						|
	data= dl->verts;
 | 
						|
	orco= orcodata;
 | 
						|
	a= dl->nr;
 | 
						|
	while (a--) {
 | 
						|
		orco[0]= (data[0]-loc[0])/size[0];
 | 
						|
		orco[1]= (data[1]-loc[1])/size[1];
 | 
						|
		orco[2]= (data[2]-loc[2])/size[2];
 | 
						|
 | 
						|
		data+= 3;
 | 
						|
		orco+= 3;
 | 
						|
	}
 | 
						|
 | 
						|
	return orcodata;
 | 
						|
}
 | 
						|
 | 
						|
/* Note on mball basis stuff 2.5x (this is a can of worms)
 | 
						|
 * This really needs a rewrite/refactor its totally broken in anything other then basic cases
 | 
						|
 * Multiple Scenes + Set Scenes & mixing mball basis SHOULD work but fails to update the depsgraph on rename
 | 
						|
 * and linking into scenes or removal of basis mball. so take care when changing this code.
 | 
						|
 * 
 | 
						|
 * Main idiot thing here is that the system returns find_basis_mball() objects which fail a is_basis_mball() test.
 | 
						|
 *
 | 
						|
 * Not only that but the depsgraph and their areas depend on this behavior!, so making small fixes here isn't worth it.
 | 
						|
 * - Campbell
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
/** \brief Test, if Object *ob is basic MetaBall.
 | 
						|
 *
 | 
						|
 * It test last character of Object ID name. If last character
 | 
						|
 * is digit it return 0, else it return 1.
 | 
						|
 */
 | 
						|
int is_basis_mball(Object *ob)
 | 
						|
{
 | 
						|
	int len;
 | 
						|
	
 | 
						|
	/* just a quick test */
 | 
						|
	len= strlen(ob->id.name);
 | 
						|
	if ( isdigit(ob->id.name[len-1]) ) return 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* return nonzero if ob1 is a basis mball for ob */
 | 
						|
int is_mball_basis_for (Object *ob1, Object *ob2)
 | 
						|
{
 | 
						|
	int basis1nr, basis2nr;
 | 
						|
	char basis1name[MAX_ID_NAME], basis2name[MAX_ID_NAME];
 | 
						|
 | 
						|
	BLI_split_name_num(basis1name, &basis1nr, ob1->id.name+2, '.');
 | 
						|
	BLI_split_name_num(basis2name, &basis2nr, ob2->id.name+2, '.');
 | 
						|
 | 
						|
	if (!strcmp(basis1name, basis2name)) return is_basis_mball(ob1);
 | 
						|
	else return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* \brief copy some properties from object to other metaball object with same base name
 | 
						|
 *
 | 
						|
 * When some properties (wiresize, threshold, update flags) of metaball are changed, then this properties
 | 
						|
 * are copied to all metaballs in same "group" (metaballs with same base name: MBall,
 | 
						|
 * MBall.001, MBall.002, etc). The most important is to copy properties to the base metaball,
 | 
						|
 * because this metaball influence polygonisation of metaballs. */
 | 
						|
void copy_mball_properties(Scene *scene, Object *active_object)
 | 
						|
{
 | 
						|
	Scene *sce_iter= scene;
 | 
						|
	Base *base;
 | 
						|
	Object *ob;
 | 
						|
	MetaBall *active_mball = (MetaBall*)active_object->data;
 | 
						|
	int basisnr, obnr;
 | 
						|
	char basisname[MAX_ID_NAME], obname[MAX_ID_NAME];
 | 
						|
	
 | 
						|
	BLI_split_name_num(basisname, &basisnr, active_object->id.name+2, '.');
 | 
						|
 | 
						|
	/* XXX recursion check, see scene.c, just too simple code this next_object() */
 | 
						|
	if (F_ERROR==next_object(&sce_iter, 0, NULL, NULL))
 | 
						|
		return;
 | 
						|
	
 | 
						|
	while (next_object(&sce_iter, 1, &base, &ob)) {
 | 
						|
		if (ob->type==OB_MBALL) {
 | 
						|
			if (ob != active_object) {
 | 
						|
				BLI_split_name_num(obname, &obnr, ob->id.name+2, '.');
 | 
						|
 | 
						|
				/* Object ob has to be in same "group" ... it means, that it has to have
 | 
						|
				 * same base of its name */
 | 
						|
				if (strcmp(obname, basisname)==0) {
 | 
						|
					MetaBall *mb= ob->data;
 | 
						|
 | 
						|
					/* Copy properties from selected/edited metaball */
 | 
						|
					mb->wiresize= active_mball->wiresize;
 | 
						|
					mb->rendersize= active_mball->rendersize;
 | 
						|
					mb->thresh= active_mball->thresh;
 | 
						|
					mb->flag= active_mball->flag;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/** \brief This function finds basic MetaBall.
 | 
						|
 *
 | 
						|
 * Basic MetaBall doesn't include any number at the end of
 | 
						|
 * its name. All MetaBalls with same base of name can be
 | 
						|
 * blended. MetaBalls with different basic name can't be
 | 
						|
 * blended.
 | 
						|
 *
 | 
						|
 * warning!, is_basis_mball() can fail on returned object, see long note above.
 | 
						|
 */
 | 
						|
Object *find_basis_mball(Scene *scene, Object *basis)
 | 
						|
{
 | 
						|
	Scene *sce_iter= scene;
 | 
						|
	Base *base;
 | 
						|
	Object *ob,*bob= basis;
 | 
						|
	MetaElem *ml=NULL;
 | 
						|
	int basisnr, obnr;
 | 
						|
	char basisname[MAX_ID_NAME], obname[MAX_ID_NAME];
 | 
						|
 | 
						|
	BLI_split_name_num(basisname, &basisnr, basis->id.name+2, '.');
 | 
						|
	totelem= 0;
 | 
						|
 | 
						|
	/* XXX recursion check, see scene.c, just too simple code this next_object() */
 | 
						|
	if (F_ERROR==next_object(&sce_iter, 0, NULL, NULL))
 | 
						|
		return NULL;
 | 
						|
	
 | 
						|
	while (next_object(&sce_iter, 1, &base, &ob)) {
 | 
						|
		
 | 
						|
		if (ob->type==OB_MBALL) {
 | 
						|
			if (ob==bob) {
 | 
						|
				MetaBall *mb= ob->data;
 | 
						|
				
 | 
						|
				/* if bob object is in edit mode, then dynamic list of all MetaElems
 | 
						|
				 * is stored in editelems */
 | 
						|
				if (mb->editelems) ml= mb->editelems->first;
 | 
						|
				/* if bob object is in object mode */
 | 
						|
				else ml= mb->elems.first;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				BLI_split_name_num(obname, &obnr, ob->id.name+2, '.');
 | 
						|
 | 
						|
				/* object ob has to be in same "group" ... it means, that it has to have
 | 
						|
				 * same base of its name */
 | 
						|
				if (strcmp(obname, basisname)==0) {
 | 
						|
					MetaBall *mb= ob->data;
 | 
						|
					
 | 
						|
					/* if object is in edit mode, then dynamic list of all MetaElems
 | 
						|
					 * is stored in editelems */
 | 
						|
					if (mb->editelems) ml= mb->editelems->first;
 | 
						|
					/* if bob object is in object mode */
 | 
						|
					else ml= mb->elems.first;
 | 
						|
					
 | 
						|
					if (obnr < basisnr) {
 | 
						|
						if (!(ob->flag & OB_FROMDUPLI)) {
 | 
						|
							basis= ob;
 | 
						|
							basisnr= obnr;
 | 
						|
						}
 | 
						|
					}	
 | 
						|
				}
 | 
						|
			}
 | 
						|
			
 | 
						|
			while (ml) {
 | 
						|
				if (!(ml->flag & MB_HIDE)) totelem++;
 | 
						|
				ml= ml->next;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return basis;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* ******************** ARITH ************************* */
 | 
						|
 | 
						|
/* BASED AT CODE (but mostly rewritten) :
 | 
						|
 * C code from the article
 | 
						|
 * "An Implicit Surface Polygonizer"
 | 
						|
 * by Jules Bloomenthal, jbloom@beauty.gmu.edu
 | 
						|
 * in "Graphics Gems IV", Academic Press, 1994
 | 
						|
 *
 | 
						|
 * Authored by Jules Bloomenthal, Xerox PARC.
 | 
						|
 * Copyright (c) Xerox Corporation, 1991.  All rights reserved.
 | 
						|
 * Permission is granted to reproduce, use and distribute this code for
 | 
						|
 * any and all purposes, provided that this notice appears in all copies. */
 | 
						|
 | 
						|
#define RES	12 /* # converge iterations    */
 | 
						|
 | 
						|
#define L	0  /* left direction:	-x, -i */
 | 
						|
#define R	1  /* right direction:	+x, +i */
 | 
						|
#define B	2  /* bottom direction: -y, -j */
 | 
						|
#define T	3  /* top direction:	+y, +j */
 | 
						|
#define N	4  /* near direction:	-z, -k */
 | 
						|
#define F	5  /* far direction:	+z, +k */
 | 
						|
#define LBN	0  /* left bottom near corner  */
 | 
						|
#define LBF	1  /* left bottom far corner   */
 | 
						|
#define LTN	2  /* left top near corner     */
 | 
						|
#define LTF	3  /* left top far corner      */
 | 
						|
#define RBN	4  /* right bottom near corner */
 | 
						|
#define RBF	5  /* right bottom far corner  */
 | 
						|
#define RTN	6  /* right top near corner    */
 | 
						|
#define RTF	7  /* right top far corner     */
 | 
						|
 | 
						|
/* the LBN corner of cube (i, j, k), corresponds with location
 | 
						|
 * (i-0.5)*size, (j-0.5)*size, (k-0.5)*size) */
 | 
						|
 | 
						|
#define HASHBIT	    (5)
 | 
						|
#define HASHSIZE    (size_t)(1<<(3*HASHBIT))   /*! < hash table size (32768) */
 | 
						|
 | 
						|
#define HASH(i,j,k) ((((( (i) & 31)<<5) | ( (j) & 31))<<5 ) | ( (k) & 31) )
 | 
						|
 | 
						|
#define MB_BIT(i, bit) (((i)>>(bit))&1)
 | 
						|
#define FLIP(i,bit) ((i)^1<<(bit)) /* flip the given bit of i */
 | 
						|
 | 
						|
 | 
						|
/* **************** POLYGONIZATION ************************ */
 | 
						|
 | 
						|
void calc_mballco(MetaElem *ml, float vec[3])
 | 
						|
{
 | 
						|
	if (ml->mat) {
 | 
						|
		mul_m4_v3((float (*)[4])ml->mat, vec);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
float densfunc(MetaElem *ball, float x, float y, float z)
 | 
						|
{
 | 
						|
	float dist2 = 0.0, dx, dy, dz;
 | 
						|
	float vec[3];
 | 
						|
 | 
						|
	vec[0]= x;
 | 
						|
	vec[1]= y;
 | 
						|
	vec[2]= z;
 | 
						|
	mul_m4_v3((float (*)[4])ball->imat, vec);
 | 
						|
	dx= vec[0];
 | 
						|
	dy= vec[1];
 | 
						|
	dz= vec[2];
 | 
						|
	
 | 
						|
	if (ball->type==MB_BALL) {
 | 
						|
	}
 | 
						|
	else if (ball->type==MB_TUBEX) {
 | 
						|
		if ( dx > ball->len) dx-= ball->len;
 | 
						|
		else if (dx< -ball->len) dx+= ball->len;
 | 
						|
		else dx= 0.0;
 | 
						|
	}
 | 
						|
	else if (ball->type==MB_TUBEY) {
 | 
						|
		if ( dy > ball->len) dy-= ball->len;
 | 
						|
		else if (dy< -ball->len) dy+= ball->len;
 | 
						|
		else dy= 0.0;
 | 
						|
	}
 | 
						|
	else if (ball->type==MB_TUBEZ) {
 | 
						|
		if ( dz > ball->len) dz-= ball->len;
 | 
						|
		else if (dz< -ball->len) dz+= ball->len;
 | 
						|
		else dz= 0.0;
 | 
						|
	}
 | 
						|
	else if (ball->type==MB_TUBE) {
 | 
						|
		if ( dx > ball->expx) dx-= ball->expx;
 | 
						|
		else if (dx< -ball->expx) dx+= ball->expx;
 | 
						|
		else dx= 0.0;
 | 
						|
	}
 | 
						|
	else if (ball->type==MB_PLANE) {
 | 
						|
		if ( dx > ball->expx) dx-= ball->expx;
 | 
						|
		else if (dx< -ball->expx) dx+= ball->expx;
 | 
						|
		else dx= 0.0;
 | 
						|
		if ( dy > ball->expy) dy-= ball->expy;
 | 
						|
		else if (dy< -ball->expy) dy+= ball->expy;
 | 
						|
		else dy= 0.0;
 | 
						|
	}
 | 
						|
	else if (ball->type==MB_ELIPSOID) {
 | 
						|
		dx *= 1/ball->expx;
 | 
						|
		dy *= 1/ball->expy;
 | 
						|
		dz *= 1/ball->expz;
 | 
						|
	}
 | 
						|
	else if (ball->type==MB_CUBE) {
 | 
						|
		if ( dx > ball->expx) dx-= ball->expx;
 | 
						|
		else if (dx< -ball->expx) dx+= ball->expx;
 | 
						|
		else dx= 0.0;
 | 
						|
		if ( dy > ball->expy) dy-= ball->expy;
 | 
						|
		else if (dy< -ball->expy) dy+= ball->expy;
 | 
						|
		else dy= 0.0;
 | 
						|
		if ( dz > ball->expz) dz-= ball->expz;
 | 
						|
		else if (dz< -ball->expz) dz+= ball->expz;
 | 
						|
		else dz= 0.0;
 | 
						|
	}
 | 
						|
 | 
						|
	dist2= (dx*dx + dy*dy + dz*dz);
 | 
						|
 | 
						|
	if (ball->flag & MB_NEGATIVE) {
 | 
						|
		dist2= 1.0f-(dist2/ball->rad2);
 | 
						|
		if (dist2 < 0.0f) return 0.5f;
 | 
						|
 | 
						|
		return 0.5f-ball->s*dist2*dist2*dist2;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		dist2= 1.0f-(dist2/ball->rad2);
 | 
						|
		if (dist2 < 0.0f) return -0.5f;
 | 
						|
 | 
						|
		return ball->s*dist2*dist2*dist2 -0.5f;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
octal_node* find_metaball_octal_node(octal_node *node, float x, float y, float z, short depth)
 | 
						|
{
 | 
						|
	if (!depth) return node;
 | 
						|
	
 | 
						|
	if (z < node->z) {
 | 
						|
		if (y < node->y) {
 | 
						|
			if (x < node->x) {
 | 
						|
				if (node->nodes[0])
 | 
						|
					return find_metaball_octal_node(node->nodes[0],x,y,z,depth--);
 | 
						|
				else
 | 
						|
					return node;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				if (node->nodes[1])
 | 
						|
					return find_metaball_octal_node(node->nodes[1],x,y,z,depth--);
 | 
						|
				else
 | 
						|
					return node;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			if (x < node->x) {
 | 
						|
				if (node->nodes[3])
 | 
						|
					return find_metaball_octal_node(node->nodes[3],x,y,z,depth--);
 | 
						|
				else
 | 
						|
					return node;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				if (node->nodes[2])
 | 
						|
					return find_metaball_octal_node(node->nodes[2],x,y,z,depth--);
 | 
						|
				else
 | 
						|
					return node;
 | 
						|
			}		
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (y < node->y) {
 | 
						|
			if (x < node->x) {
 | 
						|
				if (node->nodes[4])
 | 
						|
					return find_metaball_octal_node(node->nodes[4],x,y,z,depth--);
 | 
						|
				else
 | 
						|
					return node;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				if (node->nodes[5])
 | 
						|
					return find_metaball_octal_node(node->nodes[5],x,y,z,depth--);
 | 
						|
				else
 | 
						|
					return node;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			if (x < node->x) {
 | 
						|
				if (node->nodes[7])
 | 
						|
					return find_metaball_octal_node(node->nodes[7],x,y,z,depth--);
 | 
						|
				else
 | 
						|
					return node;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				if (node->nodes[6])
 | 
						|
					return find_metaball_octal_node(node->nodes[6],x,y,z,depth--);
 | 
						|
				else
 | 
						|
					return node;
 | 
						|
			}		
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	return node;
 | 
						|
}
 | 
						|
 | 
						|
float metaball(float x, float y, float z)
 | 
						|
/*  float x, y, z; */
 | 
						|
{
 | 
						|
	struct octal_node *node;
 | 
						|
	struct ml_pointer *ml_p;
 | 
						|
	float dens=0;
 | 
						|
	int a;
 | 
						|
	
 | 
						|
	if (totelem > 1) {
 | 
						|
		node= find_metaball_octal_node(metaball_tree->first, x, y, z, metaball_tree->depth);
 | 
						|
		if (node) {
 | 
						|
			ml_p= node->elems.first;
 | 
						|
 | 
						|
			while (ml_p) {
 | 
						|
				dens+=densfunc(ml_p->ml, x, y, z);
 | 
						|
				ml_p= ml_p->next;
 | 
						|
			}
 | 
						|
 | 
						|
			dens+= -0.5f*(metaball_tree->pos - node->pos);
 | 
						|
			dens+= 0.5f*(metaball_tree->neg - node->neg);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			for (a=0; a<totelem; a++) {
 | 
						|
				dens += densfunc(mainb[a], x, y, z);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		dens += densfunc(mainb[0], x, y, z);
 | 
						|
	}
 | 
						|
 | 
						|
	return thresh - dens;
 | 
						|
}
 | 
						|
 | 
						|
/* ******************************************** */
 | 
						|
 | 
						|
static int *indices=NULL;
 | 
						|
static int totindex, curindex;
 | 
						|
 | 
						|
 | 
						|
void accum_mballfaces(int i1, int i2, int i3, int i4)
 | 
						|
{
 | 
						|
	int *newi, *cur;
 | 
						|
	/* static int i=0; I would like to delete altogether, but I don't dare to, yet */
 | 
						|
 | 
						|
	if (totindex==curindex) {
 | 
						|
		totindex+= 256;
 | 
						|
		newi= MEM_mallocN(4*sizeof(int)*totindex, "vertindex");
 | 
						|
		
 | 
						|
		if (indices) {
 | 
						|
			memcpy(newi, indices, 4*sizeof(int)*(totindex-256));
 | 
						|
			MEM_freeN(indices);
 | 
						|
		}
 | 
						|
		indices= newi;
 | 
						|
	}
 | 
						|
	
 | 
						|
	cur= indices+4*curindex;
 | 
						|
 | 
						|
	/* displists now support array drawing, we treat tri's as fake quad */
 | 
						|
	
 | 
						|
	cur[0]= i1;
 | 
						|
	cur[1]= i2;
 | 
						|
	cur[2]= i3;
 | 
						|
	if (i4==0)
 | 
						|
		cur[3]= i3;
 | 
						|
	else 
 | 
						|
		cur[3]= i4;
 | 
						|
	
 | 
						|
	curindex++;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* ******************* MEMORY MANAGEMENT *********************** */
 | 
						|
void *new_pgn_element(int size)
 | 
						|
{
 | 
						|
	/* during polygonize 1000s of elements are allocated
 | 
						|
	 * and never freed in between. Freeing only done at the end.
 | 
						|
	 */
 | 
						|
	int blocksize= 16384;
 | 
						|
	static int offs= 0;		/* the current free address */
 | 
						|
	static struct pgn_elements *cur= NULL;
 | 
						|
	static ListBase lb= {NULL, NULL};
 | 
						|
	void *adr;
 | 
						|
	
 | 
						|
	if (size>10000 || size==0) {
 | 
						|
		printf("incorrect use of new_pgn_element\n");
 | 
						|
	}
 | 
						|
	else if (size== -1) {
 | 
						|
		cur= lb.first;
 | 
						|
		while (cur) {
 | 
						|
			MEM_freeN(cur->data);
 | 
						|
			cur= cur->next;
 | 
						|
		}
 | 
						|
		BLI_freelistN(&lb);
 | 
						|
		
 | 
						|
		return NULL;	
 | 
						|
	}
 | 
						|
	
 | 
						|
	size= 4*( (size+3)/4 );
 | 
						|
	
 | 
						|
	if (cur) {
 | 
						|
		if (size+offs < blocksize) {
 | 
						|
			adr= (void *) (cur->data+offs);
 | 
						|
			offs+= size;
 | 
						|
			return adr;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	cur= MEM_callocN( sizeof(struct pgn_elements), "newpgn");
 | 
						|
	cur->data= MEM_callocN(blocksize, "newpgn");
 | 
						|
	BLI_addtail(&lb, cur);
 | 
						|
	
 | 
						|
	offs= size;
 | 
						|
	return cur->data;
 | 
						|
}
 | 
						|
 | 
						|
void freepolygonize(PROCESS *p)
 | 
						|
{
 | 
						|
	MEM_freeN(p->corners);
 | 
						|
	MEM_freeN(p->edges);
 | 
						|
	MEM_freeN(p->centers);
 | 
						|
 | 
						|
	new_pgn_element(-1);
 | 
						|
	
 | 
						|
	if (p->vertices.ptr) MEM_freeN(p->vertices.ptr);
 | 
						|
}
 | 
						|
 | 
						|
/**** Cubical Polygonization (optional) ****/
 | 
						|
 | 
						|
#define LB	0  /* left bottom edge	*/
 | 
						|
#define LT	1  /* left top edge	*/
 | 
						|
#define LN	2  /* left near edge	*/
 | 
						|
#define LF	3  /* left far edge	*/
 | 
						|
#define RB	4  /* right bottom edge */
 | 
						|
#define RT	5  /* right top edge	*/
 | 
						|
#define RN	6  /* right near edge	*/
 | 
						|
#define RF	7  /* right far edge	*/
 | 
						|
#define BN	8  /* bottom near edge	*/
 | 
						|
#define BF	9  /* bottom far edge	*/
 | 
						|
#define TN	10 /* top near edge	*/
 | 
						|
#define TF	11 /* top far edge	*/
 | 
						|
 | 
						|
static INTLISTS *cubetable[256];
 | 
						|
 | 
						|
/* edge: LB, LT, LN, LF, RB, RT, RN, RF, BN, BF, TN, TF */
 | 
						|
static int corner1[12]	   = {
 | 
						|
	LBN,LTN,LBN,LBF,RBN,RTN,RBN,RBF,LBN,LBF,LTN,LTF};
 | 
						|
static int corner2[12]	   = {
 | 
						|
	LBF,LTF,LTN,LTF,RBF,RTF,RTN,RTF,RBN,RBF,RTN,RTF};
 | 
						|
static int leftface[12]	   = {
 | 
						|
	B,  L,  L,  F,  R,  T,  N,  R,  N,  B,  T,  F};
 | 
						|
/* face on left when going corner1 to corner2 */
 | 
						|
static int rightface[12]   = {
 | 
						|
	L,  T,  N,  L,  B,  R,  R,  F,  B,  F,  N,  T};
 | 
						|
/* face on right when going corner1 to corner2 */
 | 
						|
 | 
						|
 | 
						|
/* docube: triangulate the cube directly, without decomposition */
 | 
						|
 | 
						|
void docube(CUBE *cube, PROCESS *p, MetaBall *mb)
 | 
						|
{
 | 
						|
	INTLISTS *polys;
 | 
						|
	CORNER *c1, *c2;
 | 
						|
	int i, index = 0, count, indexar[8];
 | 
						|
	
 | 
						|
	for (i = 0; i < 8; i++) if (cube->corners[i]->value > 0.0f) index += (1<<i);
 | 
						|
	
 | 
						|
	for (polys = cubetable[index]; polys; polys = polys->next) {
 | 
						|
		INTLIST *edges;
 | 
						|
		
 | 
						|
		count = 0;
 | 
						|
		
 | 
						|
		for (edges = polys->list; edges; edges = edges->next) {
 | 
						|
			c1 = cube->corners[corner1[edges->i]];
 | 
						|
			c2 = cube->corners[corner2[edges->i]];
 | 
						|
			
 | 
						|
			indexar[count] = vertid(c1, c2, p, mb);
 | 
						|
			count++;
 | 
						|
		}
 | 
						|
		if (count>2) {
 | 
						|
			switch(count) {
 | 
						|
			case 3:
 | 
						|
				accum_mballfaces(indexar[2], indexar[1], indexar[0], 0);
 | 
						|
				break;
 | 
						|
			case 4:
 | 
						|
				if (indexar[0]==0) accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
 | 
						|
				else accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
 | 
						|
				break;
 | 
						|
			case 5:
 | 
						|
				if (indexar[0]==0) accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
 | 
						|
				else accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
 | 
						|
 | 
						|
				accum_mballfaces(indexar[4], indexar[3], indexar[0], 0);
 | 
						|
				break;
 | 
						|
			case 6:
 | 
						|
				if (indexar[0]==0) {
 | 
						|
					accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
 | 
						|
					accum_mballfaces(indexar[0], indexar[5], indexar[4], indexar[3]);
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
 | 
						|
					accum_mballfaces(indexar[5], indexar[4], indexar[3], indexar[0]);
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case 7:
 | 
						|
				if (indexar[0]==0) {
 | 
						|
					accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
 | 
						|
					accum_mballfaces(indexar[0], indexar[5], indexar[4], indexar[3]);
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
 | 
						|
					accum_mballfaces(indexar[5], indexar[4], indexar[3], indexar[0]);
 | 
						|
				}
 | 
						|
				
 | 
						|
				accum_mballfaces(indexar[6], indexar[5], indexar[0], 0);
 | 
						|
				
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* testface: given cube at lattice (i, j, k), and four corners of face,
 | 
						|
 * if surface crosses face, compute other four corners of adjacent cube
 | 
						|
 * and add new cube to cube stack */
 | 
						|
 | 
						|
void testface(int i, int j, int k, CUBE* old, int bit, int c1, int c2, int c3, int c4, PROCESS *p)
 | 
						|
{
 | 
						|
	CUBE newc;
 | 
						|
	CUBES *oldcubes = p->cubes;
 | 
						|
	CORNER *corn1, *corn2, *corn3, *corn4;
 | 
						|
	int n, pos;
 | 
						|
 | 
						|
	corn1= old->corners[c1];
 | 
						|
	corn2= old->corners[c2];
 | 
						|
	corn3= old->corners[c3];
 | 
						|
	corn4= old->corners[c4];
 | 
						|
	
 | 
						|
	pos = corn1->value > 0.0f ? 1 : 0;
 | 
						|
 | 
						|
	/* test if no surface crossing */
 | 
						|
	if ( (corn2->value > 0) == pos && (corn3->value > 0) == pos && (corn4->value > 0) == pos) return;
 | 
						|
	/* test if cube out of bounds */
 | 
						|
	/*if ( abs(i) > p->bounds || abs(j) > p->bounds || abs(k) > p->bounds) return;*/
 | 
						|
	/* test if already visited (always as last) */
 | 
						|
	if (setcenter(p->centers, i, j, k)) return;
 | 
						|
 | 
						|
 | 
						|
	/* create new cube and add cube to top of stack: */
 | 
						|
	p->cubes = (CUBES *) new_pgn_element(sizeof(CUBES));
 | 
						|
	p->cubes->next = oldcubes;
 | 
						|
	
 | 
						|
	newc.i = i;
 | 
						|
	newc.j = j;
 | 
						|
	newc.k = k;
 | 
						|
	for (n = 0; n < 8; n++) newc.corners[n] = NULL;
 | 
						|
	
 | 
						|
	newc.corners[FLIP(c1, bit)] = corn1;
 | 
						|
	newc.corners[FLIP(c2, bit)] = corn2;
 | 
						|
	newc.corners[FLIP(c3, bit)] = corn3;
 | 
						|
	newc.corners[FLIP(c4, bit)] = corn4;
 | 
						|
 | 
						|
	if (newc.corners[0]==NULL) newc.corners[0] = setcorner(p, i, j, k);
 | 
						|
	if (newc.corners[1]==NULL) newc.corners[1] = setcorner(p, i, j, k+1);
 | 
						|
	if (newc.corners[2]==NULL) newc.corners[2] = setcorner(p, i, j+1, k);
 | 
						|
	if (newc.corners[3]==NULL) newc.corners[3] = setcorner(p, i, j+1, k+1);
 | 
						|
	if (newc.corners[4]==NULL) newc.corners[4] = setcorner(p, i+1, j, k);
 | 
						|
	if (newc.corners[5]==NULL) newc.corners[5] = setcorner(p, i+1, j, k+1);
 | 
						|
	if (newc.corners[6]==NULL) newc.corners[6] = setcorner(p, i+1, j+1, k);
 | 
						|
	if (newc.corners[7]==NULL) newc.corners[7] = setcorner(p, i+1, j+1, k+1);
 | 
						|
 | 
						|
	p->cubes->cube= newc;	
 | 
						|
}
 | 
						|
 | 
						|
/* setcorner: return corner with the given lattice location
 | 
						|
 * set (and cache) its function value */
 | 
						|
 | 
						|
CORNER *setcorner (PROCESS* p, int i, int j, int k)
 | 
						|
{
 | 
						|
	/* for speed, do corner value caching here */
 | 
						|
	CORNER *c;
 | 
						|
	int index;
 | 
						|
 | 
						|
	/* does corner exist? */
 | 
						|
	index = HASH(i, j, k);
 | 
						|
	c = p->corners[index];
 | 
						|
	
 | 
						|
	for (; c != NULL; c = c->next) {
 | 
						|
		if (c->i == i && c->j == j && c->k == k) {
 | 
						|
			return c;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	c = (CORNER *) new_pgn_element(sizeof(CORNER));
 | 
						|
 | 
						|
	c->i = i; 
 | 
						|
	c->x = ((float)i-0.5f)*p->size;
 | 
						|
	c->j = j; 
 | 
						|
	c->y = ((float)j-0.5f)*p->size;
 | 
						|
	c->k = k; 
 | 
						|
	c->z = ((float)k-0.5f)*p->size;
 | 
						|
	c->value = p->function(c->x, c->y, c->z);
 | 
						|
	
 | 
						|
	c->next = p->corners[index];
 | 
						|
	p->corners[index] = c;
 | 
						|
	
 | 
						|
	return c;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* nextcwedge: return next clockwise edge from given edge around given face */
 | 
						|
 | 
						|
int nextcwedge (int edge, int face)
 | 
						|
{
 | 
						|
	switch (edge) {
 | 
						|
	case LB: 
 | 
						|
		return (face == L)? LF : BN;
 | 
						|
	case LT: 
 | 
						|
		return (face == L)? LN : TF;
 | 
						|
	case LN: 
 | 
						|
		return (face == L)? LB : TN;
 | 
						|
	case LF: 
 | 
						|
		return (face == L)? LT : BF;
 | 
						|
	case RB: 
 | 
						|
		return (face == R)? RN : BF;
 | 
						|
	case RT: 
 | 
						|
		return (face == R)? RF : TN;
 | 
						|
	case RN: 
 | 
						|
		return (face == R)? RT : BN;
 | 
						|
	case RF: 
 | 
						|
		return (face == R)? RB : TF;
 | 
						|
	case BN: 
 | 
						|
		return (face == B)? RB : LN;
 | 
						|
	case BF: 
 | 
						|
		return (face == B)? LB : RF;
 | 
						|
	case TN: 
 | 
						|
		return (face == T)? LT : RN;
 | 
						|
	case TF: 
 | 
						|
		return (face == T)? RT : LF;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* otherface: return face adjoining edge that is not the given face */
 | 
						|
 | 
						|
int otherface (int edge, int face)
 | 
						|
{
 | 
						|
	int other = leftface[edge];
 | 
						|
	return face == other? rightface[edge] : other;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* makecubetable: create the 256 entry table for cubical polygonization */
 | 
						|
 | 
						|
void makecubetable (void)
 | 
						|
{
 | 
						|
	static int isdone= 0;
 | 
						|
	int i, e, c, done[12], pos[8];
 | 
						|
 | 
						|
	if (isdone) return;
 | 
						|
	isdone= 1;
 | 
						|
 | 
						|
	for (i = 0; i < 256; i++) {
 | 
						|
		for (e = 0; e < 12; e++) done[e] = 0;
 | 
						|
		for (c = 0; c < 8; c++) pos[c] = MB_BIT(i, c);
 | 
						|
		for (e = 0; e < 12; e++)
 | 
						|
			if (!done[e] && (pos[corner1[e]] != pos[corner2[e]])) {
 | 
						|
				INTLIST *ints = NULL;
 | 
						|
				INTLISTS *lists = (INTLISTS *) MEM_callocN(sizeof(INTLISTS), "mball_intlist");
 | 
						|
				int start = e, edge = e;
 | 
						|
				
 | 
						|
				/* get face that is to right of edge from pos to neg corner: */
 | 
						|
				int face = pos[corner1[e]]? rightface[e] : leftface[e];
 | 
						|
				
 | 
						|
				while (1) {
 | 
						|
					edge = nextcwedge(edge, face);
 | 
						|
					done[edge] = 1;
 | 
						|
					if (pos[corner1[edge]] != pos[corner2[edge]]) {
 | 
						|
						INTLIST *tmp = ints;
 | 
						|
						
 | 
						|
						ints = (INTLIST *) MEM_callocN(sizeof(INTLIST), "mball_intlist");
 | 
						|
						ints->i = edge;
 | 
						|
						ints->next = tmp; /* add edge to head of list */
 | 
						|
						
 | 
						|
						if (edge == start) break;
 | 
						|
						face = otherface(edge, face);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				lists->list = ints; /* add ints to head of table entry */
 | 
						|
				lists->next = cubetable[i];
 | 
						|
				cubetable[i] = lists;
 | 
						|
			}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BKE_freecubetable(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	INTLISTS *lists, *nlists;
 | 
						|
	INTLIST *ints, *nints;
 | 
						|
 | 
						|
	for (i = 0; i < 256; i++) {
 | 
						|
		lists= cubetable[i];
 | 
						|
		while (lists) {
 | 
						|
			nlists= lists->next;
 | 
						|
			
 | 
						|
			ints= lists->list;
 | 
						|
			while (ints) {
 | 
						|
				nints= ints->next;
 | 
						|
				MEM_freeN(ints);
 | 
						|
				ints= nints;
 | 
						|
			}
 | 
						|
			
 | 
						|
			MEM_freeN(lists);
 | 
						|
			lists= nlists;
 | 
						|
		}
 | 
						|
		cubetable[i]= NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**** Storage ****/
 | 
						|
 | 
						|
/* setcenter: set (i,j,k) entry of table[]
 | 
						|
 * return 1 if already set; otherwise, set and return 0 */
 | 
						|
 | 
						|
int setcenter(CENTERLIST *table[], int i, int j, int k)
 | 
						|
{
 | 
						|
	int index;
 | 
						|
	CENTERLIST *newc, *l, *q;
 | 
						|
 | 
						|
	index= HASH(i, j, k);
 | 
						|
	q= table[index];
 | 
						|
 | 
						|
	for (l = q; l != NULL; l = l->next) {
 | 
						|
		if (l->i == i && l->j == j && l->k == k) return 1;
 | 
						|
	}
 | 
						|
	
 | 
						|
	newc = (CENTERLIST *) new_pgn_element(sizeof(CENTERLIST));
 | 
						|
	newc->i = i; 
 | 
						|
	newc->j = j; 
 | 
						|
	newc->k = k; 
 | 
						|
	newc->next = q;
 | 
						|
	table[index] = newc;
 | 
						|
	
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* setedge: set vertex id for edge */
 | 
						|
 | 
						|
void setedge (EDGELIST *table[],
 | 
						|
			  int i1, int j1,
 | 
						|
			  int k1, int i2,
 | 
						|
			  int j2, int k2,
 | 
						|
			  int vid)
 | 
						|
{
 | 
						|
	unsigned int index;
 | 
						|
	EDGELIST *newe;
 | 
						|
	
 | 
						|
	if (i1>i2 || (i1==i2 && (j1>j2 || (j1==j2 && k1>k2)))) {
 | 
						|
		int t=i1; 
 | 
						|
		i1=i2; 
 | 
						|
		i2=t; 
 | 
						|
		t=j1; 
 | 
						|
		j1=j2; 
 | 
						|
		j2=t; 
 | 
						|
		t=k1; 
 | 
						|
		k1=k2; 
 | 
						|
		k2=t;
 | 
						|
	}
 | 
						|
	index = HASH(i1, j1, k1) + HASH(i2, j2, k2);
 | 
						|
	newe = (EDGELIST *) new_pgn_element(sizeof(EDGELIST));
 | 
						|
	newe->i1 = i1; 
 | 
						|
	newe->j1 = j1; 
 | 
						|
	newe->k1 = k1;
 | 
						|
	newe->i2 = i2; 
 | 
						|
	newe->j2 = j2; 
 | 
						|
	newe->k2 = k2;
 | 
						|
	newe->vid = vid;
 | 
						|
	newe->next = table[index];
 | 
						|
	table[index] = newe;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* getedge: return vertex id for edge; return -1 if not set */
 | 
						|
 | 
						|
int getedge (EDGELIST *table[],
 | 
						|
			 int i1, int j1, int k1,
 | 
						|
			 int i2, int j2, int k2)
 | 
						|
{
 | 
						|
	EDGELIST *q;
 | 
						|
	
 | 
						|
	if (i1>i2 || (i1==i2 && (j1>j2 || (j1==j2 && k1>k2)))) {
 | 
						|
		int t=i1; 
 | 
						|
		i1=i2; 
 | 
						|
		i2=t; 
 | 
						|
		t=j1; 
 | 
						|
		j1=j2; 
 | 
						|
		j2=t; 
 | 
						|
		t=k1; 
 | 
						|
		k1=k2; 
 | 
						|
		k2=t;
 | 
						|
	}
 | 
						|
	q = table[HASH(i1, j1, k1)+HASH(i2, j2, k2)];
 | 
						|
	for (; q != NULL; q = q->next)
 | 
						|
		if (q->i1 == i1 && q->j1 == j1 && q->k1 == k1 &&
 | 
						|
			q->i2 == i2 && q->j2 == j2 && q->k2 == k2)
 | 
						|
			return q->vid;
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**** Vertices ****/
 | 
						|
 | 
						|
#undef R
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* vertid: return index for vertex on edge:
 | 
						|
 * c1->value and c2->value are presumed of different sign
 | 
						|
 * return saved index if any; else compute vertex and save */
 | 
						|
 | 
						|
/* addtovertices: add v to sequence of vertices */
 | 
						|
 | 
						|
void addtovertices (VERTICES *vertices, VERTEX v)
 | 
						|
{
 | 
						|
	if (vertices->count == vertices->max) {
 | 
						|
		int i;
 | 
						|
		VERTEX *newv;
 | 
						|
		vertices->max = vertices->count == 0 ? 10 : 2*vertices->count;
 | 
						|
		newv = (VERTEX *) MEM_callocN(vertices->max * sizeof(VERTEX), "addtovertices");
 | 
						|
		
 | 
						|
		for (i = 0; i < vertices->count; i++) newv[i] = vertices->ptr[i];
 | 
						|
		
 | 
						|
		if (vertices->ptr != NULL) MEM_freeN(vertices->ptr);
 | 
						|
		vertices->ptr = newv;
 | 
						|
	}
 | 
						|
	vertices->ptr[vertices->count++] = v;
 | 
						|
}
 | 
						|
 | 
						|
/* vnormal: compute unit length surface normal at point */
 | 
						|
 | 
						|
void vnormal (MB_POINT *point, PROCESS *p, MB_POINT *v)
 | 
						|
{
 | 
						|
	float delta= 0.2f*p->delta;
 | 
						|
	float f = p->function(point->x, point->y, point->z);
 | 
						|
 | 
						|
	v->x = p->function(point->x+delta, point->y, point->z)-f;
 | 
						|
	v->y = p->function(point->x, point->y+delta, point->z)-f;
 | 
						|
	v->z = p->function(point->x, point->y, point->z+delta)-f;
 | 
						|
	f = sqrtf(v->x*v->x + v->y*v->y + v->z*v->z);
 | 
						|
 | 
						|
	if (f != 0.0f) {
 | 
						|
		v->x /= f; 
 | 
						|
		v->y /= f; 
 | 
						|
		v->z /= f;
 | 
						|
	}
 | 
						|
	
 | 
						|
	if (FALSE) {
 | 
						|
		MB_POINT temp;
 | 
						|
		
 | 
						|
		delta *= 2.0f;
 | 
						|
		
 | 
						|
		f = p->function(point->x, point->y, point->z);
 | 
						|
	
 | 
						|
		temp.x = p->function(point->x+delta, point->y, point->z)-f;
 | 
						|
		temp.y = p->function(point->x, point->y+delta, point->z)-f;
 | 
						|
		temp.z = p->function(point->x, point->y, point->z+delta)-f;
 | 
						|
		f = sqrtf(temp.x*temp.x + temp.y*temp.y + temp.z*temp.z);
 | 
						|
	
 | 
						|
		if (f != 0.0f) {
 | 
						|
			temp.x /= f; 
 | 
						|
			temp.y /= f; 
 | 
						|
			temp.z /= f;
 | 
						|
			
 | 
						|
			v->x+= temp.x;
 | 
						|
			v->y+= temp.y;
 | 
						|
			v->z+= temp.z;
 | 
						|
			
 | 
						|
			f = sqrtf(v->x*v->x + v->y*v->y + v->z*v->z);
 | 
						|
		
 | 
						|
			if (f != 0.0f) {
 | 
						|
				v->x /= f; 
 | 
						|
				v->y /= f; 
 | 
						|
				v->z /= f;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int vertid (CORNER *c1, CORNER *c2, PROCESS *p, MetaBall *mb)
 | 
						|
{
 | 
						|
	VERTEX v;
 | 
						|
	MB_POINT a, b;
 | 
						|
	int vid = getedge(p->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k);
 | 
						|
 | 
						|
	if (vid != -1) return vid;			     /* previously computed */
 | 
						|
	a.x = c1->x; 
 | 
						|
	a.y = c1->y; 
 | 
						|
	a.z = c1->z;
 | 
						|
	b.x = c2->x; 
 | 
						|
	b.y = c2->y; 
 | 
						|
	b.z = c2->z;
 | 
						|
 | 
						|
	converge(&a, &b, c1->value, c2->value, p->function, &v.position, mb, 1); /* position */
 | 
						|
	vnormal(&v.position, p, &v.normal);
 | 
						|
 | 
						|
	addtovertices(&p->vertices, v);			   /* save vertex */
 | 
						|
	vid = p->vertices.count-1;
 | 
						|
	setedge(p->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k, vid);
 | 
						|
	
 | 
						|
	return vid;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* converge: from two points of differing sign, converge to zero crossing */
 | 
						|
/* watch it: p1 and p2 are used to calculate */
 | 
						|
void converge (MB_POINT *p1, MB_POINT *p2, float v1, float v2,
 | 
						|
			   float (*function)(float, float, float), MB_POINT *p, MetaBall *mb, int f)
 | 
						|
{
 | 
						|
	int i = 0;
 | 
						|
	MB_POINT pos, neg;
 | 
						|
	float positive = 0.0f, negative = 0.0f;
 | 
						|
	float dx = 0.0f ,dy = 0.0f ,dz = 0.0f;
 | 
						|
	
 | 
						|
	if (v1 < 0) {
 | 
						|
		pos= *p2;
 | 
						|
		neg= *p1;
 | 
						|
		positive = v2;
 | 
						|
		negative = v1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		pos= *p1;
 | 
						|
		neg= *p2;
 | 
						|
		positive = v1;
 | 
						|
		negative = v2;
 | 
						|
	}
 | 
						|
 | 
						|
	dx = pos.x - neg.x;
 | 
						|
	dy = pos.y - neg.y;
 | 
						|
	dz = pos.z - neg.z;
 | 
						|
 | 
						|
/* Approximation by linear interpolation is faster then binary subdivision,
 | 
						|
 * but it results sometimes (mb->thresh < 0.2) into the strange results */
 | 
						|
	if ((mb->thresh > 0.2f) && (f==1)) {
 | 
						|
	if ((dy == 0.0f) && (dz == 0.0f)) {
 | 
						|
		p->x = neg.x - negative*dx/(positive-negative);
 | 
						|
		p->y = neg.y;
 | 
						|
		p->z = neg.z;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	  if ((dx == 0.0f) && (dz == 0.0f)) {
 | 
						|
		p->x = neg.x;
 | 
						|
		p->y = neg.y - negative*dy/(positive-negative);
 | 
						|
		p->z = neg.z;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	if ((dx == 0.0f) && (dy == 0.0f)) {
 | 
						|
		p->x = neg.x;
 | 
						|
		p->y = neg.y;
 | 
						|
		p->z = neg.z - negative*dz/(positive-negative);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	}
 | 
						|
 | 
						|
	if ((dy == 0.0f) && (dz == 0.0f)) {
 | 
						|
		p->y = neg.y;
 | 
						|
		p->z = neg.z;
 | 
						|
		while (1) {
 | 
						|
			if (i++ == RES) return;
 | 
						|
			p->x = 0.5f*(pos.x + neg.x);
 | 
						|
			if ((function(p->x,p->y,p->z)) > 0.0f)	pos.x = p->x; else neg.x = p->x;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if ((dx == 0.0f) && (dz == 0.0f)) {
 | 
						|
		p->x = neg.x;
 | 
						|
		p->z = neg.z;
 | 
						|
		while (1) {
 | 
						|
			if (i++ == RES) return;
 | 
						|
			p->y = 0.5f*(pos.y + neg.y);
 | 
						|
			if ((function(p->x,p->y,p->z)) > 0.0f)	pos.y = p->y; else neg.y = p->y;
 | 
						|
		}
 | 
						|
	  }
 | 
						|
   
 | 
						|
	if ((dx == 0.0f) && (dy == 0.0f)) {
 | 
						|
		p->x = neg.x;
 | 
						|
		p->y = neg.y;
 | 
						|
		while (1) {
 | 
						|
			if (i++ == RES) return;
 | 
						|
			p->z = 0.5f*(pos.z + neg.z);
 | 
						|
			if ((function(p->x,p->y,p->z)) > 0.0f)	pos.z = p->z; else neg.z = p->z;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* This is necessary to find start point */
 | 
						|
	while (1) {
 | 
						|
		p->x = 0.5f*(pos.x + neg.x);
 | 
						|
		p->y = 0.5f*(pos.y + neg.y);
 | 
						|
		p->z = 0.5f*(pos.z + neg.z);
 | 
						|
 | 
						|
		if (i++ == RES) return;
 | 
						|
   
 | 
						|
		if ((function(p->x, p->y, p->z)) > 0.0f) {
 | 
						|
			pos.x = p->x;
 | 
						|
			pos.y = p->y;
 | 
						|
			pos.z = p->z;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			neg.x = p->x;
 | 
						|
			neg.y = p->y;
 | 
						|
			neg.z = p->z;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************** */
 | 
						|
void add_cube(PROCESS *mbproc, int i, int j, int k, int count)
 | 
						|
{
 | 
						|
	CUBES *ncube;
 | 
						|
	int n;
 | 
						|
	int a, b, c;
 | 
						|
 | 
						|
	/* hmmm, not only one, but eight cube will be added on the stack 
 | 
						|
	 * ... */
 | 
						|
	for (a=i-1; a<i+count; a++)
 | 
						|
		for (b=j-1; b<j+count; b++)
 | 
						|
			for (c=k-1; c<k+count; c++) {
 | 
						|
				/* test if cube has been found before */
 | 
						|
				if ( setcenter(mbproc->centers, a, b, c)==0 ) {
 | 
						|
					/* push cube on stack: */
 | 
						|
					ncube= (CUBES *) new_pgn_element(sizeof(CUBES));
 | 
						|
					ncube->next= mbproc->cubes;
 | 
						|
					mbproc->cubes= ncube;
 | 
						|
 | 
						|
					ncube->cube.i= a;
 | 
						|
					ncube->cube.j= b;
 | 
						|
					ncube->cube.k= c;
 | 
						|
 | 
						|
					/* set corners of initial cube: */
 | 
						|
					for (n = 0; n < 8; n++)
 | 
						|
					ncube->cube.corners[n] = setcorner(mbproc, a+MB_BIT(n,2), b+MB_BIT(n,1), c+MB_BIT(n,0));
 | 
						|
				}
 | 
						|
			}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void find_first_points(PROCESS *mbproc, MetaBall *mb, int a)
 | 
						|
{
 | 
						|
	MB_POINT IN, in, OUT, out; /*point;*/
 | 
						|
	MetaElem *ml;
 | 
						|
	int i, j, k, c_i, c_j, c_k;
 | 
						|
	int index[3]={1,0,-1};
 | 
						|
	float f =0.0f;
 | 
						|
	float in_v /*, out_v*/;
 | 
						|
	MB_POINT workp;
 | 
						|
	float tmp_v, workp_v, max_len, len, dx, dy, dz, nx, ny, nz, MAXN;
 | 
						|
 | 
						|
	ml = mainb[a];
 | 
						|
 | 
						|
	f = 1-(mb->thresh/ml->s);
 | 
						|
 | 
						|
	/* Skip, when Stiffness of MetaElement is too small ... MetaElement can't be
 | 
						|
	 * visible alone ... but still can influence others MetaElements :-) */
 | 
						|
	if (f > 0.0f) {
 | 
						|
		OUT.x = IN.x = in.x= 0.0;
 | 
						|
		OUT.y = IN.y = in.y= 0.0;
 | 
						|
		OUT.z = IN.z = in.z= 0.0;
 | 
						|
 | 
						|
		calc_mballco(ml, (float *)&in);
 | 
						|
		in_v = mbproc->function(in.x, in.y, in.z);
 | 
						|
 | 
						|
		for (i=0;i<3;i++) {
 | 
						|
			switch (ml->type) {
 | 
						|
				case MB_BALL:
 | 
						|
					OUT.x = out.x= IN.x + index[i]*ml->rad;
 | 
						|
					break;
 | 
						|
				case MB_TUBE:
 | 
						|
				case MB_PLANE:
 | 
						|
				case MB_ELIPSOID:
 | 
						|
				case MB_CUBE:
 | 
						|
					OUT.x = out.x= IN.x + index[i]*(ml->expx + ml->rad);
 | 
						|
					break;
 | 
						|
			}
 | 
						|
 | 
						|
			for (j=0;j<3;j++) {
 | 
						|
				switch (ml->type) {
 | 
						|
					case MB_BALL:
 | 
						|
						OUT.y = out.y= IN.y + index[j]*ml->rad;
 | 
						|
						break;
 | 
						|
					case MB_TUBE:
 | 
						|
					case MB_PLANE:
 | 
						|
					case MB_ELIPSOID:
 | 
						|
					case MB_CUBE:
 | 
						|
						OUT.y = out.y= IN.y + index[j]*(ml->expy + ml->rad);
 | 
						|
						break;
 | 
						|
				}
 | 
						|
			
 | 
						|
				for (k=0;k<3;k++) {
 | 
						|
					out.x = OUT.x;
 | 
						|
					out.y = OUT.y;
 | 
						|
					switch (ml->type) {
 | 
						|
						case MB_BALL:
 | 
						|
						case MB_TUBE:
 | 
						|
						case MB_PLANE:
 | 
						|
							out.z= IN.z + index[k]*ml->rad;
 | 
						|
							break;
 | 
						|
						case MB_ELIPSOID:
 | 
						|
						case MB_CUBE:
 | 
						|
							out.z= IN.z + index[k]*(ml->expz + ml->rad);
 | 
						|
							break;
 | 
						|
					}
 | 
						|
 | 
						|
					calc_mballco(ml, (float *)&out);
 | 
						|
 | 
						|
					/*out_v = mbproc->function(out.x, out.y, out.z);*/ /*UNUSED*/
 | 
						|
 | 
						|
					/* find "first points" on Implicit Surface of MetaElemnt ml */
 | 
						|
					workp.x = in.x;
 | 
						|
					workp.y = in.y;
 | 
						|
					workp.z = in.z;
 | 
						|
					workp_v = in_v;
 | 
						|
					max_len = sqrtf((out.x-in.x)*(out.x-in.x) + (out.y-in.y)*(out.y-in.y) + (out.z-in.z)*(out.z-in.z));
 | 
						|
 | 
						|
					nx = abs((out.x - in.x)/mbproc->size);
 | 
						|
					ny = abs((out.y - in.y)/mbproc->size);
 | 
						|
					nz = abs((out.z - in.z)/mbproc->size);
 | 
						|
					
 | 
						|
					MAXN = MAX3(nx,ny,nz);
 | 
						|
					if (MAXN!=0.0f) {
 | 
						|
						dx = (out.x - in.x)/MAXN;
 | 
						|
						dy = (out.y - in.y)/MAXN;
 | 
						|
						dz = (out.z - in.z)/MAXN;
 | 
						|
 | 
						|
						len = 0.0;
 | 
						|
						while (len<=max_len) {
 | 
						|
							workp.x += dx;
 | 
						|
							workp.y += dy;
 | 
						|
							workp.z += dz;
 | 
						|
							/* compute value of implicite function */
 | 
						|
							tmp_v = mbproc->function(workp.x, workp.y, workp.z);
 | 
						|
							/* add cube to the stack, when value of implicite function crosses zero value */
 | 
						|
							if ((tmp_v<0.0f && workp_v>=0.0f)||(tmp_v>0.0f && workp_v<=0.0f)) {
 | 
						|
 | 
						|
								/* indexes of CUBE, which includes "first point" */
 | 
						|
								c_i= (int)floor(workp.x/mbproc->size);
 | 
						|
								c_j= (int)floor(workp.y/mbproc->size);
 | 
						|
								c_k= (int)floor(workp.z/mbproc->size);
 | 
						|
								
 | 
						|
								/* add CUBE (with indexes c_i, c_j, c_k) to the stack,
 | 
						|
								 * this cube includes found point of Implicit Surface */
 | 
						|
								if (ml->flag & MB_NEGATIVE)
 | 
						|
									add_cube(mbproc, c_i, c_j, c_k, 2);
 | 
						|
								else
 | 
						|
									add_cube(mbproc, c_i, c_j, c_k, 1);
 | 
						|
							}
 | 
						|
							len = sqrtf((workp.x-in.x)*(workp.x-in.x) + (workp.y-in.y)*(workp.y-in.y) + (workp.z-in.z)*(workp.z-in.z));
 | 
						|
							workp_v = tmp_v;
 | 
						|
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void polygonize(PROCESS *mbproc, MetaBall *mb)
 | 
						|
{
 | 
						|
	CUBE c;
 | 
						|
	int a;
 | 
						|
 | 
						|
	mbproc->vertices.count = mbproc->vertices.max = 0;
 | 
						|
	mbproc->vertices.ptr = NULL;
 | 
						|
 | 
						|
	/* allocate hash tables and build cube polygon table: */
 | 
						|
	mbproc->centers = MEM_callocN(HASHSIZE * sizeof(CENTERLIST *), "mbproc->centers");
 | 
						|
	mbproc->corners = MEM_callocN(HASHSIZE * sizeof(CORNER *), "mbproc->corners");
 | 
						|
	mbproc->edges =	MEM_callocN(2*HASHSIZE * sizeof(EDGELIST *), "mbproc->edges");
 | 
						|
	makecubetable();
 | 
						|
 | 
						|
	for (a=0; a<totelem; a++) {
 | 
						|
 | 
						|
		/* try to find 8 points on the surface for each MetaElem */
 | 
						|
		find_first_points(mbproc, mb, a);	
 | 
						|
	}
 | 
						|
 | 
						|
	/* polygonize all MetaElems of current MetaBall */
 | 
						|
	while (mbproc->cubes != NULL) { /* process active cubes till none left */
 | 
						|
		c = mbproc->cubes->cube;
 | 
						|
 | 
						|
		/* polygonize the cube directly: */
 | 
						|
		docube(&c, mbproc, mb);
 | 
						|
		
 | 
						|
		/* pop current cube from stack */
 | 
						|
		mbproc->cubes = mbproc->cubes->next;
 | 
						|
		
 | 
						|
		/* test six face directions, maybe add to stack: */
 | 
						|
		testface(c.i-1, c.j, c.k, &c, 2, LBN, LBF, LTN, LTF, mbproc);
 | 
						|
		testface(c.i+1, c.j, c.k, &c, 2, RBN, RBF, RTN, RTF, mbproc);
 | 
						|
		testface(c.i, c.j-1, c.k, &c, 1, LBN, LBF, RBN, RBF, mbproc);
 | 
						|
		testface(c.i, c.j+1, c.k, &c, 1, LTN, LTF, RTN, RTF, mbproc);
 | 
						|
		testface(c.i, c.j, c.k-1, &c, 0, LBN, LTN, RBN, RTN, mbproc);
 | 
						|
		testface(c.i, c.j, c.k+1, &c, 0, LBF, LTF, RBF, RTF, mbproc);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
float init_meta(Scene *scene, Object *ob)	/* return totsize */
 | 
						|
{
 | 
						|
	Scene *sce_iter= scene;
 | 
						|
	Base *base;
 | 
						|
	Object *bob;
 | 
						|
	MetaBall *mb;
 | 
						|
	MetaElem *ml;
 | 
						|
	float size, totsize, obinv[4][4], obmat[4][4], vec[3];
 | 
						|
	//float max=0.0;
 | 
						|
	int a, obnr, zero_size=0;
 | 
						|
	char obname[MAX_ID_NAME];
 | 
						|
	
 | 
						|
	copy_m4_m4(obmat, ob->obmat);	/* to cope with duplicators from next_object */
 | 
						|
	invert_m4_m4(obinv, ob->obmat);
 | 
						|
	a= 0;
 | 
						|
	
 | 
						|
	BLI_split_name_num(obname, &obnr, ob->id.name+2, '.');
 | 
						|
	
 | 
						|
	/* make main array */
 | 
						|
	next_object(&sce_iter, 0, NULL, NULL);
 | 
						|
	while (next_object(&sce_iter, 1, &base, &bob)) {
 | 
						|
 | 
						|
		if (bob->type==OB_MBALL) {
 | 
						|
			zero_size= 0;
 | 
						|
			ml= NULL;
 | 
						|
 | 
						|
			if (bob==ob && (base->flag & OB_FROMDUPLI)==0) {
 | 
						|
				mb= ob->data;
 | 
						|
	
 | 
						|
				if (mb->editelems) ml= mb->editelems->first;
 | 
						|
				else ml= mb->elems.first;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				char name[MAX_ID_NAME];
 | 
						|
				int nr;
 | 
						|
				
 | 
						|
				BLI_split_name_num(name, &nr, bob->id.name+2, '.');
 | 
						|
				if ( strcmp(obname, name)==0 ) {
 | 
						|
					mb= bob->data;
 | 
						|
					
 | 
						|
					if (mb->editelems) ml= mb->editelems->first;
 | 
						|
					else ml= mb->elems.first;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/* when metaball object has zero scale, then MetaElem to this MetaBall
 | 
						|
			 * will not be put to mainb array */
 | 
						|
			if (bob->size[0]==0.0f || bob->size[1]==0.0f || bob->size[2]==0.0f) {
 | 
						|
				zero_size= 1;
 | 
						|
			}
 | 
						|
			else if (bob->parent) {
 | 
						|
				struct Object *pob=bob->parent;
 | 
						|
				while (pob) {
 | 
						|
					if (pob->size[0]==0.0f || pob->size[1]==0.0f || pob->size[2]==0.0f) {
 | 
						|
						zero_size= 1;
 | 
						|
						break;
 | 
						|
					}
 | 
						|
					pob= pob->parent;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if (zero_size) {
 | 
						|
				unsigned int ml_count=0;
 | 
						|
				while (ml) {
 | 
						|
					ml_count++;
 | 
						|
					ml= ml->next;
 | 
						|
				}
 | 
						|
				totelem -= ml_count;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
			while (ml) {
 | 
						|
				if (!(ml->flag & MB_HIDE)) {
 | 
						|
					int i;
 | 
						|
					float temp1[4][4], temp2[4][4], temp3[4][4];
 | 
						|
					float (*mat)[4] = NULL, (*imat)[4] = NULL;
 | 
						|
					float max_x, max_y, max_z, min_x, min_y, min_z;
 | 
						|
 | 
						|
					max_x = max_y = max_z = -3.4e38;
 | 
						|
					min_x = min_y = min_z =  3.4e38;
 | 
						|
 | 
						|
					/* too big stiffness seems only ugly due to linear interpolation
 | 
						|
					 * no need to have possibility for too big stiffness */
 | 
						|
					if (ml->s > 10.0f) ml->s = 10.0f;
 | 
						|
					
 | 
						|
					/* Rotation of MetaElem is stored in quat */
 | 
						|
					 quat_to_mat4( temp3,ml->quat);
 | 
						|
 | 
						|
					/* Translation of MetaElem */
 | 
						|
					unit_m4(temp2);
 | 
						|
					temp2[3][0]= ml->x;
 | 
						|
					temp2[3][1]= ml->y;
 | 
						|
					temp2[3][2]= ml->z;
 | 
						|
 | 
						|
					mult_m4_m4m4(temp1, temp2, temp3);
 | 
						|
				
 | 
						|
					/* make a copy because of duplicates */
 | 
						|
					mainb[a]= new_pgn_element(sizeof(MetaElem));
 | 
						|
					*(mainb[a])= *ml;
 | 
						|
					mainb[a]->bb = new_pgn_element(sizeof(BoundBox));
 | 
						|
				
 | 
						|
					mat= new_pgn_element(4*4*sizeof(float));
 | 
						|
					imat= new_pgn_element(4*4*sizeof(float));
 | 
						|
					
 | 
						|
					/* mat is the matrix to transform from mball into the basis-mball */
 | 
						|
					invert_m4_m4(obinv, obmat);
 | 
						|
					mult_m4_m4m4(temp2, obinv, bob->obmat);
 | 
						|
					/* MetaBall transformation */
 | 
						|
					mult_m4_m4m4(mat, temp2, temp1);
 | 
						|
 | 
						|
					invert_m4_m4(imat,mat);				
 | 
						|
 | 
						|
					mainb[a]->rad2= ml->rad*ml->rad;
 | 
						|
 | 
						|
					mainb[a]->mat= (float*) mat;
 | 
						|
					mainb[a]->imat= (float*) imat;
 | 
						|
 | 
						|
					/* untransformed Bounding Box of MetaElem */
 | 
						|
					/* 0 */
 | 
						|
					mainb[a]->bb->vec[0][0]= -ml->expx;
 | 
						|
					mainb[a]->bb->vec[0][1]= -ml->expy;
 | 
						|
					mainb[a]->bb->vec[0][2]= -ml->expz;
 | 
						|
					/* 1 */
 | 
						|
					mainb[a]->bb->vec[1][0]=  ml->expx;
 | 
						|
					mainb[a]->bb->vec[1][1]= -ml->expy;
 | 
						|
					mainb[a]->bb->vec[1][2]= -ml->expz;
 | 
						|
					/* 2 */
 | 
						|
					mainb[a]->bb->vec[2][0]=  ml->expx;
 | 
						|
					mainb[a]->bb->vec[2][1]=  ml->expy;
 | 
						|
					mainb[a]->bb->vec[2][2]= -ml->expz;
 | 
						|
					/* 3 */
 | 
						|
					mainb[a]->bb->vec[3][0]= -ml->expx;
 | 
						|
					mainb[a]->bb->vec[3][1]=  ml->expy;
 | 
						|
					mainb[a]->bb->vec[3][2]= -ml->expz;
 | 
						|
					/* 4 */
 | 
						|
					mainb[a]->bb->vec[4][0]= -ml->expx;
 | 
						|
					mainb[a]->bb->vec[4][1]= -ml->expy;
 | 
						|
					mainb[a]->bb->vec[4][2]=  ml->expz;
 | 
						|
					/* 5 */
 | 
						|
					mainb[a]->bb->vec[5][0]=  ml->expx;
 | 
						|
					mainb[a]->bb->vec[5][1]= -ml->expy;
 | 
						|
					mainb[a]->bb->vec[5][2]=  ml->expz;
 | 
						|
					/* 6 */
 | 
						|
					mainb[a]->bb->vec[6][0]=  ml->expx;
 | 
						|
					mainb[a]->bb->vec[6][1]=  ml->expy;
 | 
						|
					mainb[a]->bb->vec[6][2]=  ml->expz;
 | 
						|
					/* 7 */
 | 
						|
					mainb[a]->bb->vec[7][0]= -ml->expx;
 | 
						|
					mainb[a]->bb->vec[7][1]=  ml->expy;
 | 
						|
					mainb[a]->bb->vec[7][2]=  ml->expz;
 | 
						|
 | 
						|
					/* transformation of Metalem bb */
 | 
						|
					for (i=0; i<8; i++)
 | 
						|
						mul_m4_v3((float (*)[4])mat, mainb[a]->bb->vec[i]);
 | 
						|
 | 
						|
					/* find max and min of transformed bb */
 | 
						|
					for (i=0; i<8; i++) {
 | 
						|
						/* find maximums */
 | 
						|
						if (mainb[a]->bb->vec[i][0] > max_x) max_x = mainb[a]->bb->vec[i][0];
 | 
						|
						if (mainb[a]->bb->vec[i][1] > max_y) max_y = mainb[a]->bb->vec[i][1];
 | 
						|
						if (mainb[a]->bb->vec[i][2] > max_z) max_z = mainb[a]->bb->vec[i][2];
 | 
						|
						/* find  minimums */
 | 
						|
						if (mainb[a]->bb->vec[i][0] < min_x) min_x = mainb[a]->bb->vec[i][0];
 | 
						|
						if (mainb[a]->bb->vec[i][1] < min_y) min_y = mainb[a]->bb->vec[i][1];
 | 
						|
						if (mainb[a]->bb->vec[i][2] < min_z) min_z = mainb[a]->bb->vec[i][2];
 | 
						|
					}
 | 
						|
 | 
						|
					/* create "new" bb, only point 0 and 6, which are
 | 
						|
					 * necessary for octal tree filling */
 | 
						|
					mainb[a]->bb->vec[0][0] = min_x - ml->rad;
 | 
						|
					mainb[a]->bb->vec[0][1] = min_y - ml->rad;
 | 
						|
					mainb[a]->bb->vec[0][2] = min_z - ml->rad;
 | 
						|
 | 
						|
					mainb[a]->bb->vec[6][0] = max_x + ml->rad;
 | 
						|
					mainb[a]->bb->vec[6][1] = max_y + ml->rad;
 | 
						|
					mainb[a]->bb->vec[6][2] = max_z + ml->rad;
 | 
						|
					
 | 
						|
					a++;
 | 
						|
				}
 | 
						|
				ml= ml->next;
 | 
						|
			}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	
 | 
						|
	/* totsize (= 'manhattan' radius) */
 | 
						|
	totsize= 0.0;
 | 
						|
	for (a=0; a<totelem; a++) {
 | 
						|
		
 | 
						|
		vec[0]= mainb[a]->x + mainb[a]->rad + mainb[a]->expx;
 | 
						|
		vec[1]= mainb[a]->y + mainb[a]->rad + mainb[a]->expy;
 | 
						|
		vec[2]= mainb[a]->z + mainb[a]->rad + mainb[a]->expz;
 | 
						|
 | 
						|
		calc_mballco(mainb[a], vec);
 | 
						|
	
 | 
						|
		size= fabsf( vec[0] );
 | 
						|
		if ( size > totsize ) totsize= size;
 | 
						|
		size= fabsf( vec[1] );
 | 
						|
		if ( size > totsize ) totsize= size;
 | 
						|
		size= fabsf( vec[2] );
 | 
						|
		if ( size > totsize ) totsize= size;
 | 
						|
 | 
						|
		vec[0]= mainb[a]->x - mainb[a]->rad;
 | 
						|
		vec[1]= mainb[a]->y - mainb[a]->rad;
 | 
						|
		vec[2]= mainb[a]->z - mainb[a]->rad;
 | 
						|
				
 | 
						|
		calc_mballco(mainb[a], vec);
 | 
						|
	
 | 
						|
		size= fabsf( vec[0] );
 | 
						|
		if ( size > totsize ) totsize= size;
 | 
						|
		size= fabsf( vec[1] );
 | 
						|
		if ( size > totsize ) totsize= size;
 | 
						|
		size= fabsf( vec[2] );
 | 
						|
		if ( size > totsize ) totsize= size;
 | 
						|
	}
 | 
						|
 | 
						|
	for (a=0; a<totelem; a++) {
 | 
						|
		thresh += densfunc(mainb[a], 2.0f * totsize, 2.0f * totsize, 2.0f * totsize);
 | 
						|
	}
 | 
						|
 | 
						|
	return totsize;
 | 
						|
}
 | 
						|
 | 
						|
/* if MetaElem lies in node, then node includes MetaElem pointer (ml_p)
 | 
						|
 * pointing at MetaElem (ml)
 | 
						|
 */
 | 
						|
void fill_metaball_octal_node(octal_node *node, MetaElem *ml, short i)
 | 
						|
{
 | 
						|
	ml_pointer *ml_p;
 | 
						|
 | 
						|
	ml_p= MEM_mallocN(sizeof(ml_pointer), "ml_pointer");
 | 
						|
	ml_p->ml= ml;
 | 
						|
	BLI_addtail(&(node->nodes[i]->elems), ml_p);
 | 
						|
	node->count++;
 | 
						|
	
 | 
						|
	if (ml->flag & MB_NEGATIVE) {
 | 
						|
		node->nodes[i]->neg++;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		node->nodes[i]->pos++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Node is subdivided as is illustrated on the following figure:
 | 
						|
 * 
 | 
						|
 *      +------+------+
 | 
						|
 *     /      /      /|
 | 
						|
 *    +------+------+ |
 | 
						|
 *   /      /      /| +
 | 
						|
 *  +------+------+ |/|
 | 
						|
 *  |      |      | + |
 | 
						|
 *  |      |      |/| +
 | 
						|
 *  +------+------+ |/
 | 
						|
 *  |      |      | +
 | 
						|
 *  |      |      |/
 | 
						|
 *  +------+------+
 | 
						|
 *  
 | 
						|
 */
 | 
						|
void subdivide_metaball_octal_node(octal_node *node, float size_x, float size_y, float size_z, short depth)
 | 
						|
{
 | 
						|
	MetaElem *ml;
 | 
						|
	ml_pointer *ml_p;
 | 
						|
	float x,y,z;
 | 
						|
	int a,i;
 | 
						|
 | 
						|
	/* create new nodes */
 | 
						|
	for (a=0;a<8;a++) {
 | 
						|
		node->nodes[a]= MEM_mallocN(sizeof(octal_node),"octal_node");
 | 
						|
		for (i=0;i<8;i++)
 | 
						|
			node->nodes[a]->nodes[i]= NULL;
 | 
						|
		node->nodes[a]->parent= node;
 | 
						|
		node->nodes[a]->elems.first= NULL;
 | 
						|
		node->nodes[a]->elems.last= NULL;
 | 
						|
		node->nodes[a]->count= 0;
 | 
						|
		node->nodes[a]->neg= 0;
 | 
						|
		node->nodes[a]->pos= 0;
 | 
						|
	}
 | 
						|
 | 
						|
	size_x /= 2;
 | 
						|
	size_y /= 2;
 | 
						|
	size_z /= 2;
 | 
						|
	
 | 
						|
	/* center of node */
 | 
						|
	node->x = x = node->x_min + size_x;
 | 
						|
	node->y = y = node->y_min + size_y;
 | 
						|
	node->z = z = node->z_min + size_z;
 | 
						|
 | 
						|
	/* setting up of border points of new nodes */
 | 
						|
	node->nodes[0]->x_min = node->x_min;
 | 
						|
	node->nodes[0]->y_min = node->y_min;
 | 
						|
	node->nodes[0]->z_min = node->z_min;
 | 
						|
	node->nodes[0]->x = node->nodes[0]->x_min + size_x/2;
 | 
						|
	node->nodes[0]->y = node->nodes[0]->y_min + size_y/2;
 | 
						|
	node->nodes[0]->z = node->nodes[0]->z_min + size_z/2;
 | 
						|
	
 | 
						|
	node->nodes[1]->x_min = x;
 | 
						|
	node->nodes[1]->y_min = node->y_min;
 | 
						|
	node->nodes[1]->z_min = node->z_min;
 | 
						|
	node->nodes[1]->x = node->nodes[1]->x_min + size_x/2;
 | 
						|
	node->nodes[1]->y = node->nodes[1]->y_min + size_y/2;
 | 
						|
	node->nodes[1]->z = node->nodes[1]->z_min + size_z/2;
 | 
						|
 | 
						|
	node->nodes[2]->x_min = x;
 | 
						|
	node->nodes[2]->y_min = y;
 | 
						|
	node->nodes[2]->z_min = node->z_min;
 | 
						|
	node->nodes[2]->x = node->nodes[2]->x_min + size_x/2;
 | 
						|
	node->nodes[2]->y = node->nodes[2]->y_min + size_y/2;
 | 
						|
	node->nodes[2]->z = node->nodes[2]->z_min + size_z/2;
 | 
						|
 | 
						|
	node->nodes[3]->x_min = node->x_min;
 | 
						|
	node->nodes[3]->y_min = y;
 | 
						|
	node->nodes[3]->z_min = node->z_min;
 | 
						|
	node->nodes[3]->x = node->nodes[3]->x_min + size_x/2;
 | 
						|
	node->nodes[3]->y = node->nodes[3]->y_min + size_y/2;
 | 
						|
	node->nodes[3]->z = node->nodes[3]->z_min + size_z/2;
 | 
						|
 | 
						|
	node->nodes[4]->x_min = node->x_min;
 | 
						|
	node->nodes[4]->y_min = node->y_min;
 | 
						|
	node->nodes[4]->z_min = z;
 | 
						|
	node->nodes[4]->x = node->nodes[4]->x_min + size_x/2;
 | 
						|
	node->nodes[4]->y = node->nodes[4]->y_min + size_y/2;
 | 
						|
	node->nodes[4]->z = node->nodes[4]->z_min + size_z/2;
 | 
						|
	
 | 
						|
	node->nodes[5]->x_min = x;
 | 
						|
	node->nodes[5]->y_min = node->y_min;
 | 
						|
	node->nodes[5]->z_min = z;
 | 
						|
	node->nodes[5]->x = node->nodes[5]->x_min + size_x/2;
 | 
						|
	node->nodes[5]->y = node->nodes[5]->y_min + size_y/2;
 | 
						|
	node->nodes[5]->z = node->nodes[5]->z_min + size_z/2;
 | 
						|
 | 
						|
	node->nodes[6]->x_min = x;
 | 
						|
	node->nodes[6]->y_min = y;
 | 
						|
	node->nodes[6]->z_min = z;
 | 
						|
	node->nodes[6]->x = node->nodes[6]->x_min + size_x/2;
 | 
						|
	node->nodes[6]->y = node->nodes[6]->y_min + size_y/2;
 | 
						|
	node->nodes[6]->z = node->nodes[6]->z_min + size_z/2;
 | 
						|
 | 
						|
	node->nodes[7]->x_min = node->x_min;
 | 
						|
	node->nodes[7]->y_min = y;
 | 
						|
	node->nodes[7]->z_min = z;
 | 
						|
	node->nodes[7]->x = node->nodes[7]->x_min + size_x/2;
 | 
						|
	node->nodes[7]->y = node->nodes[7]->y_min + size_y/2;
 | 
						|
	node->nodes[7]->z = node->nodes[7]->z_min + size_z/2;
 | 
						|
 | 
						|
	ml_p= node->elems.first;
 | 
						|
	
 | 
						|
	/* setting up references of MetaElems for new nodes */
 | 
						|
	while (ml_p) {
 | 
						|
		ml= ml_p->ml;
 | 
						|
		if (ml->bb->vec[0][2] < z) {
 | 
						|
			if (ml->bb->vec[0][1] < y) {
 | 
						|
				/* vec[0][0] lies in first octant */
 | 
						|
				if (ml->bb->vec[0][0] < x) {
 | 
						|
					/* ml belongs to the (0)1st node */
 | 
						|
					fill_metaball_octal_node(node, ml, 0);
 | 
						|
 | 
						|
					/* ml belongs to the (3)4th node */
 | 
						|
					if (ml->bb->vec[6][1] >= y) {
 | 
						|
						fill_metaball_octal_node(node, ml, 3);
 | 
						|
 | 
						|
						/* ml belongs to the (7)8th node */
 | 
						|
						if (ml->bb->vec[6][2] >= z) {
 | 
						|
							fill_metaball_octal_node(node, ml, 7);
 | 
						|
						}
 | 
						|
					}
 | 
						|
	
 | 
						|
					/* ml belongs to the (1)2nd node */
 | 
						|
					if (ml->bb->vec[6][0] >= x) {
 | 
						|
						fill_metaball_octal_node(node, ml, 1);
 | 
						|
 | 
						|
						/* ml belongs to the (5)6th node */
 | 
						|
						if (ml->bb->vec[6][2] >= z) {
 | 
						|
							fill_metaball_octal_node(node, ml, 5);
 | 
						|
						}
 | 
						|
					}
 | 
						|
 | 
						|
					/* ml belongs to the (2)3th node */
 | 
						|
					if ((ml->bb->vec[6][0] >= x) && (ml->bb->vec[6][1] >= y)) {
 | 
						|
						fill_metaball_octal_node(node, ml, 2);
 | 
						|
						
 | 
						|
						/* ml belong to the (6)7th node */
 | 
						|
						if (ml->bb->vec[6][2] >= z) {
 | 
						|
							fill_metaball_octal_node(node, ml, 6);
 | 
						|
						}
 | 
						|
						
 | 
						|
					}
 | 
						|
			
 | 
						|
					/* ml belongs to the (4)5th node too */	
 | 
						|
					if (ml->bb->vec[6][2] >= z) {
 | 
						|
						fill_metaball_octal_node(node, ml, 4);
 | 
						|
					}
 | 
						|
 | 
						|
					
 | 
						|
					
 | 
						|
				}
 | 
						|
				/* vec[0][0] is in the (1)second octant */
 | 
						|
				else {
 | 
						|
					/* ml belong to the (1)2nd node */
 | 
						|
					fill_metaball_octal_node(node, ml, 1);
 | 
						|
 | 
						|
					/* ml belongs to the (2)3th node */
 | 
						|
					if (ml->bb->vec[6][1] >= y) {
 | 
						|
						fill_metaball_octal_node(node, ml, 2);
 | 
						|
 | 
						|
						/* ml belongs to the (6)7th node */
 | 
						|
						if (ml->bb->vec[6][2] >= z) {
 | 
						|
							fill_metaball_octal_node(node, ml, 6);
 | 
						|
						}
 | 
						|
						
 | 
						|
					}
 | 
						|
					
 | 
						|
					/* ml belongs to the (5)6th node */
 | 
						|
					if (ml->bb->vec[6][2] >= z) {
 | 
						|
						fill_metaball_octal_node(node, ml, 5);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* vec[0][0] is in the (3)4th octant */
 | 
						|
				if (ml->bb->vec[0][0] < x) {
 | 
						|
					/* ml belongs to the (3)4nd node */
 | 
						|
					fill_metaball_octal_node(node, ml, 3);
 | 
						|
					
 | 
						|
					/* ml belongs to the (7)8th node */
 | 
						|
					if (ml->bb->vec[6][2] >= z) {
 | 
						|
						fill_metaball_octal_node(node, ml, 7);
 | 
						|
					}
 | 
						|
				
 | 
						|
 | 
						|
					/* ml belongs to the (2)3th node */
 | 
						|
					if (ml->bb->vec[6][0] >= x) {
 | 
						|
						fill_metaball_octal_node(node, ml, 2);
 | 
						|
					
 | 
						|
						/* ml belongs to the (6)7th node */
 | 
						|
						if (ml->bb->vec[6][2] >= z) {
 | 
						|
							fill_metaball_octal_node(node, ml, 6);
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			/* vec[0][0] is in the (2)3th octant */
 | 
						|
			if ((ml->bb->vec[0][0] >= x) && (ml->bb->vec[0][1] >= y)) {
 | 
						|
				/* ml belongs to the (2)3th node */
 | 
						|
				fill_metaball_octal_node(node, ml, 2);
 | 
						|
				
 | 
						|
				/* ml belongs to the (6)7th node */
 | 
						|
				if (ml->bb->vec[6][2] >= z) {
 | 
						|
					fill_metaball_octal_node(node, ml, 6);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			if (ml->bb->vec[0][1] < y) {
 | 
						|
				/* vec[0][0] lies in (4)5th octant */
 | 
						|
				if (ml->bb->vec[0][0] < x) {
 | 
						|
					/* ml belongs to the (4)5th node */
 | 
						|
					fill_metaball_octal_node(node, ml, 4);
 | 
						|
 | 
						|
					if (ml->bb->vec[6][0] >= x) {
 | 
						|
						fill_metaball_octal_node(node, ml, 5);
 | 
						|
					}
 | 
						|
 | 
						|
					if (ml->bb->vec[6][1] >= y) {
 | 
						|
						fill_metaball_octal_node(node, ml, 7);
 | 
						|
					}
 | 
						|
					
 | 
						|
					if ((ml->bb->vec[6][0] >= x) && (ml->bb->vec[6][1] >= y)) {
 | 
						|
						fill_metaball_octal_node(node, ml, 6);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				/* vec[0][0] lies in (5)6th octant */
 | 
						|
				else {
 | 
						|
					fill_metaball_octal_node(node, ml, 5);
 | 
						|
 | 
						|
					if (ml->bb->vec[6][1] >= y) {
 | 
						|
						fill_metaball_octal_node(node, ml, 6);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* vec[0][0] lies in (7)8th octant */
 | 
						|
				if (ml->bb->vec[0][0] < x) {
 | 
						|
					fill_metaball_octal_node(node, ml, 7);
 | 
						|
 | 
						|
					if (ml->bb->vec[6][0] >= x) {
 | 
						|
						fill_metaball_octal_node(node, ml, 6);
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
			}
 | 
						|
			
 | 
						|
			/* vec[0][0] lies in (6)7th octant */
 | 
						|
			if ((ml->bb->vec[0][0] >= x) && (ml->bb->vec[0][1] >= y)) {
 | 
						|
				fill_metaball_octal_node(node, ml, 6);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		ml_p= ml_p->next;
 | 
						|
	}
 | 
						|
 | 
						|
	/* free references of MetaElems for curent node (it is not needed anymore) */
 | 
						|
	BLI_freelistN(&node->elems);
 | 
						|
 | 
						|
	depth--;
 | 
						|
	
 | 
						|
	if (depth>0) {
 | 
						|
		for (a=0;a<8;a++) {
 | 
						|
			if (node->nodes[a]->count > 0) /* if node is not empty, then it is subdivided */
 | 
						|
				subdivide_metaball_octal_node(node->nodes[a], size_x, size_y, size_z, depth);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* free all octal nodes recursively */
 | 
						|
void free_metaball_octal_node(octal_node *node)
 | 
						|
{
 | 
						|
	int a;
 | 
						|
	for (a=0;a<8;a++) {
 | 
						|
		if (node->nodes[a]!=NULL) free_metaball_octal_node(node->nodes[a]);
 | 
						|
	}
 | 
						|
	BLI_freelistN(&node->elems);
 | 
						|
	MEM_freeN(node);
 | 
						|
}
 | 
						|
 | 
						|
/* If scene include more then one MetaElem, then octree is used */
 | 
						|
void init_metaball_octal_tree(int depth)
 | 
						|
{
 | 
						|
	struct octal_node *node;
 | 
						|
	ml_pointer *ml_p;
 | 
						|
	float size[3];
 | 
						|
	int a;
 | 
						|
	
 | 
						|
	metaball_tree= MEM_mallocN(sizeof(octal_tree), "metaball_octal_tree");
 | 
						|
	metaball_tree->first= node= MEM_mallocN(sizeof(octal_node), "metaball_octal_node");
 | 
						|
	/* maximal depth of octree */
 | 
						|
	metaball_tree->depth= depth;
 | 
						|
 | 
						|
	metaball_tree->neg= node->neg=0;
 | 
						|
	metaball_tree->pos= node->pos=0;
 | 
						|
	
 | 
						|
	node->elems.first= NULL;
 | 
						|
	node->elems.last= NULL;
 | 
						|
	node->count=0;
 | 
						|
 | 
						|
	for (a=0;a<8;a++)
 | 
						|
		node->nodes[a]=NULL;
 | 
						|
 | 
						|
	node->x_min= node->y_min= node->z_min= FLT_MAX;
 | 
						|
	node->x_max= node->y_max= node->z_max= -FLT_MAX;
 | 
						|
 | 
						|
	/* size of octal tree scene */
 | 
						|
	for (a=0;a<totelem;a++) {
 | 
						|
		if (mainb[a]->bb->vec[0][0] < node->x_min) node->x_min= mainb[a]->bb->vec[0][0];
 | 
						|
		if (mainb[a]->bb->vec[0][1] < node->y_min) node->y_min= mainb[a]->bb->vec[0][1];
 | 
						|
		if (mainb[a]->bb->vec[0][2] < node->z_min) node->z_min= mainb[a]->bb->vec[0][2];
 | 
						|
		
 | 
						|
		if (mainb[a]->bb->vec[6][0] > node->x_max) node->x_max= mainb[a]->bb->vec[6][0];
 | 
						|
		if (mainb[a]->bb->vec[6][1] > node->y_max) node->y_max= mainb[a]->bb->vec[6][1];
 | 
						|
		if (mainb[a]->bb->vec[6][2] > node->z_max) node->z_max= mainb[a]->bb->vec[6][2];
 | 
						|
 | 
						|
		ml_p= MEM_mallocN(sizeof(ml_pointer), "ml_pointer");
 | 
						|
		ml_p->ml= mainb[a];
 | 
						|
		BLI_addtail(&node->elems, ml_p);
 | 
						|
 | 
						|
		if (mainb[a]->flag & MB_NEGATIVE) {
 | 
						|
			/* number of negative MetaElem in scene */
 | 
						|
			metaball_tree->neg++;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* number of positive MetaElem in scene */
 | 
						|
			metaball_tree->pos++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* size of first node */	
 | 
						|
	size[0]= node->x_max - node->x_min;
 | 
						|
	size[1]= node->y_max - node->y_min;
 | 
						|
	size[2]= node->z_max - node->z_min;
 | 
						|
 | 
						|
	/* first node is subdivided recursively */
 | 
						|
	subdivide_metaball_octal_node(node, size[0], size[1], size[2], metaball_tree->depth);
 | 
						|
}
 | 
						|
 | 
						|
void metaball_polygonize(Scene *scene, Object *ob, ListBase *dispbase)
 | 
						|
{
 | 
						|
	PROCESS mbproc;
 | 
						|
	MetaBall *mb;
 | 
						|
	DispList *dl;
 | 
						|
	int a, nr_cubes;
 | 
						|
	float *ve, *no, totsize, width;
 | 
						|
 | 
						|
	mb= ob->data;
 | 
						|
 | 
						|
	if (totelem==0) return;
 | 
						|
	if (!(G.rendering) && (mb->flag==MB_UPDATE_NEVER)) return;
 | 
						|
	if (G.moving && mb->flag==MB_UPDATE_FAST) return;
 | 
						|
 | 
						|
	curindex= totindex= 0;
 | 
						|
	indices= NULL;
 | 
						|
	thresh= mb->thresh;
 | 
						|
 | 
						|
	/* total number of MetaElems (totelem) is precomputed in find_basis_mball() function */
 | 
						|
	mainb= MEM_mallocN(sizeof(void *)*totelem, "mainb");
 | 
						|
	
 | 
						|
	/* initialize all mainb (MetaElems) */
 | 
						|
	totsize= init_meta(scene, ob);
 | 
						|
 | 
						|
	if (metaball_tree) {
 | 
						|
		free_metaball_octal_node(metaball_tree->first);
 | 
						|
		MEM_freeN(metaball_tree);
 | 
						|
		metaball_tree= NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* if scene includes more then one MetaElem, then octal tree optimalisation is used */	
 | 
						|
	if ((totelem > 1) && (totelem <= 64)) init_metaball_octal_tree(1);
 | 
						|
	if ((totelem > 64) && (totelem <= 128)) init_metaball_octal_tree(2);
 | 
						|
	if ((totelem > 128) && (totelem <= 512))	init_metaball_octal_tree(3);
 | 
						|
	if ((totelem > 512) && (totelem <= 1024)) init_metaball_octal_tree(4);
 | 
						|
	if (totelem > 1024) init_metaball_octal_tree(5);
 | 
						|
 | 
						|
	/* don't polygonize metaballs with too high resolution (base mball to small)
 | 
						|
	 * note: Eps was 0.0001f but this was giving problems for blood animation for durian, using 0.00001f */
 | 
						|
	if (metaball_tree) {
 | 
						|
		if (	ob->size[0] <= 0.00001f * (metaball_tree->first->x_max - metaball_tree->first->x_min) ||
 | 
						|
			ob->size[1] <= 0.00001f * (metaball_tree->first->y_max - metaball_tree->first->y_min) ||
 | 
						|
			ob->size[2] <= 0.00001f * (metaball_tree->first->z_max - metaball_tree->first->z_min))
 | 
						|
		{
 | 
						|
			new_pgn_element(-1); /* free values created by init_meta */
 | 
						|
 | 
						|
			MEM_freeN(mainb);
 | 
						|
 | 
						|
			/* free tree */
 | 
						|
			free_metaball_octal_node(metaball_tree->first);
 | 
						|
			MEM_freeN(metaball_tree);
 | 
						|
			metaball_tree= NULL;
 | 
						|
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* width is size per polygonize cube */
 | 
						|
	if (G.rendering) width= mb->rendersize;
 | 
						|
	else {
 | 
						|
		width= mb->wiresize;
 | 
						|
		if (G.moving && mb->flag==MB_UPDATE_HALFRES) width*= 2;
 | 
						|
	}
 | 
						|
	/* nr_cubes is just for safety, minimum is totsize */
 | 
						|
	nr_cubes= (int)(0.5f+totsize/width);
 | 
						|
 | 
						|
	/* init process */
 | 
						|
	mbproc.function = metaball;
 | 
						|
	mbproc.size = width;
 | 
						|
	mbproc.bounds = nr_cubes;
 | 
						|
	mbproc.cubes= NULL;
 | 
						|
	mbproc.delta = width/(float)(RES*RES);
 | 
						|
 | 
						|
	polygonize(&mbproc, mb);
 | 
						|
	
 | 
						|
	MEM_freeN(mainb);
 | 
						|
 | 
						|
	/* free octal tree */
 | 
						|
	if (totelem > 1) {
 | 
						|
		free_metaball_octal_node(metaball_tree->first);
 | 
						|
		MEM_freeN(metaball_tree);
 | 
						|
		metaball_tree= NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (curindex) {
 | 
						|
		dl= MEM_callocN(sizeof(DispList), "mbaldisp");
 | 
						|
		BLI_addtail(dispbase, dl);
 | 
						|
		dl->type= DL_INDEX4;
 | 
						|
		dl->nr= mbproc.vertices.count;
 | 
						|
		dl->parts= curindex;
 | 
						|
 | 
						|
		dl->index= indices;
 | 
						|
		indices= NULL;
 | 
						|
		
 | 
						|
		a= mbproc.vertices.count;
 | 
						|
		dl->verts= ve= MEM_mallocN(sizeof(float)*3*a, "mballverts");
 | 
						|
		dl->nors= no= MEM_mallocN(sizeof(float)*3*a, "mballnors");
 | 
						|
 | 
						|
		for (a=0; a<mbproc.vertices.count; a++, no+=3, ve+=3) {
 | 
						|
			ve[0]= mbproc.vertices.ptr[a].position.x;
 | 
						|
			ve[1]= mbproc.vertices.ptr[a].position.y;
 | 
						|
			ve[2]= mbproc.vertices.ptr[a].position.z;
 | 
						|
 | 
						|
			no[0]= mbproc.vertices.ptr[a].normal.x;
 | 
						|
			no[1]= mbproc.vertices.ptr[a].normal.y;
 | 
						|
			no[2]= mbproc.vertices.ptr[a].normal.z;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	freepolygonize(&mbproc);
 | 
						|
}
 | 
						|
 | 
						|
/* basic vertex data functions */
 | 
						|
int BKE_metaball_minmax(MetaBall *mb, float min[3], float max[3])
 | 
						|
{
 | 
						|
	MetaElem *ml;
 | 
						|
 | 
						|
	INIT_MINMAX(min, max);
 | 
						|
 | 
						|
	for (ml = mb->elems.first; ml; ml = ml->next) {
 | 
						|
		DO_MINMAX(&ml->x, min, max);
 | 
						|
	}
 | 
						|
 | 
						|
	return (mb->elems.first != NULL);
 | 
						|
}
 | 
						|
 | 
						|
int BKE_metaball_center_median(MetaBall *mb, float cent[3])
 | 
						|
{
 | 
						|
	MetaElem *ml;
 | 
						|
	int total= 0;
 | 
						|
 | 
						|
	zero_v3(cent);
 | 
						|
 | 
						|
	for (ml = mb->elems.first; ml; ml = ml->next) {
 | 
						|
		add_v3_v3(cent, &ml->x);
 | 
						|
	}
 | 
						|
 | 
						|
	if (total)
 | 
						|
		mul_v3_fl(cent, 1.0f/(float)total);
 | 
						|
 | 
						|
	return (total != 0);
 | 
						|
}
 | 
						|
 | 
						|
int BKE_metaball_center_bounds(MetaBall *mb, float cent[3])
 | 
						|
{
 | 
						|
	float min[3], max[3];
 | 
						|
 | 
						|
	if (BKE_metaball_minmax(mb, min, max)) {
 | 
						|
		mid_v3_v3v3(cent, min, max);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void BKE_metaball_translate(MetaBall *mb, float offset[3])
 | 
						|
{
 | 
						|
	MetaElem *ml;
 | 
						|
 | 
						|
	for (ml = mb->elems.first; ml; ml = ml->next) {
 | 
						|
		add_v3_v3(&ml->x, offset);
 | 
						|
	}
 | 
						|
}
 |