This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/render/intern/source/convertblender.c
Ton Roosendaal 0ee101f9ad Bugfix #4066
Particle strands with a width set (like 10 pixels), and with extreme
bending of strands (like a very course subdivision), could create non-flat
quads. For speed reasons, the quad-to-triangle splitting was turned off
for hair, but in this case that should be done nevertheless.

Solves another Dandruff issue for furry bunnies!
2006-04-08 13:50:15 +00:00

3767 lines
100 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributors: 2004/2005/2006 Blender Foundation, full recode
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include "blendef.h"
#include "MTC_matrixops.h"
#include "MEM_guardedalloc.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_rand.h"
#include "BLI_memarena.h"
#include "BLI_ghash.h"
#include "DNA_armature_types.h"
#include "DNA_camera_types.h"
#include "DNA_material_types.h"
#include "DNA_curve_types.h"
#include "DNA_effect_types.h"
#include "DNA_group_types.h"
#include "DNA_lamp_types.h"
#include "DNA_image_types.h"
#include "DNA_lattice_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_meta_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_object_fluidsim.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "DNA_view3d_types.h"
#include "BKE_anim.h"
#include "BKE_armature.h"
#include "BKE_action.h"
#include "BKE_curve.h"
#include "BKE_constraint.h"
#include "BKE_displist.h"
#include "BKE_deform.h"
#include "BKE_DerivedMesh.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_group.h"
#include "BKE_key.h"
#include "BKE_ipo.h"
#include "BKE_image.h"
#include "BKE_lattice.h"
#include "BKE_material.h"
#include "BKE_main.h"
#include "BKE_mball.h"
#include "BKE_mesh.h"
#include "BKE_node.h"
#include "BKE_object.h"
#include "BKE_scene.h"
#include "BKE_subsurf.h"
#include "BKE_texture.h"
#include "BKE_utildefines.h"
#include "BKE_world.h"
#include "PIL_time.h"
#include "IMB_imbuf_types.h"
#include "envmap.h"
#include "render_types.h"
#include "rendercore.h"
#include "renderdatabase.h"
#include "renderpipeline.h"
#include "radio.h"
#include "shadbuf.h"
#include "texture.h"
#include "zbuf.h"
#include "YafRay_Api.h"
/* yafray: Identity transform 'hack' removed, exporter now transforms vertices back to world.
* Same is true for lamp coords & vec.
* Duplicated data objects & dupliframe/duplivert objects are only stored once,
* only the matrix is stored for all others, in yafray these objects are instances of the original.
* The main changes are in RE_rotateBlenderScene().
*/
/* ------------------------------------------------------------------------- */
/* Local functions */
/* ------------------------------------------------------------------------- */
static short test_for_displace(Render *re, Object *ob);
static void do_displacement(Render *re, Object *ob, int startface, int numface, int startvert, int numvert );
/* ------------------------------------------------------------------------- */
/* tool functions/defines for ad hoc simplification and possible future
cleanup */
/* ------------------------------------------------------------------------- */
#define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
/*
NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
^ ()----p4----p3----()
| | | | |
u | | F1 | F2 |
| | | |
()----p1----p2----()
v ->
*/
/* ------------------------------------------------------------------------- */
static VertRen *duplicate_vertren(Render *re, VertRen *ver)
{
VertRen *v1= RE_findOrAddVert(re, re->totvert++);
int index= v1->index;
*v1= *ver;
v1->index= index;
return v1;
}
static void split_v_renderfaces(Render *re, int startvlak, int startvert, int usize, int vsize, int uIndex, int cyclu, int cyclv)
{
int vLen = vsize-1+(!!cyclv);
int v;
for (v=0; v<vLen; v++) {
VlakRen *vlr = RE_findOrAddVlak(re, startvlak + vLen*uIndex + v);
VertRen *vert = duplicate_vertren(re, vlr->v2);
if (cyclv) {
vlr->v2 = vert;
if (v==vLen-1) {
VlakRen *vlr = RE_findOrAddVlak(re, startvlak + vLen*uIndex + 0);
vlr->v1 = vert;
} else {
VlakRen *vlr = RE_findOrAddVlak(re, startvlak + vLen*uIndex + v+1);
vlr->v1 = vert;
}
} else {
vlr->v2 = vert;
if (v<vLen-1) {
VlakRen *vlr = RE_findOrAddVlak(re, startvlak + vLen*uIndex + v+1);
vlr->v1 = vert;
}
if (v==0) {
vlr->v1 = duplicate_vertren(re, vlr->v1);
}
}
}
}
/* ------------------------------------------------------------------------- */
static int contrpuntnormr(float *n, float *puno)
{
float inp;
inp=n[0]*puno[0]+n[1]*puno[1]+n[2]*puno[2];
if(inp<0.0) return 1;
return 0;
}
/* ------------------------------------------------------------------------- */
static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
{
float len= VecLenf(v1->co, v2->co)/VecLenf(v1->orco, v2->orco);
float *acc;
acc= accum + 2*v1->index;
acc[0]+= len;
acc[1]+= 1.0f;
acc= accum + 2*v2->index;
acc[0]+= len;
acc[1]+= 1.0f;
}
static void calc_edge_stress(Render *re, Mesh *me, int startvert, int startvlak)
{
float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
int a;
if(startvert==re->totvert) return;
mesh_get_texspace(me, loc, NULL, size);
accum= MEM_callocN(2*sizeof(float)*(re->totvert-startvert), "temp accum for stress");
/* de-normalize orco */
for(a=startvert; a<re->totvert; a++, acc+=2) {
VertRen *ver= RE_findOrAddVert(re, a);
if(ver->orco) {
ver->orco[0]= ver->orco[0]*size[0] +loc[0];
ver->orco[1]= ver->orco[1]*size[1] +loc[1];
ver->orco[2]= ver->orco[2]*size[2] +loc[2];
}
}
/* add stress values */
accumoffs= accum - 2*startvert; /* so we can use vertex index */
for(a=startvlak; a<re->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(re, a);
if(vlr->v1->orco && vlr->v4) {
calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
if(vlr->v4) {
calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
}
}
}
for(a=startvert; a<re->totvert; a++) {
VertRen *ver= RE_findOrAddVert(re, a);
if(ver->orco) {
/* find stress value */
acc= accumoffs + 2*ver->index;
if(acc[1]!=0.0f)
acc[0]/= acc[1];
stress= RE_vertren_get_stress(re, ver, 1);
*stress= *acc;
/* restore orcos */
ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
}
}
MEM_freeN(accum);
}
static void calc_tangent_vector(Render *re, VlakRen *vlr, float fac1, float fac2, float fac3, float fac4)
{
TFace *tface= vlr->tface;
if(tface) {
VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
float *uv1= tface->uv[0], *uv2= tface->uv[1], *uv3= tface->uv[2], *uv4= tface->uv[3];
float tang[3], *tav;
float s1, s2, t1, t2, det;
/* we calculate quads as two triangles, so weight for diagonal gets halved */
if(v4) {
fac1*= 0.5f;
fac3*= 0.5f;
}
/* first tria, we use the V now */
s1= uv2[0] - uv1[0];
s2= uv3[0] - uv1[0];
t1= uv2[1] - uv1[1];
t2= uv3[1] - uv1[1];
det= 1.0f / (s1 * t2 - s2 * t1);
/* normals in render are inversed... */
tang[0]= (t2 * (v1->co[0]-v2->co[0]) - t1 * (v1->co[0]-v3->co[0]));
tang[1]= (t2 * (v1->co[1]-v2->co[1]) - t1 * (v1->co[1]-v3->co[1]));
tang[2]= (t2 * (v1->co[2]-v2->co[2]) - t1 * (v1->co[2]-v3->co[2]));
tav= RE_vertren_get_tangent(re, v1, 1);
VECADDFAC(tav, tav, tang, fac1);
tav= RE_vertren_get_tangent(re, v2, 1);
VECADDFAC(tav, tav, tang, fac2);
tav= RE_vertren_get_tangent(re, v3, 1);
VECADDFAC(tav, tav, tang, fac3);
if(v4) {
/* 2nd tria, we use the V now */
s1= uv3[0] - uv1[0];
s2= uv4[0] - uv1[0];
t1= uv3[1] - uv1[1];
t2= uv4[1] - uv1[1];
det= 1.0f / (s1 * t2 - s2 * t1);
/* normals in render are inversed... */
tang[0]= (t2 * (v1->co[0]-v3->co[0]) - t1 * (v1->co[0]-v4->co[0]));
tang[1]= (t2 * (v1->co[1]-v3->co[1]) - t1 * (v1->co[1]-v4->co[1]));
tang[2]= (t2 * (v1->co[2]-v3->co[2]) - t1 * (v1->co[2]-v4->co[2]));
Normalise(tang);
tav= RE_vertren_get_tangent(re, v1, 1);
VECADDFAC(tav, tav, tang, fac1);
tav= RE_vertren_get_tangent(re, v3, 1);
VECADDFAC(tav, tav, tang, fac3);
tav= RE_vertren_get_tangent(re, v4, 1);
VECADDFAC(tav, tav, tang, fac4);
}
}
}
static void calc_vertexnormals(Render *re, int startvert, int startvlak, int do_tangent)
{
int a;
/* clear all vertex normals */
for(a=startvert; a<re->totvert; a++) {
VertRen *ver= RE_findOrAddVert(re, a);
ver->n[0]=ver->n[1]=ver->n[2]= 0.0;
}
/* calculate cos of angles and point-masses, use as weight factor to
add face normal to vertex */
for(a=startvlak; a<re->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(re, a);
if(vlr->flag & ME_SMOOTH) {
VertRen *adrve1= vlr->v1;
VertRen *adrve2= vlr->v2;
VertRen *adrve3= vlr->v3;
VertRen *adrve4= vlr->v4;
float n1[3], n2[3], n3[3], n4[3];
float fac1, fac2, fac3, fac4=0.0f;
VecSubf(n1, adrve2->co, adrve1->co);
Normalise(n1);
VecSubf(n2, adrve3->co, adrve2->co);
Normalise(n2);
if(adrve4==NULL) {
VecSubf(n3, adrve1->co, adrve3->co);
Normalise(n3);
fac1= saacos(-n1[0]*n3[0]-n1[1]*n3[1]-n1[2]*n3[2]);
fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
}
else {
VecSubf(n3, adrve4->co, adrve3->co);
Normalise(n3);
VecSubf(n4, adrve1->co, adrve4->co);
Normalise(n4);
fac1= saacos(-n4[0]*n1[0]-n4[1]*n1[1]-n4[2]*n1[2]);
fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
fac4= saacos(-n3[0]*n4[0]-n3[1]*n4[1]-n3[2]*n4[2]);
if(!(vlr->flag & R_NOPUNOFLIP)) {
if( contrpuntnormr(vlr->n, adrve4->n) ) fac4= -fac4;
}
adrve4->n[0] +=fac4*vlr->n[0];
adrve4->n[1] +=fac4*vlr->n[1];
adrve4->n[2] +=fac4*vlr->n[2];
}
if(!(vlr->flag & R_NOPUNOFLIP)) {
if( contrpuntnormr(vlr->n, adrve1->n) ) fac1= -fac1;
if( contrpuntnormr(vlr->n, adrve2->n) ) fac2= -fac2;
if( contrpuntnormr(vlr->n, adrve3->n) ) fac3= -fac3;
}
adrve1->n[0] +=fac1*vlr->n[0];
adrve1->n[1] +=fac1*vlr->n[1];
adrve1->n[2] +=fac1*vlr->n[2];
adrve2->n[0] +=fac2*vlr->n[0];
adrve2->n[1] +=fac2*vlr->n[1];
adrve2->n[2] +=fac2*vlr->n[2];
adrve3->n[0] +=fac3*vlr->n[0];
adrve3->n[1] +=fac3*vlr->n[1];
adrve3->n[2] +=fac3*vlr->n[2];
if(do_tangent)
calc_tangent_vector(re, vlr, fac1, fac2, fac3, fac4);
}
}
/* do solid faces */
for(a=startvlak; a<re->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(re, a);
if((vlr->flag & ME_SMOOTH)==0) {
float *f1= vlr->v1->n;
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
f1= vlr->v2->n;
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
f1= vlr->v3->n;
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
if(vlr->v4) {
f1= vlr->v4->n;
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
}
}
}
/* normalise vertex normals */
for(a=startvert; a<re->totvert; a++) {
VertRen *ver= RE_findOrAddVert(re, a);
Normalise(ver->n);
if(do_tangent) {
float *tav= RE_vertren_get_tangent(re, ver, 0);
if(tav) Normalise(tav);
}
}
/* vertex normal (puno) switch flags for during render */
for(a=startvlak; a<re->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(re, a);
if((vlr->flag & R_NOPUNOFLIP)==0) {
VertRen *adrve1= vlr->v1;
VertRen *adrve2= vlr->v2;
VertRen *adrve3= vlr->v3;
VertRen *adrve4= vlr->v4;
vlr->puno &= ~15;
if ((vlr->n[0]*adrve1->n[0]+vlr->n[1]*adrve1->n[1]+vlr->n[2]*adrve1->n[2])<0.0) vlr->puno= 1;
if ((vlr->n[0]*adrve2->n[0]+vlr->n[1]*adrve2->n[1]+vlr->n[2]*adrve2->n[2])<0.0) vlr->puno+= 2;
if ((vlr->n[0]*adrve3->n[0]+vlr->n[1]*adrve3->n[1]+vlr->n[2]*adrve3->n[2])<0.0) vlr->puno+= 4;
if(adrve4) {
if((vlr->n[0]*adrve4->n[0]+vlr->n[1]*adrve4->n[1]+vlr->n[2]*adrve4->n[2])<0.0) vlr->puno+= 8;
}
}
}
}
// NT same as calc_vertexnormals, but dont modify the existing vertex normals
// only recalculate other render data. If this is at some point used for other things than fluidsim,
// this could be made on option for the normal calc_vertexnormals
static void calc_fluidsimnormals(Render *re, int startvert, int startvlak, int do_tangent)
{
int a;
/* dont clear vertex normals here */
// OFF for(a=startvert; a<re->totvert; a++) { VertRen *ver= RE_findOrAddVert(re, a); ver->n[0]=ver->n[1]=ver->n[2]= 0.0; }
/* calculate cos of angles and point-masses, use as weight factor to add face normal to vertex */
for(a=startvlak; a<re->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(re, a);
if(vlr->flag & ME_SMOOTH) {
VertRen *adrve1= vlr->v1;
VertRen *adrve2= vlr->v2;
VertRen *adrve3= vlr->v3;
VertRen *adrve4= vlr->v4;
float n1[3], n2[3], n3[3], n4[3];
float fac1, fac2, fac3, fac4=0.0f;
VecSubf(n1, adrve2->co, adrve1->co);
Normalise(n1);
VecSubf(n2, adrve3->co, adrve2->co);
Normalise(n2);
if(adrve4==NULL) {
VecSubf(n3, adrve1->co, adrve3->co);
Normalise(n3);
fac1= saacos(-n1[0]*n3[0]-n1[1]*n3[1]-n1[2]*n3[2]);
fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
}
else {
VecSubf(n3, adrve4->co, adrve3->co);
Normalise(n3);
VecSubf(n4, adrve1->co, adrve4->co);
Normalise(n4);
fac1= saacos(-n4[0]*n1[0]-n4[1]*n1[1]-n4[2]*n1[2]);
fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
fac4= saacos(-n3[0]*n4[0]-n3[1]*n4[1]-n3[2]*n4[2]);
if(!(vlr->flag & R_NOPUNOFLIP)) {
if( contrpuntnormr(vlr->n, adrve4->n) ) fac4= -fac4;
}
}
if(do_tangent)
calc_tangent_vector(re, vlr, fac1, fac2, fac3, fac4);
}
}
/* do solid faces */
for(a=startvlak; a<re->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(re, a);
if((vlr->flag & ME_SMOOTH)==0) {
float *f1= vlr->v1->n;
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
f1= vlr->v2->n;
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
f1= vlr->v3->n;
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
if(vlr->v4) {
f1= vlr->v4->n;
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
}
}
}
/* normalise vertex normals */
for(a=startvert; a<re->totvert; a++) {
VertRen *ver= RE_findOrAddVert(re, a);
Normalise(ver->n);
if(do_tangent) {
float *tav= RE_vertren_get_tangent(re, ver, 0);
if(tav) Normalise(tav);
}
}
/* vertex normal (puno) switch flags for during render */
for(a=startvlak; a<re->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(re, a);
if((vlr->flag & R_NOPUNOFLIP)==0) {
VertRen *adrve1= vlr->v1;
VertRen *adrve2= vlr->v2;
VertRen *adrve3= vlr->v3;
VertRen *adrve4= vlr->v4;
vlr->puno &= ~15;
if ((vlr->n[0]*adrve1->n[0]+vlr->n[1]*adrve1->n[1]+vlr->n[2]*adrve1->n[2])<0.0) vlr->puno= 1;
if ((vlr->n[0]*adrve2->n[0]+vlr->n[1]*adrve2->n[1]+vlr->n[2]*adrve2->n[2])<0.0) vlr->puno+= 2;
if ((vlr->n[0]*adrve3->n[0]+vlr->n[1]*adrve3->n[1]+vlr->n[2]*adrve3->n[2])<0.0) vlr->puno+= 4;
if(adrve4) {
if((vlr->n[0]*adrve4->n[0]+vlr->n[1]*adrve4->n[1]+vlr->n[2]*adrve4->n[2])<0.0) vlr->puno+= 8;
}
}
}
}
/* ------------------------------------------------------------------------- */
/* Autosmoothing: */
/* ------------------------------------------------------------------------- */
typedef struct ASvert {
int totface;
ListBase faces;
} ASvert;
typedef struct ASface {
struct ASface *next, *prev;
VlakRen *vlr[4];
VertRen *nver[4];
} ASface;
static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
{
ASface *asf;
int a;
if(v1 == NULL) return;
if(asv->faces.first==NULL) {
asf= MEM_callocN(sizeof(ASface), "asface");
BLI_addtail(&asv->faces, asf);
}
asf= asv->faces.last;
for(a=0; a<4; a++) {
if(asf->vlr[a]==NULL) {
asf->vlr[a]= vlr;
asv->totface++;
break;
}
}
/* new face struct */
if(a==4) {
asf= MEM_callocN(sizeof(ASface), "asface");
BLI_addtail(&asv->faces, asf);
asf->vlr[0]= vlr;
asv->totface++;
}
}
static int as_testvertex(VlakRen *vlr, VertRen *ver, ASvert *asv, float thresh)
{
/* return 1: vertex needs a copy */
ASface *asf;
float inp;
int a;
if(vlr==0) return 0;
asf= asv->faces.first;
while(asf) {
for(a=0; a<4; a++) {
if(asf->vlr[a] && asf->vlr[a]!=vlr) {
inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
if(inp < thresh) return 1;
}
}
asf= asf->next;
}
return 0;
}
static VertRen *as_findvertex(VlakRen *vlr, VertRen *ver, ASvert *asv, float thresh)
{
/* return when new vertex already was made */
ASface *asf;
float inp;
int a;
asf= asv->faces.first;
while(asf) {
for(a=0; a<4; a++) {
if(asf->vlr[a] && asf->vlr[a]!=vlr) {
/* this face already made a copy for this vertex! */
if(asf->nver[a]) {
inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
if(inp >= thresh) {
return asf->nver[a];
}
}
}
}
asf= asf->next;
}
return NULL;
}
/* note; autosmooth happens in object space still, after applying autosmooth we rotate */
/* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
static void autosmooth(Render *re, float mat[][4], int startvert, int startvlak, int degr)
{
ASvert *asv, *asverts, *asvertoffs;
ASface *asf;
VertRen *ver, *v1;
VlakRen *vlr;
float thresh;
int a, b, totvert;
if(startvert==re->totvert) return;
asverts= MEM_callocN(sizeof(ASvert)*(re->totvert-startvert), "all smooth verts");
asvertoffs= asverts-startvert; /* se we can use indices */
thresh= cos( M_PI*(0.5f+(float)degr)/180.0 );
/* step zero: give faces normals of original mesh, if this is provided */
/* step one: construct listbase of all vertices and pointers to faces */
for(a=startvlak; a<re->totvlak; a++) {
vlr= RE_findOrAddVlak(re, a);
/* skip wire faces */
if(vlr->v2 != vlr->v3) {
as_addvert(asvertoffs+vlr->v1->index, vlr->v1, vlr);
as_addvert(asvertoffs+vlr->v2->index, vlr->v2, vlr);
as_addvert(asvertoffs+vlr->v3->index, vlr->v3, vlr);
if(vlr->v4)
as_addvert(asvertoffs+vlr->v4->index, vlr->v4, vlr);
}
}
/* we now test all vertices, when faces have a normal too much different: they get a new vertex */
totvert= re->totvert;
for(a=startvert, asv=asverts; a<totvert; a++, asv++) {
if(asv && asv->totface>1) {
ver= RE_findOrAddVert(re, a);
asf= asv->faces.first;
while(asf) {
for(b=0; b<4; b++) {
/* is there a reason to make a new vertex? */
vlr= asf->vlr[b];
if( as_testvertex(vlr, ver, asv, thresh) ) {
/* already made a new vertex within threshold? */
v1= as_findvertex(vlr, ver, asv, thresh);
if(v1==NULL) {
/* make a new vertex */
v1= duplicate_vertren(re, ver);
}
asf->nver[b]= v1;
if(vlr->v1==ver) vlr->v1= v1;
if(vlr->v2==ver) vlr->v2= v1;
if(vlr->v3==ver) vlr->v3= v1;
if(vlr->v4==ver) vlr->v4= v1;
}
}
asf= asf->next;
}
}
}
/* free */
for(a=0; a<totvert-startvert; a++) {
BLI_freelistN(&asverts[a].faces);
}
MEM_freeN(asverts);
/* rotate vertices and calculate normal of faces */
for(a=startvert; a<re->totvert; a++) {
ver= RE_findOrAddVert(re, a);
MTC_Mat4MulVecfl(mat, ver->co);
}
for(a=startvlak; a<re->totvlak; a++) {
vlr= RE_findOrAddVlak(re, a);
/* skip wire faces */
if(vlr->v2 != vlr->v3) {
if(vlr->v4)
CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
else
CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
}
}
}
/* ------------------------------------------------------------------------- */
/* End of autosmoothing: */
/* ------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------- */
/* Orco hash */
/* ------------------------------------------------------------------------- */
static float *get_object_orco(Render *re, Object *ob)
{
float *orco;
if (!re->orco_hash)
re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
orco = BLI_ghash_lookup(re->orco_hash, ob);
if (!orco) {
if (ob->type==OB_MESH) {
orco = mesh_create_orco_render(ob);
} else if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
orco = make_orco_curve(ob);
} else if (ob->type==OB_SURF) {
orco = make_orco_surf(ob);
}
if (orco)
BLI_ghash_insert(re->orco_hash, ob, orco);
}
return orco;
}
static void free_mesh_orco_hash(Render *re)
{
if (re->orco_hash) {
BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
re->orco_hash = NULL;
}
}
/* ******************** END ORCO HASH ***************** */
static void make_render_halos(Render *re, Object *ob, Mesh *me, int totvert, MVert *mvert, Material *ma, float *orco)
{
HaloRen *har;
float xn, yn, zn, nor[3], view[3];
float vec[3], hasize, mat[4][4], imat[3][3];
int a, ok, seed= ma->seed1;
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
MTC_Mat3CpyMat4(imat, ob->imat);
re->flag |= R_HALO;
for(a=0; a<totvert; a++, mvert++) {
ok= 1;
if(ok) {
hasize= ma->hasize;
VECCOPY(vec, mvert->co);
MTC_Mat4MulVecfl(mat, vec);
if(ma->mode & MA_HALOPUNO) {
xn= mvert->no[0];
yn= mvert->no[1];
zn= mvert->no[2];
/* transpose ! */
nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
Normalise(nor);
VECCOPY(view, vec);
Normalise(view);
zn= nor[0]*view[0]+nor[1]*view[1]+nor[2]*view[2];
if(zn>=0.0) hasize= 0.0;
else hasize*= zn*zn*zn*zn;
}
if(orco) har= RE_inithalo(re, ma, vec, NULL, orco, hasize, 0.0, seed);
else har= RE_inithalo(re, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
if(har) har->lay= ob->lay;
}
if(orco) orco+= 3;
seed++;
}
}
/* ------------------------------------------------------------------------- */
static Material *give_render_material(Render *re, Object *ob, int nr)
{
extern Material defmaterial; /* material.c */
Material *ma;
ma= give_current_material(ob, nr);
if(ma==NULL)
ma= &defmaterial;
else
if(ma->mode & MA_ZTRA)
re->flag |= R_ZTRA;
if(re->r.mode & R_SPEED) ma->texco |= NEED_UV;
return ma;
}
static void render_particle_system(Render *re, Object *ob, PartEff *paf)
{
Particle *pa=0;
HaloRen *har=0;
Material *ma=0;
float xn, yn, zn, imat[3][3], tmat[4][4], mat[4][4], hasize, stime, ptime, ctime, vec[3], vec1[3], view[3], nor[3];
int a, mat_nr=1, seed;
int useFluidsimParticles = 0; // FSPARTICLE
float haloScale = 1.0; //NT scale halos
float iniAlpha = 0.0; // restore material alpha
pa= paf->keys;
if(pa==NULL || paf->disp!=100) {
build_particle_system(ob);
pa= paf->keys;
if(pa==NULL) return;
}
ma= give_render_material(re, ob, paf->omat);
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
MTC_Mat4Invert(ob->imat, mat); /* this is correct, for imat texture */
/* enable duplicators to work */
Mat4MulMat4(tmat, paf->imat, ob->obmat);
MTC_Mat4MulMat4(mat, tmat, re->viewmat);
MTC_Mat4Invert(tmat, mat);
MTC_Mat3CpyMat4(imat, tmat);
re->flag |= R_HALO;
if(ob->ipoflag & OB_OFFS_PARTICLE) ptime= ob->sf;
else ptime= 0.0;
ctime= bsystem_time(ob, 0, (float)re->scene->r.cfra, ptime);
seed= ma->seed1;
if( (ob->fluidsimSettings) && (ob->fluidsimSettings->type == OB_FLUIDSIM_PARTICLE)) {
useFluidsimParticles = 1;
iniAlpha = ma->alpha;
}
for(a=0; a<paf->totpart; a++, pa+=paf->totkey, seed++) {
/* offset time for calculating normal */
stime= ctime;
ptime= ctime+1.0f;
if(ctime < pa->time) {
if(paf->flag & PAF_UNBORN)
ptime= pa->time+1.0f;
else
continue;
}
if(ctime > pa->time+pa->lifetime) {
if(paf->flag & PAF_DIED)
stime= pa->time+pa->lifetime-1.0f;
else
continue;
}
/* watch it: also calculate the normal of a particle */
if(paf->stype==PAF_VECT || ma->mode & MA_HALO_SHADE) {
where_is_particle(paf, pa, stime, vec);
MTC_Mat4MulVecfl(mat, vec);
where_is_particle(paf, pa, ptime, vec1);
MTC_Mat4MulVecfl(mat, vec1);
}
else {
where_is_particle(paf, pa, ctime, vec);
MTC_Mat4MulVecfl(mat, vec);
}
if(pa->mat_nr != mat_nr) {
mat_nr= pa->mat_nr;
ma= give_render_material(re, ob, mat_nr);
}
if(ma->ipo) {
/* correction for lifetime */
ptime= 100.0*(ctime-pa->time)/pa->lifetime;
calc_ipo(ma->ipo, ptime);
execute_ipo((ID *)ma, ma->ipo);
}
//NT scale halos FSPARTICLE
if(useFluidsimParticles) {
// rescale to 1.0-10.0, then div by 5 afterwards, gives values in range 0.2-2.0
double fspsize = ((double)pa->rt / 1000.0f) / 5.0 ;
haloScale = 1.0/(float)pow(fspsize, (double)ob->fluidsimSettings->particleInfSize);
ma->alpha = iniAlpha / (float)pow( fspsize, (double)ob->fluidsimSettings->particleInfAlpha);
if(ma->alpha>1.) ma->alpha = 1.;
}
hasize= ma->hasize * haloScale;
if(ma->mode & MA_HALOPUNO) {
xn= pa->no[0];
yn= pa->no[1];
zn= pa->no[2];
/* transpose ! */
nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
Normalise(nor);
VECCOPY(view, vec);
Normalise(view);
zn= nor[0]*view[0]+nor[1]*view[1]+nor[2]*view[2];
if(zn>=0.0) hasize= 0.0;
else hasize*= zn*zn*zn*zn;
}
if(paf->stype==PAF_VECT) har= RE_inithalo(re, ma, vec, vec1, pa->co, hasize, paf->vectsize, seed);
else {
har= RE_inithalo(re, ma, vec, NULL, pa->co, hasize, 0.0, seed);
if(har && ma->mode & MA_HALO_SHADE) {
VecSubf(har->no, vec, vec1);
Normalise(har->no);
}
}
if(har) har->lay= ob->lay;
}
/* restore material */
for(a=1; a<=ob->totcol; a++) {
ma= give_render_material(re, ob, a);
if(ma) do_mat_ipo(ma);
}
if(paf->disp!=100) {
MEM_freeN(paf->keys);
paf->keys= NULL;
}
if(useFluidsimParticles) { ma->alpha = iniAlpha; }// FSPARTICLE restore...
}
/* ------------------------------------------------------------------------- */
/* future thread problem... */
static void static_particle_strand(Render *re, Object *ob, Material *ma, float *orco, float *vec, float *vec1, float ctime, int first)
{
static VertRen *v1= NULL, *v2= NULL;
VlakRen *vlr;
float nor[3], cross[3], w, dx, dy, width;
int flag;
VecSubf(nor, vec, vec1);
Normalise(nor); // nor needed as tangent
Crossf(cross, vec, nor);
/* turn cross in pixelsize */
w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
dx= re->winx*cross[0]*re->winmat[0][0]/w;
dy= re->winy*cross[1]*re->winmat[1][1]/w;
w= sqrt(dx*dx + dy*dy);
if(w!=0.0f) {
float fac;
if(ma->strand_ease!=0.0f) {
if(ma->strand_ease<0.0f)
fac= pow(ctime, 1.0+ma->strand_ease);
else
fac= pow(ctime, 1.0/(1.0f-ma->strand_ease));
}
else fac= ctime;
width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end)/w;
VecMulf(cross, width);
}
else width= 1.0f;
if(ma->mode & MA_TANGENT_STR)
flag= R_SMOOTH|R_NOPUNOFLIP|R_TANGENT;
else
flag= R_SMOOTH;
/* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
if(width==1.0f)
flag |= R_STRAND;
/* first two vertices */
if(first) {
v1= RE_findOrAddVert(re, re->totvert++);
v2= RE_findOrAddVert(re, re->totvert++);
VECCOPY(v1->co, vec);
VecAddf(v1->co, v1->co, cross);
VECCOPY(v1->n, nor);
v1->orco= orco;
v1->accum= -1.0f; // accum abuse for strand texco
VECCOPY(v2->co, vec);
VecSubf(v2->co, v2->co, cross);
VECCOPY(v2->n, nor);
v2->orco= orco;
v2->accum= v1->accum;
}
else {
vlr= RE_findOrAddVlak(re, re->totvlak++);
vlr->flag= flag;
vlr->ob= ob;
vlr->v1= v1;
vlr->v2= v2;
vlr->v3= RE_findOrAddVert(re, re->totvert++);
vlr->v4= RE_findOrAddVert(re, re->totvert++);
v1= vlr->v4; // cycle
v2= vlr->v3; // cycle
VECCOPY(vlr->v4->co, vec);
VecAddf(vlr->v4->co, vlr->v4->co, cross);
VECCOPY(vlr->v4->n, nor);
vlr->v4->orco= orco;
vlr->v4->accum= -1.0f + 2.0f*ctime; // accum abuse for strand texco
VECCOPY(vlr->v3->co, vec);
VecSubf(vlr->v3->co, vlr->v3->co, cross);
VECCOPY(vlr->v3->n, nor);
vlr->v3->orco= orco;
vlr->v3->accum= vlr->v4->accum;
CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
vlr->mat= ma;
vlr->ec= ME_V2V3;
vlr->lay= ob->lay;
}
}
static void render_static_particle_system(Render *re, Object *ob, PartEff *paf)
{
Particle *pa=0;
HaloRen *har=0;
Material *ma=0;
VertRen *v1= NULL;
VlakRen *vlr;
float xn, yn, zn, imat[3][3], mat[4][4], hasize;
float mtime, ptime, ctime, vec[3], vec1[3], view[3], nor[3];
float *orco= NULL, loc_tex[3], size_tex[3];
int a, mat_nr=1, seed, totvlako, totverto, first;
pa= paf->keys;
if(pa==NULL || (paf->flag & PAF_ANIMATED) || paf->disp!=100) {
build_particle_system(ob);
pa= paf->keys;
if(pa==NULL) return;
}
totvlako= re->totvlak;
totverto= re->totvert;
ma= give_render_material(re, ob, paf->omat);
if(ma->mode & MA_HALO)
re->flag |= R_HALO;
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
MTC_Mat4Invert(ob->imat, mat); /* need to be that way, for imat texture */
MTC_Mat3CpyMat4(imat, ob->imat);
/* orcos */
if(!(ma->mode & (MA_HALO|MA_WIRE))) {
orco= MEM_mallocN(3*sizeof(float)*paf->totpart, "static particle orcos");
if (!re->orco_hash)
re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
BLI_ghash_insert(re->orco_hash, paf, orco); /* pointer is particles, otherwise object uses it */
}
mesh_get_texspace(ob->data, loc_tex, NULL, size_tex);
if(ob->ipoflag & OB_OFFS_PARTICLE) ptime= ob->sf;
else ptime= 0.0;
ctime= bsystem_time(ob, 0, (float)re->scene->r.cfra, ptime);
seed= ma->seed1;
for(a=0; a<paf->totpart; a++, pa+=paf->totkey) {
where_is_particle(paf, pa, pa->time, vec1);
if(orco) {
orco[0] = (vec1[0]-loc_tex[0])/size_tex[0];
orco[1] = (vec1[1]-loc_tex[1])/size_tex[1];
orco[2] = (vec1[2]-loc_tex[2])/size_tex[2];
}
MTC_Mat4MulVecfl(mat, vec1);
mtime= pa->time+pa->lifetime+paf->staticstep-1;
first= 1;
for(ctime= pa->time; ctime<mtime; ctime+=paf->staticstep) {
/* make sure hair grows until the end.. */
if(ctime>pa->time+pa->lifetime) ctime= pa->time+pa->lifetime;
/* watch it: also calc the normal of a particle */
if(paf->stype==PAF_VECT || ma->mode & MA_HALO_SHADE) {
where_is_particle(paf, pa, ctime+1.0, vec);
MTC_Mat4MulVecfl(mat, vec);
}
else {
where_is_particle(paf, pa, ctime, vec);
MTC_Mat4MulVecfl(mat, vec);
}
if(pa->mat_nr != mat_nr) {
mat_nr= pa->mat_nr;
ma= give_render_material(re, ob, mat_nr);
}
/* wires */
if(ma->mode & MA_WIRE) {
if(ctime == pa->time) {
v1= RE_findOrAddVert(re, re->totvert++);
VECCOPY(v1->co, vec);
}
else {
vlr= RE_findOrAddVlak(re, re->totvlak++);
vlr->ob= ob;
vlr->v1= v1;
vlr->v2= RE_findOrAddVert(re, re->totvert++);
vlr->v3= vlr->v2;
vlr->v4= NULL;
v1= vlr->v2; // cycle
VECCOPY(v1->co, vec);
VecSubf(vlr->n, vec, vec1);
Normalise(vlr->n);
VECCOPY(v1->n, vlr->n);
vlr->mat= ma;
vlr->ec= ME_V1V2;
vlr->lay= ob->lay;
}
}
else {
if(ma->ipo) {
/* correction for lifetime */
ptime= 100.0*(ctime-pa->time)/pa->lifetime;
calc_ipo(ma->ipo, ptime);
execute_ipo((ID *)ma, ma->ipo);
}
if(ma->mode & MA_HALO) {
hasize= ma->hasize;
if(ma->mode & MA_HALOPUNO) {
xn= pa->no[0];
yn= pa->no[1];
zn= pa->no[2];
/* transpose ! */
nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
Normalise(nor);
VECCOPY(view, vec);
Normalise(view);
zn= nor[0]*view[0]+nor[1]*view[1]+nor[2]*view[2];
if(zn>=0.0) hasize= 0.0;
else hasize*= zn*zn*zn*zn;
}
if(paf->stype==PAF_VECT) har= RE_inithalo(re, ma, vec, vec1, pa->co, hasize, paf->vectsize, seed);
else {
har= RE_inithalo(re, ma, vec, NULL, pa->co, hasize, 0.0, seed);
if(har && (ma->mode & MA_HALO_SHADE)) {
VecSubf(har->no, vec, vec1);
Normalise(har->no);
har->lay= ob->lay;
}
}
if(har) har->lay= ob->lay;
}
else { /* generate pixel sized hair strand */
static_particle_strand(re, ob, ma, orco, vec, vec1, (ctime-pa->time)/(mtime-pa->time), first);
}
}
VECCOPY(vec1, vec);
first= 0;
}
seed++;
if(orco) orco+=3;
}
if(paf->disp!=100) {
MEM_freeN(paf->keys);
paf->keys= NULL;
}
if((ma->mode & MA_TANGENT_STR)==0)
calc_vertexnormals(re, totverto, totvlako, 0);
}
/* ------------------------------------------------------------------------- */
static int verghalo(const void *a1, const void *a2)
{
const struct halosort *x1=a1, *x2=a2;
if( x1->z < x2->z ) return 1;
else if( x1->z > x2->z) return -1;
return 0;
}
/* ------------------------------------------------------------------------- */
static void sort_halos(Render *re)
{
struct halosort *hablock, *haso;
HaloRen *har = NULL, **bloha;
int a;
if(re->tothalo==0) return;
/* make datablock with halo pointers, sort */
haso= hablock= MEM_mallocN(sizeof(struct halosort)*re->tothalo, "hablock");
for(a=0; a<re->tothalo; a++) {
if((a & 255)==0) har= re->bloha[a>>8];
else har++;
haso->har= har;
haso->z= har->zs;
haso++;
}
qsort(hablock, re->tothalo, sizeof(struct halosort), verghalo);
/* re-assamble re->bloha */
bloha= re->bloha;
re->bloha= (HaloRen **)MEM_callocN(sizeof(void *)*(re->blohalen),"Bloha");
haso= hablock;
for(a=0; a<re->tothalo; a++) {
har= RE_findOrAddHalo(re, a);
*har= *(haso->har);
haso++;
}
/* free */
a= 0;
while(bloha[a]) {
MEM_freeN(bloha[a]);
a++;
}
MEM_freeN(bloha);
MEM_freeN(hablock);
}
/* ------------------------------------------------------------------------- */
static void init_render_mball(Render *re, Object *ob)
{
DispList *dl, *dlo;
VertRen *ver;
VlakRen *vlr, *vlr1;
Material *ma;
float *data, *nors, mat[4][4], imat[3][3], xn, yn, zn;
int a, need_orco, startvert, *index;
if (ob!=find_basis_mball(ob))
return;
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
MTC_Mat4Invert(ob->imat, mat);
MTC_Mat3CpyMat4(imat, ob->imat);
ma= give_render_material(re, ob, 1);
need_orco= 0;
if(ma->texco & TEXCO_ORCO) {
need_orco= 1;
}
dlo= ob->disp.first;
if(dlo) BLI_remlink(&ob->disp, dlo);
makeDispListMBall(ob);
dl= ob->disp.first;
if(dl==0) return;
startvert= re->totvert;
data= dl->verts;
nors= dl->nors;
for(a=0; a<dl->nr; a++, data+=3, nors+=3) {
ver= RE_findOrAddVert(re, re->totvert++);
VECCOPY(ver->co, data);
MTC_Mat4MulVecfl(mat, ver->co);
xn= nors[0];
yn= nors[1];
zn= nors[2];
/* transpose ! */
ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
Normalise(ver->n);
//if(ob->transflag & OB_NEG_SCALE) VecMulf(ver->n. -1.0);
if(need_orco) ver->orco= data;
}
index= dl->index;
for(a=0; a<dl->parts; a++, index+=4) {
vlr= RE_findOrAddVlak(re, re->totvlak++);
vlr->ob= ob;
vlr->v1= RE_findOrAddVert(re, startvert+index[0]);
vlr->v2= RE_findOrAddVert(re, startvert+index[1]);
vlr->v3= RE_findOrAddVert(re, startvert+index[2]);
vlr->v4= 0;
if(ob->transflag & OB_NEG_SCALE)
CalcNormFloat(vlr->v1->co, vlr->v2->co, vlr->v3->co, vlr->n);
else
CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
vlr->mat= ma;
vlr->flag= ME_SMOOTH+R_NOPUNOFLIP;
vlr->ec= 0;
vlr->lay= ob->lay;
/* mball -too bad- always has triangles, because quads can be non-planar */
if(index[3]) {
vlr1= RE_findOrAddVlak(re, re->totvlak++);
*vlr1= *vlr;
vlr1->v2= vlr1->v3;
vlr1->v3= RE_findOrAddVert(re, startvert+index[3]);
if(ob->transflag & OB_NEG_SCALE)
CalcNormFloat(vlr1->v1->co, vlr1->v2->co, vlr1->v3->co, vlr1->n);
else
CalcNormFloat(vlr1->v3->co, vlr1->v2->co, vlr1->v1->co, vlr1->n);
}
}
if(need_orco) {
/* store displist and scale */
make_orco_mball(ob);
if(dlo) BLI_addhead(&ob->disp, dlo);
}
else {
freedisplist(&ob->disp);
if(dlo) BLI_addtail(&ob->disp, dlo);
}
}
/* ------------------------------------------------------------------------- */
/* convert */
struct edgesort {
int v1, v2;
int has_mcol;
TFace *tface;
float uv1[2], uv2[2];
unsigned int mcol1, mcol2;
};
/* edges have to be added with lowest index first for sorting */
static void to_edgesort(struct edgesort *ed, int i1, int i2, int v1, int v2, unsigned int *mcol, TFace *tface)
{
if(v1<v2) {
ed->v1= v1; ed->v2= v2;
}
else {
ed->v1= v2; ed->v2= v1;
SWAP(int, i1, i2);
}
/* copy color and tface, edges use different ordering */
ed->tface= tface;
if(tface) {
ed->uv1[0]= tface->uv[i1][0];
ed->uv1[1]= tface->uv[i1][1];
ed->uv2[0]= tface->uv[i2][0];
ed->uv2[1]= tface->uv[i2][1];
ed->mcol1= tface->col[i1];
ed->mcol2= tface->col[i2];
}
ed->has_mcol= mcol!=NULL;
if(mcol) {
ed->mcol1= mcol[i1];
ed->mcol2= mcol[i2];
}
}
static int vergedgesort(const void *v1, const void *v2)
{
const struct edgesort *x1=v1, *x2=v2;
if( x1->v1 > x2->v1) return 1;
else if( x1->v1 < x2->v1) return -1;
else if( x1->v2 > x2->v2) return 1;
else if( x1->v2 < x2->v2) return -1;
return 0;
}
static struct edgesort *make_mesh_edge_lookup(Mesh *me, DispListMesh *dlm, int *totedgesort)
{
MFace *mf, *mface;
TFace *tface=NULL;
struct edgesort *edsort, *ed;
unsigned int *mcol=NULL;
int a, totedge=0, totface;
if (dlm) {
mface= dlm->mface;
totface= dlm->totface;
if (dlm->tface)
tface= dlm->tface;
else if (dlm->mcol)
mcol= (unsigned int *)dlm->mcol;
} else {
mface= me->mface;
totface= me->totface;
if (me->tface)
tface= me->tface;
else if (me->mcol)
mcol= (unsigned int *)me->mcol;
}
if(mcol==NULL && tface==NULL) return NULL;
/* make sorted table with edges and and tface/mcol pointers in it */
for(a= totface, mf= mface; a>0; a--, mf++) {
if(mf->v4) totedge+=4;
else if(mf->v3) totedge+=3;
}
if(totedge==0) return NULL;
ed= edsort= MEM_mallocN(totedge*sizeof(struct edgesort), "edgesort");
for(a= me->totface, mf= mface; a>0; a--, mf++) {
if(mface->v4 || mface->v3) {
to_edgesort(ed++, 0, 1, mf->v1, mf->v2, mcol, tface);
to_edgesort(ed++, 1, 2, mf->v2, mf->v3, mcol, tface);
if(mf->v4) {
to_edgesort(ed++, 2, 3, mf->v3, mf->v4, mcol, tface);
to_edgesort(ed++, 3, 0, mf->v4, mf->v1, mcol, tface);
}
else if(mf->v3) {
to_edgesort(ed++, 2, 3, mf->v3, mf->v1, mcol, tface);
}
}
if(mcol) mcol+=4;
if(tface) tface++;
}
qsort(edsort, totedge, sizeof(struct edgesort), vergedgesort);
*totedgesort= totedge;
return edsort;
}
static void use_mesh_edge_lookup(Render *re, Mesh *me, DispListMesh *dlm, MEdge *medge, VlakRen *vlr, struct edgesort *edgetable, int totedge)
{
struct edgesort ed, *edp;
if(medge->v1 < medge->v2) {
ed.v1= medge->v1; ed.v2= medge->v2;
}
else {
ed.v1= medge->v2; ed.v2= medge->v1;
}
edp= bsearch(&ed, edgetable, totedge, sizeof(struct edgesort), vergedgesort);
if(edp) {
/* since edges have different index ordering, we have to duplicate mcol and tface */
if(edp->tface) {
vlr->tface= BLI_memarena_alloc(re->memArena, sizeof(TFace));
vlr->vcol= vlr->tface->col;
memcpy(vlr->tface, edp->tface, sizeof(TFace));
if(edp->v1==medge->v1) {
vlr->vcol[0]= edp->mcol1;
vlr->vcol[1]= edp->mcol2;
}
else {
vlr->vcol[0]= edp->mcol2;
vlr->vcol[1]= edp->mcol1;
}
vlr->vcol[2]= vlr->vcol[1];
vlr->vcol[3]= vlr->vcol[1];
if(edp->v1==medge->v1) {
memcpy(vlr->tface->uv[0], edp->uv1, 2*sizeof(float));
memcpy(vlr->tface->uv[1], edp->uv2, 2*sizeof(float));
}
else {
memcpy(vlr->tface->uv[0], edp->uv2, 2*sizeof(float));
memcpy(vlr->tface->uv[1], edp->uv1, 2*sizeof(float));
}
memcpy(vlr->tface->uv[2], vlr->tface->uv[1], 2*sizeof(float));
memcpy(vlr->tface->uv[3], vlr->tface->uv[1], 2*sizeof(float));
}
else if(edp->has_mcol) {
vlr->vcol= BLI_memarena_alloc(re->memArena, sizeof(MCol)*4);
vlr->vcol[0]= edp->mcol1;
vlr->vcol[1]= edp->mcol2;
vlr->vcol[2]= vlr->vcol[1];
vlr->vcol[3]= vlr->vcol[1];
}
}
}
static void init_render_mesh(Render *re, Object *ob, int only_verts)
{
Mesh *me;
MVert *mvert = NULL;
MFace *mface;
VlakRen *vlr; //, *vlr1;
VertRen *ver;
Material *ma;
MSticky *ms = NULL;
PartEff *paf;
DispListMesh *dlm = NULL;
DerivedMesh *dm;
unsigned int *vertcol;
float xn, yn, zn, imat[3][3], mat[4][4]; //nor[3],
float *orco=0;
int a, a1, ok, need_orco=0, need_stress=0, need_tangent=0, totvlako, totverto, vertofs;
int end, do_autosmooth=0, totvert = 0, dm_needsfree;
int useFluidmeshNormals= 0; // NT fluidsim, use smoothed normals?
int use_original_normals= 0;
me= ob->data;
paf = give_parteff(ob);
if(paf) {
/* warning; build_particle_system does modifier calls itself */
if(paf->flag & PAF_STATIC) render_static_particle_system(re, ob, paf);
else render_particle_system(re, ob, paf);
if((paf->flag & PAF_SHOWE)==0) return;
}
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
MTC_Mat4Invert(ob->imat, mat);
MTC_Mat3CpyMat4(imat, ob->imat);
if(me->totvert==0) {
return;
}
totvlako= re->totvlak;
totverto= re->totvert;
need_orco= 0;
for(a=1; a<=ob->totcol; a++) {
ma= give_render_material(re, ob, a);
if(ma) {
if(ma->texco & (TEXCO_ORCO|TEXCO_STRESS))
need_orco= 1;
if(ma->texco & TEXCO_STRESS)
need_stress= 1;
if(ma->mode & MA_TANGENT_V)
need_tangent= 1;
/* radio faces need autosmooth, to separate shared vertices in corners */
if(re->r.mode & R_RADIO)
if(ma->mode & MA_RADIO)
do_autosmooth= 1;
}
}
/* check autosmooth, we then have to skip only-verts optimize */
do_autosmooth |= (me->flag & ME_AUTOSMOOTH);
if(do_autosmooth)
only_verts= 0;
if(!only_verts)
if(need_orco) orco = get_object_orco(re, ob);
dm = mesh_create_derived_render(ob);
dm_needsfree= 1;
if(dm==NULL) return; /* in case duplicated object fails? */
if((ob->fluidsimFlag & OB_FLUIDSIM_ENABLE) &&
(ob->fluidsimSettings->type & OB_FLUIDSIM_DOMAIN)&&
(ob->fluidsimSettings->meshSurface) ) {
useFluidmeshNormals = 1;
}
dlm = dm->convertToDispListMesh(dm, 1);
mvert= dlm->mvert;
totvert= dlm->totvert;
/* attempt to autsmooth on original mesh, only without subsurf */
if(do_autosmooth && me->totvert==totvert && me->totface==dlm->totface)
use_original_normals= 1;
ms = (totvert==me->totvert)?me->msticky:NULL;
ma= give_render_material(re, ob, 1);
if(ma->mode & MA_HALO) {
make_render_halos(re, ob, me, totvert, mvert, ma, orco);
}
else {
for(a=0; a<totvert; a++, mvert++) {
ver= RE_findOrAddVert(re, re->totvert++);
VECCOPY(ver->co, mvert->co);
if(do_autosmooth==0) /* autosmooth on original unrotated data to prevent differences between frames */
MTC_Mat4MulVecfl(mat, ver->co);
if(useFluidmeshNormals) {
xn = mvert->no[0]/ 32767.0;
yn = mvert->no[1]/ 32767.0;
zn = mvert->no[2]/ 32767.0;
/* transfor to cam space */
ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
} // useFluidmeshNormals
if(orco) {
ver->orco= orco;
orco+=3;
}
if(ms) {
float *sticky= RE_vertren_get_sticky(re, ver, 1);
sticky[0]= ms->co[0];
sticky[1]= ms->co[1];
ms++;
}
}
if(!only_verts) {
/* still to do for keys: the correct local texture coordinate */
/* faces in order of color blocks */
vertofs= re->totvert - totvert;
for(a1=0; (a1<ob->totcol || (a1==0 && ob->totcol==0)); a1++) {
ma= give_render_material(re, ob, a1+1);
/* test for 100% transparant */
ok= 1;
if(ma->alpha==0.0 && ma->spectra==0.0) {
ok= 0;
/* texture on transparency? */
for(a=0; a<MAX_MTEX; a++) {
if(ma->mtex[a] && ma->mtex[a]->tex) {
if(ma->mtex[a]->mapto & MAP_ALPHA) ok= 1;
}
}
}
/* if wire material, and we got edges, don't do the faces */
if(ma->mode & MA_WIRE) {
end= dlm?dlm->totedge:me->totedge;
if(end) ok= 0;
}
if(ok) {
TFace *tface= NULL;
end= dlm?dlm->totface:me->totface;
if (dlm) {
mface= dlm->mface;
if (dlm->tface) {
tface= dlm->tface;
vertcol= NULL;
} else if (dlm->mcol) {
vertcol= (unsigned int *)dlm->mcol;
} else {
vertcol= NULL;
}
} else {
mface= me->mface;
if (me->tface) {
tface= me->tface;
vertcol= NULL;
} else if (me->mcol) {
vertcol= (unsigned int *)me->mcol;
} else {
vertcol= NULL;
}
}
for(a=0; a<end; a++) {
int v1, v2, v3, v4, flag;
if( mface->mat_nr==a1 ) {
float len;
v1= mface->v1;
v2= mface->v2;
v3= mface->v3;
v4= mface->v4;
flag= mface->flag & ME_SMOOTH;
vlr= RE_findOrAddVlak(re, re->totvlak++);
vlr->ob= ob;
vlr->v1= RE_findOrAddVert(re, vertofs+v1);
vlr->v2= RE_findOrAddVert(re, vertofs+v2);
vlr->v3= RE_findOrAddVert(re, vertofs+v3);
if(v4) vlr->v4= RE_findOrAddVert(re, vertofs+v4);
else vlr->v4= 0;
/* render normals are inverted in render */
if(use_original_normals) {
MFace *mf= me->mface+a;
MVert *mv= me->mvert;
if(vlr->v4)
len= CalcNormFloat4( mv[mf->v4].co, mv[mf->v3].co, mv[mf->v2].co, mv[mf->v1].co, vlr->n);
else
len= CalcNormFloat(mv[mf->v3].co, mv[mf->v2].co, mv[mf->v1].co, vlr->n);
}
else {
if(vlr->v4)
len= CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
else
len= CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
}
vlr->mat= ma;
vlr->flag= flag;
if((me->flag & ME_NOPUNOFLIP) ) {
vlr->flag |= R_NOPUNOFLIP;
}
vlr->ec= 0; /* mesh edges rendered separately */
vlr->lay= ob->lay;
if(len==0) re->totvlak--;
else {
if(dlm) {
if(tface) {
vlr->tface= BLI_memarena_alloc(re->memArena, sizeof(TFace));
vlr->vcol= vlr->tface->col;
memcpy(vlr->tface, tface, sizeof(TFace));
}
else if (vertcol) {
vlr->vcol= BLI_memarena_alloc(re->memArena, sizeof(int)*4);
memcpy(vlr->vcol, vertcol+4*a, sizeof(int)*4);
}
} else {
if(tface) {
vlr->vcol= tface->col;
vlr->tface= tface;
}
else if (vertcol) {
vlr->vcol= vertcol+4*a;
}
}
}
}
mface++;
if(tface) tface++;
}
}
}
/* exception... we do edges for wire mode. potential conflict when faces exist... */
end= dlm?dlm->totedge:me->totedge;
mvert= dlm?dlm->mvert:me->mvert;
ma= give_render_material(re, ob, 1);
if(end && (ma->mode & MA_WIRE)) {
MEdge *medge;
struct edgesort *edgetable;
int totedge;
medge= dlm?dlm->medge:me->medge;
/* we want edges to have UV and vcol too... */
edgetable= make_mesh_edge_lookup(me, dlm, &totedge);
for(a1=0; a1<end; a1++, medge++) {
if (medge->flag&ME_EDGERENDER) {
MVert *v0 = &mvert[medge->v1];
MVert *v1 = &mvert[medge->v2];
vlr= RE_findOrAddVlak(re, re->totvlak++);
vlr->ob= ob;
vlr->v1= RE_findOrAddVert(re, vertofs+medge->v1);
vlr->v2= RE_findOrAddVert(re, vertofs+medge->v2);
vlr->v3= vlr->v2;
vlr->v4= NULL;
if(edgetable) {
use_mesh_edge_lookup(re, me, dlm, medge, vlr, edgetable, totedge);
}
xn= (v0->no[0]+v1->no[0]);
yn= (v0->no[1]+v1->no[1]);
zn= (v0->no[2]+v1->no[2]);
/* transpose ! */
vlr->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
vlr->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
vlr->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
Normalise(vlr->n);
vlr->mat= ma;
vlr->flag= 0;
vlr->ec= ME_V1V2;
vlr->lay= ob->lay;
}
}
if(edgetable)
MEM_freeN(edgetable);
}
}
}
if(!only_verts) {
if (test_for_displace(re, ob ) ) {
calc_vertexnormals(re, totverto, totvlako, 0);
do_displacement(re, ob, totvlako, re->totvlak-totvlako, totverto, re->totvert-totverto);
}
if(do_autosmooth) {
autosmooth(re, mat, totverto, totvlako, me->smoothresh);
}
if(useFluidmeshNormals) {
// do not recalculate, only init render data
calc_fluidsimnormals(re, totverto, totvlako, need_tangent);
} else {
calc_vertexnormals(re, totverto, totvlako, need_tangent);
}
if(need_stress)
calc_edge_stress(re, me, totverto, totvlako);
}
if(dlm) displistmesh_free(dlm);
if(dm_needsfree) dm->release(dm);
}
/* ------------------------------------------------------------------------- */
static void initshadowbuf(Render *re, LampRen *lar, float mat[][4])
{
struct ShadBuf *shb;
float hoek, temp, viewinv[4][4];
/* if(la->spsi<16) return; */
/* memory alloc */
shb= (struct ShadBuf *)MEM_callocN( sizeof(struct ShadBuf),"initshadbuf");
lar->shb= shb;
if(shb==NULL) return;
VECCOPY(shb->co, lar->co);
/* percentage render: keep track of min and max */
shb->size= (lar->bufsize*re->r.size)/100;
if(lar->buffers>1) shb->size/= 2;
if(shb->size<512) shb->size= 512;
else if(shb->size > lar->bufsize) shb->size= lar->bufsize;
shb->size &= ~15; /* make sure its multiples of 16 */
shb->samp= lar->samp;
shb->soft= lar->soft;
shb->shadhalostep= lar->shadhalostep;
MTC_Mat4Ortho(mat);
MTC_Mat4Invert(shb->winmat, mat); /* winmat is temp */
/* matrix: combination of inverse view and lampmat */
/* calculate again: the ortho-render has no correct viewinv */
MTC_Mat4Invert(viewinv, re->viewmat);
MTC_Mat4MulMat4(shb->viewmat, viewinv, shb->winmat);
/* projection */
hoek= saacos(lar->spotsi);
temp= 0.5*shb->size*cos(hoek)/sin(hoek);
shb->d= lar->clipsta;
shb->pixsize= (shb->d)/temp;
shb->clipend= lar->clipend;
/* bias is percentage, made 2x karger because of correction for angle of incidence */
/* when a ray is closer to parallel of a face, bias value is increased during render */
shb->bias= (0.02*lar->bias)*0x7FFFFFFF;
shb->bias= shb->bias*(100/re->r.size);
}
static void area_lamp_vectors(LampRen *lar)
{
float xsize= 0.5*lar->area_size, ysize= 0.5*lar->area_sizey;
/* corner vectors */
lar->area[0][0]= lar->co[0] - xsize*lar->mat[0][0] - ysize*lar->mat[1][0];
lar->area[0][1]= lar->co[1] - xsize*lar->mat[0][1] - ysize*lar->mat[1][1];
lar->area[0][2]= lar->co[2] - xsize*lar->mat[0][2] - ysize*lar->mat[1][2];
/* corner vectors */
lar->area[1][0]= lar->co[0] - xsize*lar->mat[0][0] + ysize*lar->mat[1][0];
lar->area[1][1]= lar->co[1] - xsize*lar->mat[0][1] + ysize*lar->mat[1][1];
lar->area[1][2]= lar->co[2] - xsize*lar->mat[0][2] + ysize*lar->mat[1][2];
/* corner vectors */
lar->area[2][0]= lar->co[0] + xsize*lar->mat[0][0] + ysize*lar->mat[1][0];
lar->area[2][1]= lar->co[1] + xsize*lar->mat[0][1] + ysize*lar->mat[1][1];
lar->area[2][2]= lar->co[2] + xsize*lar->mat[0][2] + ysize*lar->mat[1][2];
/* corner vectors */
lar->area[3][0]= lar->co[0] + xsize*lar->mat[0][0] - ysize*lar->mat[1][0];
lar->area[3][1]= lar->co[1] + xsize*lar->mat[0][1] - ysize*lar->mat[1][1];
lar->area[3][2]= lar->co[2] + xsize*lar->mat[0][2] - ysize*lar->mat[1][2];
/* only for correction button size, matrix size works on energy */
lar->areasize= lar->dist*lar->dist/(4.0*xsize*ysize);
}
/* If lar takes more lamp data, the decoupling will be better. */
static void add_render_lamp(Render *re, Object *ob, int actual_render)
{
Lamp *la= ob->data;
LampRen *lar;
GroupObject *go;
float mat[4][4], hoek, xn, yn;
int c;
/* prevent only shadow from rendering light, but only return on render, not preview */
if(actual_render) {
if(la->mode & LA_ONLYSHADOW)
if((re->r.mode & R_SHADOW)==0)
return;
}
go= MEM_callocN(sizeof(GroupObject), "groupobject");
BLI_addtail(&re->lights, go);
re->totlamp++;
lar= (LampRen *)MEM_callocN(sizeof(LampRen),"lampren");
go->lampren= lar;
go->ob= ob;
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
MTC_Mat4Invert(ob->imat, mat);
MTC_Mat3CpyMat4(lar->mat, mat);
MTC_Mat3CpyMat4(lar->imat, ob->imat);
lar->bufsize = la->bufsize;
lar->samp = la->samp;
lar->buffers= la->buffers;
if(lar->buffers==0) lar->buffers= 1;
lar->filtertype= la->filtertype;
lar->soft = la->soft;
lar->shadhalostep = la->shadhalostep;
lar->clipsta = la->clipsta;
lar->clipend = la->clipend;
lar->bias = la->bias;
lar->type= la->type;
lar->mode= la->mode;
lar->energy= la->energy;
lar->energy= la->energy;
if(la->mode & LA_NEG) lar->energy= -lar->energy;
lar->vec[0]= -mat[2][0];
lar->vec[1]= -mat[2][1];
lar->vec[2]= -mat[2][2];
Normalise(lar->vec);
lar->co[0]= mat[3][0];
lar->co[1]= mat[3][1];
lar->co[2]= mat[3][2];
lar->dist= la->dist;
lar->haint= la->haint;
lar->distkw= lar->dist*lar->dist;
lar->r= lar->energy*la->r;
lar->g= lar->energy*la->g;
lar->b= lar->energy*la->b;
lar->k= la->k;
// area
lar->ray_samp= la->ray_samp;
lar->ray_sampy= la->ray_sampy;
lar->ray_sampz= la->ray_sampz;
lar->area_size= la->area_size;
lar->area_sizey= la->area_sizey;
lar->area_sizez= la->area_sizez;
lar->area_shape= la->area_shape;
lar->ray_samp_type= la->ray_samp_type;
if(lar->type==LA_AREA) {
switch(lar->area_shape) {
case LA_AREA_SQUARE:
lar->ray_totsamp= lar->ray_samp*lar->ray_samp;
lar->ray_sampy= lar->ray_samp;
lar->area_sizey= lar->area_size;
break;
case LA_AREA_RECT:
lar->ray_totsamp= lar->ray_samp*lar->ray_sampy;
break;
case LA_AREA_CUBE:
lar->ray_totsamp= lar->ray_samp*lar->ray_samp*lar->ray_samp;
lar->ray_sampy= lar->ray_samp;
lar->ray_sampz= lar->ray_samp;
lar->area_sizey= lar->area_size;
lar->area_sizez= lar->area_size;
break;
case LA_AREA_BOX:
lar->ray_totsamp= lar->ray_samp*lar->ray_sampy*lar->ray_sampz;
break;
}
area_lamp_vectors(lar);
}
else lar->ray_totsamp= 0;
/* yafray: photonlight and other params */
if (re->r.renderer==R_YAFRAY) {
lar->YF_numphotons = la->YF_numphotons;
lar->YF_numsearch = la->YF_numsearch;
lar->YF_phdepth = la->YF_phdepth;
lar->YF_useqmc = la->YF_useqmc;
lar->YF_causticblur = la->YF_causticblur;
lar->YF_ltradius = la->YF_ltradius;
lar->YF_bufsize = la->YF_bufsize;
lar->YF_glowint = la->YF_glowint;
lar->YF_glowofs = la->YF_glowofs;
lar->YF_glowtype = la->YF_glowtype;
}
lar->spotsi= la->spotsize;
if(lar->mode & LA_HALO) {
if(lar->spotsi>170.0) lar->spotsi= 170.0;
}
lar->spotsi= cos( M_PI*lar->spotsi/360.0 );
lar->spotbl= (1.0-lar->spotsi)*la->spotblend;
memcpy(lar->mtex, la->mtex, MAX_MTEX*sizeof(void *));
lar->lay= ob->lay & 0xFFFFFF; // higher 8 bits are localview layers
lar->ld1= la->att1;
lar->ld2= la->att2;
if(lar->type==LA_SPOT) {
Normalise(lar->imat[0]);
Normalise(lar->imat[1]);
Normalise(lar->imat[2]);
xn= saacos(lar->spotsi);
xn= sin(xn)/cos(xn);
lar->spottexfac= 1.0/(xn);
if(lar->mode & LA_ONLYSHADOW) {
if((lar->mode & (LA_SHAD|LA_SHAD_RAY))==0) lar->mode -= LA_ONLYSHADOW;
}
}
/* set flag for spothalo en initvars */
if(la->type==LA_SPOT && (la->mode & LA_HALO)) {
if(la->haint>0.0) {
re->flag |= R_LAMPHALO;
/* camera position (0,0,0) rotate around lamp */
lar->sh_invcampos[0]= -lar->co[0];
lar->sh_invcampos[1]= -lar->co[1];
lar->sh_invcampos[2]= -lar->co[2];
MTC_Mat3MulVecfl(lar->imat, lar->sh_invcampos);
/* z factor, for a normalized volume */
hoek= saacos(lar->spotsi);
xn= lar->spotsi;
yn= sin(hoek);
lar->sh_zfac= yn/xn;
/* pre-scale */
lar->sh_invcampos[2]*= lar->sh_zfac;
}
}
for(c=0; c<MAX_MTEX; c++) {
if(la->mtex[c] && la->mtex[c]->tex) {
lar->mode |= LA_TEXTURE;
if(G.rendering) {
if(re->osa) {
if(la->mtex[c]->tex->type==TEX_IMAGE) lar->mode |= LA_OSATEX;
}
}
}
}
/* yafray: shadowbuffers and jitter only needed for internal render */
if (actual_render && re->r.renderer==R_INTERN) {
if(re->r.mode & R_SHADOW) {
if (la->type==LA_SPOT && (lar->mode & LA_SHAD) ) {
/* Per lamp, one shadow buffer is made. */
Mat4CpyMat4(mat, ob->obmat);
initshadowbuf(re, lar, mat); // mat is altered
}
else if(la->type==LA_AREA && (lar->mode & LA_SHAD_RAY) ) {
init_jitter_plane(lar);
}
}
}
/* yafray: shadow flag should not be cleared, only used with internal renderer */
if (re->r.renderer==R_INTERN) {
/* to make sure we can check ray shadow easily in the render code */
if(lar->mode & LA_SHAD_RAY) {
if( (re->r.mode & R_RAYTRACE)==0)
lar->mode &= ~LA_SHAD_RAY;
}
}
}
/* ------------------------------------------------------------------------- */
/* returns amount of vertices added for orco */
static int dl_surf_to_renderdata(Render *re, Object *ob, DispList *dl, Material **matar, float *orco, float mat[4][4])
{
VertRen *v1, *v2, *v3, *v4, *ver;
VlakRen *vlr, *vlr1, *vlr2, *vlr3;
Curve *cu= ob->data;
float *data, n1[3], flen;
int u, v, orcoret= 0;
int p1, p2, p3, p4, a;
int sizeu, nsizeu, sizev, nsizev;
int startvert, startvlak;
startvert= re->totvert;
nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr;
data= dl->verts;
for (u = 0; u < sizeu; u++) {
v1 = RE_findOrAddVert(re, re->totvert++); /* save this for possible V wrapping */
VECCOPY(v1->co, data); data += 3;
if(orco) {
v1->orco= orco; orco+= 3; orcoret++;
}
MTC_Mat4MulVecfl(mat, v1->co);
for (v = 1; v < sizev; v++) {
ver= RE_findOrAddVert(re, re->totvert++);
VECCOPY(ver->co, data); data += 3;
if(orco) {
ver->orco= orco; orco+= 3; orcoret++;
}
MTC_Mat4MulVecfl(mat, ver->co);
}
/* if V-cyclic, add extra vertices at end of the row */
if (dl->flag & DL_CYCL_U) {
ver= RE_findOrAddVert(re, re->totvert++);
VECCOPY(ver->co, v1->co);
if(orco) {
ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
}
}
}
/* Done before next loop to get corner vert */
if (dl->flag & DL_CYCL_U) nsizev++;
if (dl->flag & DL_CYCL_V) nsizeu++;
/* if U cyclic, add extra row at end of column */
if (dl->flag & DL_CYCL_V) {
for (v = 0; v < nsizev; v++) {
v1= RE_findOrAddVert(re, startvert + v);
ver= RE_findOrAddVert(re, re->totvert++);
VECCOPY(ver->co, v1->co);
if(orco) {
ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
}
}
}
sizeu = nsizeu;
sizev = nsizev;
startvlak= re->totvlak;
for(u = 0; u < sizeu - 1; u++) {
p1 = startvert + u * sizev; /* walk through face list */
p2 = p1 + 1;
p3 = p2 + sizev;
p4 = p3 - 1;
for(v = 0; v < sizev - 1; v++) {
v1= RE_findOrAddVert(re, p1);
v2= RE_findOrAddVert(re, p2);
v3= RE_findOrAddVert(re, p3);
v4= RE_findOrAddVert(re, p4);
vlr= RE_findOrAddVlak(re, re->totvlak++);
vlr->ob= ob;
vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
flen= CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, n1);
VECCOPY(vlr->n, n1);
vlr->lay= ob->lay;
vlr->mat= matar[ dl->col];
vlr->ec= ME_V1V2+ME_V2V3;
vlr->flag= dl->rt;
if( (cu->flag & CU_NOPUNOFLIP) ) {
vlr->flag |= R_NOPUNOFLIP;
}
VecAddf(v1->n, v1->n, n1);
VecAddf(v2->n, v2->n, n1);
VecAddf(v3->n, v3->n, n1);
VecAddf(v4->n, v4->n, n1);
p1++; p2++; p3++; p4++;
}
}
/* fix normals for U resp. V cyclic faces */
sizeu--; sizev--; /* dec size for face array */
if (dl->flag & DL_CYCL_V) {
for (v = 0; v < sizev; v++)
{
/* optimize! :*/
vlr= RE_findOrAddVlak(re, UVTOINDEX(sizeu - 1, v));
vlr1= RE_findOrAddVlak(re, UVTOINDEX(0, v));
VecAddf(vlr1->v1->n, vlr1->v1->n, vlr->n);
VecAddf(vlr1->v2->n, vlr1->v2->n, vlr->n);
VecAddf(vlr->v3->n, vlr->v3->n, vlr1->n);
VecAddf(vlr->v4->n, vlr->v4->n, vlr1->n);
}
}
if (dl->flag & DL_CYCL_U) {
for (u = 0; u < sizeu; u++)
{
/* optimize! :*/
vlr= RE_findOrAddVlak(re, UVTOINDEX(u, 0));
vlr1= RE_findOrAddVlak(re, UVTOINDEX(u, sizev-1));
VecAddf(vlr1->v2->n, vlr1->v2->n, vlr->n);
VecAddf(vlr1->v3->n, vlr1->v3->n, vlr->n);
VecAddf(vlr->v1->n, vlr->v1->n, vlr1->n);
VecAddf(vlr->v4->n, vlr->v4->n, vlr1->n);
}
}
/* last vertex is an extra case:
^ ()----()----()----()
| | | || |
u | |(0,n)||(0,0)|
| | || |
()====()====[]====()
| | || |
| |(m,n)||(m,0)|
| | || |
()----()----()----()
v ->
vertex [] is no longer shared, therefore distribute
normals of the surrounding faces to all of the duplicates of []
*/
if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U))
{
vlr= RE_findOrAddVlak(re, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m,n) */
vlr1= RE_findOrAddVlak(re, UVTOINDEX(0,0)); /* (0,0) */
VecAddf(n1, vlr->n, vlr1->n);
vlr2= RE_findOrAddVlak(re, UVTOINDEX(0, sizev-1)); /* (0,n) */
VecAddf(n1, n1, vlr2->n);
vlr3= RE_findOrAddVlak(re, UVTOINDEX(sizeu-1, 0)); /* (m,0) */
VecAddf(n1, n1, vlr3->n);
VECCOPY(vlr->v3->n, n1);
VECCOPY(vlr1->v1->n, n1);
VECCOPY(vlr2->v2->n, n1);
VECCOPY(vlr3->v4->n, n1);
}
for(a = startvert; a < re->totvert; a++) {
ver= RE_findOrAddVert(re, a);
Normalise(ver->n);
}
return orcoret;
}
static void init_render_surf(Render *re, Object *ob)
{
extern Material defmaterial; // initrender.c
Nurb *nu=0;
Curve *cu;
ListBase displist;
DispList *dl;
Material *matar[32];
float *orco=NULL, *orcobase=NULL, mat[4][4];
int a, need_orco=0;
cu= ob->data;
nu= cu->nurb.first;
if(nu==0) return;
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
MTC_Mat4Invert(ob->imat, mat);
/* material array */
memset(matar, 0, 4*32);
matar[0]= &defmaterial;
for(a=0; a<ob->totcol; a++) {
matar[a]= give_render_material(re, ob, a+1);
if(matar[a] && matar[a]->texco & TEXCO_ORCO) {
need_orco= 1;
}
}
if(ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
if(need_orco) orcobase= orco= get_object_orco(re, ob);
displist.first= displist.last= 0;
makeDispListSurf(ob, &displist, 1);
dl= displist.first;
/* walk along displaylist and create rendervertices/-faces */
while(dl) {
/* watch out: u ^= y, v ^= x !! */
if(dl->type==DL_SURF) {
orco+= 3*dl_surf_to_renderdata(re, ob, dl, matar, orco, mat);
}
dl= dl->next;
}
freedisplist(&displist);
}
static void init_render_curve(Render *re, Object *ob, int only_verts)
{
extern Material defmaterial; // initrender.c
Curve *cu;
VertRen *ver;
VlakRen *vlr;
DispList *dl;
ListBase olddl={NULL, NULL};
Material *matar[32];
float len, *data, *fp, *orco=NULL;
float n[3], mat[4][4];
int nr, startvert, startvlak, a, b;
int frontside, need_orco=0;
cu= ob->data;
if(cu->nurb.first==NULL) return;
/* no modifier call here, is in makedisp */
if(cu->resolu_ren)
SWAP(ListBase, olddl, cu->disp);
/* test displist */
if(cu->disp.first==NULL)
makeDispListCurveTypes(ob, 0);
dl= cu->disp.first;
if(cu->disp.first==NULL) return;
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
MTC_Mat4Invert(ob->imat, mat);
/* material array */
memset(matar, 0, 4*32);
matar[0]= &defmaterial;
for(a=0; a<ob->totcol; a++) {
matar[a]= give_render_material(re, ob, a+1);
if(matar[a]->texco & TEXCO_ORCO) {
need_orco= 1;
}
}
if(need_orco) orco= get_object_orco(re, ob);
dl= cu->disp.first;
while(dl) {
if(dl->type==DL_INDEX3) {
int *index;
startvert= re->totvert;
data= dl->verts;
n[0]= ob->imat[0][2];
n[1]= ob->imat[1][2];
n[2]= ob->imat[2][2];
Normalise(n);
/* copy first, rotate later for comparision trick */
for(a=0; a<dl->nr; a++, data+=3) {
ver= RE_findOrAddVert(re, re->totvert++);
VECCOPY(ver->co, data);
MTC_Mat4MulVecfl(mat, ver->co);
if(ver->co[2] < 0.0) {
VECCOPY(ver->n, n);
ver->flag = 1;
}
else {
ver->n[0]= -n[0]; ver->n[1]= -n[1]; ver->n[2]= -n[2];
ver->flag = 0;
}
if (orco) {
ver->orco = orco;
orco += 3;
}
}
if(only_verts==0) {
startvlak= re->totvlak;
index= dl->index;
for(a=0; a<dl->parts; a++, index+=3) {
vlr= RE_findOrAddVlak(re, re->totvlak++);
vlr->ob = ob;
vlr->v1= RE_findOrAddVert(re, startvert+index[0]);
vlr->v2= RE_findOrAddVert(re, startvert+index[1]);
vlr->v3= RE_findOrAddVert(re, startvert+index[2]);
vlr->v4= NULL;
if(vlr->v1->flag) {
VECCOPY(vlr->n, n);
}
else {
vlr->n[0]= -n[0]; vlr->n[1]= -n[1]; vlr->n[2]= -n[2];
}
vlr->mat= matar[ dl->col ];
vlr->flag= 0;
if( (cu->flag & CU_NOPUNOFLIP) ) {
vlr->flag |= R_NOPUNOFLIP;
}
vlr->ec= 0;
vlr->lay= ob->lay;
}
}
}
else if (dl->type==DL_SURF) {
if (dl->flag & DL_CYCL_U) {
orco+= 3*dl_surf_to_renderdata(re, ob, dl, matar, orco, mat);
}
else {
int p1,p2,p3,p4;
fp= dl->verts;
startvert= re->totvert;
nr= dl->nr*dl->parts;
while(nr--) {
ver= RE_findOrAddVert(re, re->totvert++);
VECCOPY(ver->co, fp);
MTC_Mat4MulVecfl(mat, ver->co);
fp+= 3;
if (orco) {
ver->orco = orco;
orco += 3;
}
}
if(dl->bevelSplitFlag || only_verts==0) {
startvlak= re->totvlak;
for(a=0; a<dl->parts; a++) {
frontside= (a >= dl->nr/2);
DL_SURFINDEX(dl->flag & DL_CYCL_U, dl->flag & DL_CYCL_V, dl->nr, dl->parts);
p1+= startvert;
p2+= startvert;
p3+= startvert;
p4+= startvert;
for(; b<dl->nr; b++) {
vlr= RE_findOrAddVlak(re, re->totvlak++);
vlr->ob= ob;
vlr->v1= RE_findOrAddVert(re, p2);
vlr->v2= RE_findOrAddVert(re, p1);
vlr->v3= RE_findOrAddVert(re, p3);
vlr->v4= RE_findOrAddVert(re, p4);
vlr->ec= ME_V2V3+ME_V3V4;
if(a==0) vlr->ec+= ME_V1V2;
vlr->flag= dl->rt;
vlr->lay= ob->lay;
/* this is not really scientific: the vertices
* 2, 3 en 4 seem to give better vertexnormals than 1 2 3:
* front and backside treated different!!
*/
if(frontside)
CalcNormFloat(vlr->v2->co, vlr->v3->co, vlr->v4->co, vlr->n);
else
CalcNormFloat(vlr->v1->co, vlr->v2->co, vlr->v3->co, vlr->n);
vlr->mat= matar[ dl->col ];
p4= p3;
p3++;
p2= p1;
p1++;
}
}
if (dl->bevelSplitFlag) {
for(a=0; a<dl->parts-1+!!(dl->flag&DL_CYCL_V); a++)
if(dl->bevelSplitFlag[a>>5]&(1<<(a&0x1F)))
split_v_renderfaces(re, startvlak, startvert, dl->parts, dl->nr, a, dl->flag&DL_CYCL_V, dl->flag&DL_CYCL_U);
}
/* vertex normals */
for(a= startvlak; a<re->totvlak; a++) {
vlr= RE_findOrAddVlak(re, a);
VecAddf(vlr->v1->n, vlr->v1->n, vlr->n);
VecAddf(vlr->v3->n, vlr->v3->n, vlr->n);
VecAddf(vlr->v2->n, vlr->v2->n, vlr->n);
VecAddf(vlr->v4->n, vlr->v4->n, vlr->n);
}
for(a=startvert; a<re->totvert; a++) {
ver= RE_findOrAddVert(re, a);
len= Normalise(ver->n);
if(len==0.0) ver->flag= 1; /* flag use, its only used in zbuf now */
else ver->flag= 0;
}
for(a= startvlak; a<re->totvlak; a++) {
vlr= RE_findOrAddVlak(re, a);
if(vlr->v1->flag) VECCOPY(vlr->v1->n, vlr->n);
if(vlr->v2->flag) VECCOPY(vlr->v2->n, vlr->n);
if(vlr->v3->flag) VECCOPY(vlr->v3->n, vlr->n);
if(vlr->v4->flag) VECCOPY(vlr->v4->n, vlr->n);
}
}
}
}
dl= dl->next;
}
/* not very elegant... but we want original displist in UI */
if(cu->resolu_ren) {
freedisplist(&cu->disp);
SWAP(ListBase, olddl, cu->disp);
}
}
/* prevent phong interpolation for giving ray shadow errors (terminator problem) */
static void set_phong_threshold(Render *re, Object *ob, int startface, int numface, int startvert, int numvert )
{
// VertRen *ver;
VlakRen *vlr;
float thresh= 0.0, dot;
int tot=0, i;
/* Added check for 'pointy' situations, only dotproducts of 0.9 and larger
are taken into account. This threshold is meant to work on smooth geometry, not
for extreme cases (ton) */
for(i=startface; i<startface+numface; i++) {
vlr= RE_findOrAddVlak(re, i);
if(vlr->flag & R_SMOOTH) {
dot= INPR(vlr->n, vlr->v1->n);
dot= ABS(dot);
if(dot>0.9) {
thresh+= dot; tot++;
}
dot= INPR(vlr->n, vlr->v2->n);
dot= ABS(dot);
if(dot>0.9) {
thresh+= dot; tot++;
}
dot= INPR(vlr->n, vlr->v3->n);
dot= ABS(dot);
if(dot>0.9) {
thresh+= dot; tot++;
}
if(vlr->v4) {
dot= INPR(vlr->n, vlr->v4->n);
dot= ABS(dot);
if(dot>0.9) {
thresh+= dot; tot++;
}
}
}
}
if(tot) {
thresh/= (float)tot;
ob->smoothresh= cos(0.5*M_PI-acos(thresh));
}
}
/* par = pointer to duplicator parent, needed for object lookup table */
/* index = when duplicater copies same object (particle), the counter */
static void init_render_object(Render *re, Object *ob, Object *par, int index, int only_verts)
{
static double lasttime= 0.0;
double time;
float mat[4][4];
int startface, startvert;
startface=re->totvlak;
startvert=re->totvert;
ob->flag |= OB_DONE;
if(ob->type==OB_LAMP)
add_render_lamp(re, ob, 1);
else if ELEM(ob->type, OB_FONT, OB_CURVE)
init_render_curve(re, ob, only_verts);
else if(ob->type==OB_SURF)
init_render_surf(re, ob);
else if(ob->type==OB_MESH)
init_render_mesh(re, ob, only_verts);
else if(ob->type==OB_MBALL)
init_render_mball(re, ob);
else {
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
MTC_Mat4Invert(ob->imat, mat);
}
/* generic post process here */
if(startvert!=re->totvert) {
RE_addRenderObject(re, ob, par, index, startvert, re->totvert, startface, re->totvlak);
/* the exception below is because displace code now is in init_render_mesh call,
I will look at means to have autosmooth enabled for all object types
and have it as general postprocess, like displace */
if (ob->type!=OB_MESH && test_for_displace(re, ob ) )
do_displacement(re, ob, startface, re->totvlak-startface, startvert, re->totvert-startvert);
/* phong normal interpolation can cause error in tracing (terminator prob) */
ob->smoothresh= 0.0;
if( (re->r.mode & R_RAYTRACE) && (re->r.mode & R_SHADOW) )
set_phong_threshold(re, ob, startface, re->totvlak-startface, startvert, re->totvert-startvert);
}
time= PIL_check_seconds_timer();
if(time - lasttime > 1.0) {
lasttime= time;
/* clumsy copying still */
re->i.totvert= re->totvert;
re->i.totface= re->totvlak;
re->i.tothalo= re->tothalo;
re->i.totlamp= re->totlamp;
re->stats_draw(&re->i);
}
}
void RE_Database_Free(Render *re)
{
Object *ob = NULL;
GroupObject *go;
/* FREE */
if(re->memArena) {
BLI_memarena_free(re->memArena);
re->memArena = NULL;
}
for(go= re->lights.first; go; go= go->next) {
struct LampRen *lar= go->lampren;
freeshadowbuf(lar);
if(lar->jitter) MEM_freeN(lar->jitter);
MEM_freeN(lar);
}
BLI_freelistN(&re->lights);
free_renderdata_tables(re);
/* free orco. check all objects because of duplis and sets */
ob= G.main->object.first;
while(ob) {
if(ob->type==OB_MBALL) {
if(ob->disp.first && ob->disp.first!=ob->disp.last) {
DispList *dl= ob->disp.first;
BLI_remlink(&ob->disp, dl);
freedisplist(&ob->disp);
BLI_addtail(&ob->disp, dl);
}
}
ob= ob->id.next;
}
free_mesh_orco_hash(re);
end_radio_render();
end_render_materials();
if(re->wrld.aosphere) {
MEM_freeN(re->wrld.aosphere);
re->wrld.aosphere= NULL;
re->scene->world->aosphere= NULL;
}
if(re->r.mode & R_RAYTRACE) freeoctree(re);
re->totvlak=re->totvert=re->totlamp=re->tothalo= 0;
re->i.convertdone= 0;
//if(re->scene->r.scemode & R_FREE_IMAGE)
if((re->r.scemode & R_PREVIEWBUTS)==0)
free_all_imagetextures();
}
/* per face check if all samples should be taken.
if raytrace, do always for raytraced material, or when material full_osa set */
static void set_fullsample_flag(Render *re)
{
VlakRen *vlr;
int a, trace;
trace= re->r.mode & R_RAYTRACE;
for(a=re->totvlak-1; a>=0; a--) {
vlr= RE_findOrAddVlak(re, a);
if(vlr->mat->mode & MA_FULL_OSA) vlr->flag |= R_FULL_OSA;
else if(trace) {
if(vlr->mat->mode & MA_SHLESS);
else if(vlr->mat->mode & (MA_RAYTRANSP|MA_RAYMIRROR|MA_SHADOW))
vlr->flag |= R_FULL_OSA;
}
}
}
/* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp */
#ifdef FLT_EPSILON
#undef FLT_EPSILON
#endif
#define FLT_EPSILON 1.19209290e-06F
static void check_non_flat_quads(Render *re)
{
VlakRen *vlr, *vlr1;
VertRen *v1, *v2, *v3, *v4;
float nor[3], xn, flen;
int a;
for(a=re->totvlak-1; a>=0; a--) {
vlr= RE_findOrAddVlak(re, a);
/* test if rendering as a quad or triangle, skip wire */
if(vlr->v4 && (vlr->flag & R_STRAND)==0 && (vlr->mat->mode & MA_WIRE)==0) {
/* check if quad is actually triangle */
v1= vlr->v1;
v2= vlr->v2;
v3= vlr->v3;
v4= vlr->v4;
VECSUB(nor, v1->co, v2->co);
if( ABS(nor[0])<FLT_EPSILON && ABS(nor[1])<FLT_EPSILON && ABS(nor[2])<FLT_EPSILON ) {
vlr->v1= v2;
vlr->v2= v3;
vlr->v3= v4;
vlr->v4= NULL;
}
else {
VECSUB(nor, v2->co, v3->co);
if( ABS(nor[0])<FLT_EPSILON && ABS(nor[1])<FLT_EPSILON && ABS(nor[2])<FLT_EPSILON ) {
vlr->v2= v3;
vlr->v3= v4;
vlr->v4= NULL;
}
else {
VECSUB(nor, v3->co, v4->co);
if( ABS(nor[0])<FLT_EPSILON && ABS(nor[1])<FLT_EPSILON && ABS(nor[2])<FLT_EPSILON ) {
vlr->v4= NULL;
}
else {
VECSUB(nor, v4->co, v1->co);
if( ABS(nor[0])<FLT_EPSILON && ABS(nor[1])<FLT_EPSILON && ABS(nor[2])<FLT_EPSILON ) {
vlr->v4= NULL;
}
}
}
}
if(vlr->v4) {
/* Face is divided along edge with the least gradient */
/* Flagged with R_DIVIDE_24 if divide is from vert 2 to 4 */
/* 4---3 4---3 */
/* |\ 1| or |1 /| */
/* |0\ | |/ 0| */
/* 1---2 1---2 0 = orig face, 1 = new face */
/* render normals are inverted in render! we calculate normal of single tria here */
flen= CalcNormFloat(vlr->v4->co, vlr->v3->co, vlr->v1->co, nor);
if(flen==0.0) CalcNormFloat(vlr->v4->co, vlr->v2->co, vlr->v1->co, nor);
xn= nor[0]*vlr->n[0] + nor[1]*vlr->n[1] + nor[2]*vlr->n[2];
if(ABS(xn) < 0.999995 ) { // checked on noisy fractal grid
float d1, d2;
vlr1= RE_findOrAddVlak(re, re->totvlak++);
*vlr1= *vlr;
vlr1->flag |= R_FACE_SPLIT;
/* split direction based on vnorms */
CalcNormFloat(vlr->v1->co, vlr->v2->co, vlr->v3->co, nor);
d1= nor[0]*vlr->v1->n[0] + nor[1]*vlr->v1->n[1] + nor[2]*vlr->v1->n[2];
CalcNormFloat(vlr->v2->co, vlr->v3->co, vlr->v4->co, nor);
d2= nor[0]*vlr->v2->n[0] + nor[1]*vlr->v2->n[1] + nor[2]*vlr->v2->n[2];
if( fabs(d1) < fabs(d2) ) vlr->flag |= R_DIVIDE_24;
else vlr->flag &= ~R_DIVIDE_24;
/* new vertex pointers */
if (vlr->flag & R_DIVIDE_24) {
vlr1->v1= vlr->v2;
vlr1->v2= vlr->v3;
vlr1->v3= vlr->v4;
vlr->v3 = vlr->v4;
vlr1->flag |= R_DIVIDE_24;
}
else {
vlr1->v1= vlr->v1;
vlr1->v2= vlr->v3;
vlr1->v3= vlr->v4;
vlr1->flag &= ~R_DIVIDE_24;
}
vlr->v4 = vlr1->v4 = NULL;
/* new normals */
CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
CalcNormFloat(vlr1->v3->co, vlr1->v2->co, vlr1->v1->co, vlr1->n);
/* so later UV can be pulled from original tface, look for R_DIVIDE_24 for direction */
vlr1->tface=vlr->tface;
}
/* clear the flag when not divided */
else vlr->flag &= ~R_DIVIDE_24;
}
}
}
}
static void set_material_lightgroups(Render *re)
{
GroupObject *go, *gol;
Material *ma;
/* it's a bit too many loops in loops... but will survive */
for(ma= G.main->mat.first; ma; ma=ma->id.next) {
if(ma->group) {
for(go= ma->group->gobject.first; go; go= go->next) {
go->lampren= NULL;
for(gol= re->lights.first; gol; gol= gol->next) {
if(gol->ob==go->ob) {
go->lampren= gol->lampren;
break;
}
}
}
}
}
}
void init_render_world(Render *re)
{
int a;
char *cp;
if(re->scene && re->scene->world) {
re->wrld= *(re->scene->world);
cp= (char *)&re->wrld.fastcol;
cp[0]= 255.0*re->wrld.horr;
cp[1]= 255.0*re->wrld.horg;
cp[2]= 255.0*re->wrld.horb;
cp[3]= 1;
VECCOPY(re->grvec, re->viewmat[2]);
Normalise(re->grvec);
Mat3CpyMat4(re->imat, re->viewinv);
for(a=0; a<MAX_MTEX; a++)
if(re->wrld.mtex[a] && re->wrld.mtex[a]->tex) re->wrld.skytype |= WO_SKYTEX;
while(re->wrld.aosamp*re->wrld.aosamp < re->osa) re->wrld.aosamp++;
}
else {
memset(&re->wrld, 0, sizeof(World));
re->wrld.exp= 0.0;
re->wrld.range= 1.0;
}
re->wrld.linfac= 1.0 + pow((2.0*re->wrld.exp + 0.5), -10);
re->wrld.logfac= log( (re->wrld.linfac-1.0)/re->wrld.linfac )/re->wrld.range;
}
/* used to be 'rotate scene' */
void RE_Database_FromScene(Render *re, Scene *scene, int use_camera_view)
{
extern int slurph_opt; /* key.c */
GroupObject *go;
Base *base;
Object *ob;
Scene *sce;
float mat[4][4];
unsigned int lay;
re->scene= scene;
/* per second, per object, stats print this */
re->i.infostr= "Preparing Scene data";
/* XXX add test if dbase was filled already? */
re->memArena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE);
re->totvlak=re->totvert=re->totlamp=re->tothalo= 0;
re->lights.first= re->lights.last= NULL;
slurph_opt= 0;
/* in localview, lamps are using normal layers, objects only local bits */
if(re->scene->lay & 0xFF000000) lay= re->scene->lay & 0xFF000000;
else lay= re->scene->lay;
/* applies changes fully */
if((re->r.scemode & R_PREVIEWBUTS)==0)
scene_update_for_newframe(re->scene, lay);
/* if no camera, viewmat should have been set! */
if(use_camera_view && re->scene->camera) {
Mat4Ortho(re->scene->camera->obmat);
Mat4Invert(mat, re->scene->camera->obmat);
RE_SetView(re, mat);
}
init_render_world(re); /* do first, because of ambient. also requires re->osa set correct */
if( (re->wrld.mode & WO_AMB_OCC) && (re->r.mode & R_RAYTRACE) ) {
re->wrld.aosphere= MEM_mallocN(2*3*re->wrld.aosamp*re->wrld.aosamp*sizeof(float), "AO sphere");
/* we make twice the amount of samples, because only a hemisphere is used */
init_ao_sphere(re->wrld.aosphere, 2*re->wrld.aosamp*re->wrld.aosamp, 16);
}
/* still bad... doing all */
init_render_textures(re);
init_render_materials(re->osa, &re->wrld.ambr);
set_node_shader_lamp_loop(shade_material_loop);
for(SETLOOPER(re->scene, base)) {
ob= base->object;
/* imat objects has to be done here, since displace can have texture using Object map-input */
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
MTC_Mat4Invert(ob->imat, mat);
/* each object should only be rendered once */
ob->flag &= ~OB_DONE;
}
/* MAKE RENDER DATA */
for(SETLOOPER(re->scene, base)) {
ob= base->object;
/* OB_DONE means the object itself got duplicated, so was already converted */
if(ob->flag & OB_DONE);
else if( (base->lay & lay) || (ob->type==OB_LAMP && (base->lay & re->scene->lay)) ) {
if(ob->transflag & OB_DUPLI) {
/* exception: mballs! */
/* yafray: Include at least one copy of a dupliframe object for yafray in the renderlist.
mballs comment above true as well for yafray, they are not included, only all other object types */
if (re->r.renderer==R_YAFRAY) {
if ((ob->type!=OB_MBALL) && ((ob->transflag & OB_DUPLIFRAMES)!=0)) {
printf("Object %s has OB_DUPLIFRAMES set, adding to renderlist\n", ob->id.name);
init_render_object(re, ob, NULL, 0, 0);
}
}
/* before make duplis, update particle for current frame */
if(ob->transflag & OB_DUPLIVERTS) {
PartEff *paf= give_parteff(ob);
if(paf) {
if(paf->flag & PAF_ANIMATED) build_particle_system(ob);
}
}
if(ob->type==OB_MBALL) {
init_render_object(re, ob, NULL, 0, 0);
}
else {
DupliObject *dob;
ListBase *lb= object_duplilist(sce, ob);
for(dob= lb->first; dob; dob= dob->next) {
Object *obd= dob->ob;
Mat4CpyMat4(obd->obmat, dob->mat);
if(obd->type!=OB_MBALL) {
/* yafray: special handling of duplivert objects for yafray:
only the matrix is stored, together with the source object name.
Since the original object is needed as well, it is included in the renderlist (see above)
NOT done for lamps, these need to be included as normal lamps separately
correction: also ignore lattices, armatures and cameras (....) */
if ((obd->type!=OB_LATTICE) && (obd->type!=OB_ARMATURE) &&
(obd->type!=OB_LAMP) && (obd->type!=OB_CAMERA) && (re->r.renderer==R_YAFRAY))
{
printf("Adding dupli matrix for object %s\n", obd->id.name);
YAF_addDupliMtx(obd);
}
else init_render_object(re, obd, ob, dob->index, 0);
}
if(re->test_break()) break;
}
free_object_duplilist(lb);
}
}
else {
/* yafray: if there are linked data objects (except lamps, empties or armatures),
yafray only needs to know about one, the rest can be instanciated.
The dupliMtx list is used for this purpose.
Exception: objects which have object linked materials, these cannot be instanciated. */
if ((re->r.renderer==R_YAFRAY) && (ob->colbits==0))
{
/* Special case, parent object dupli's: ignore if object itself is lamp or parent is lattice or empty */
if (ob->parent) {
if ((ob->type!=OB_LAMP) && (ob->parent->type!=OB_EMPTY) &&
(ob->parent->type!=OB_LATTICE) && YAF_objectKnownData(ob))
printf("From parent: Added dupli matrix for linked data object %s\n", ob->id.name);
else
init_render_object(re, ob, NULL, 0, 0);
}
else if ((ob->type!=OB_EMPTY) && (ob->type!=OB_LAMP) && (ob->type!=OB_ARMATURE) && YAF_objectKnownData(ob))
printf("Added dupli matrix for linked data object %s\n", ob->id.name);
else
init_render_object(re, ob, NULL, 0, 0);
}
else init_render_object(re, ob, NULL, 0, 0);
}
}
if(re->test_break()) break;
}
if(!re->test_break()) {
sort_halos(re);
set_material_lightgroups(re);
slurph_opt= 1;
/* for now some clumsy copying still */
re->i.totvert= re->totvert;
re->i.totface= re->totvlak;
re->i.tothalo= re->tothalo;
re->i.totlamp= re->totlamp;
re->stats_draw(&re->i);
set_fullsample_flag(re);
check_non_flat_quads(re);
set_normalflags(re);
re->i.infostr= "Creating Shadowbuffers";
re->stats_draw(&re->i);
/* SHADOW BUFFER */
for(go=re->lights.first; go; go= go->next) {
LampRen *lar= go->lampren;
if(re->test_break()) break;
if(lar->shb) {
makeshadowbuf(re, lar);
}
}
/* yafray: 'direct' radiosity, environment maps and octree init not needed for yafray render */
/* although radio mode could be useful at some point, later */
if (re->r.renderer==R_INTERN) {
/* RADIO (uses no R anymore) */
if(!re->test_break())
if(re->r.mode & R_RADIO) do_radio_render(re);
/* octree */
if(!re->test_break()) {
if(re->r.mode & R_RAYTRACE) {
makeoctree(re);
}
}
/* ENVIRONMENT MAPS */
if(!re->test_break())
make_envmaps(re);
}
if(!re->test_break())
project_renderdata(re, projectverto, re->r.mode & R_PANORAMA, 0);
}
if(re->test_break())
RE_Database_Free(re);
else
re->i.convertdone= 1;
re->i.infostr= NULL;
re->stats_draw(&re->i);
}
static void database_fromscene_vectors(Render *re, Scene *scene, int timeoffset)
{
extern int slurph_opt; /* key.c */
Base *base;
Object *ob;
Scene *sce;
float mat[4][4];
unsigned int lay;
re->scene= scene;
/* XXX add test if dbase was filled already? */
re->memArena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE);
re->totvlak=re->totvert=re->totlamp=re->tothalo= 0;
re->i.totface=re->i.totvert=re->i.totlamp=re->i.tothalo= 0;
re->lights.first= re->lights.last= NULL;
slurph_opt= 0;
/* in localview, lamps are using normal layers, objects only local bits */
if(re->scene->lay & 0xFF000000) lay= re->scene->lay & 0xFF000000;
else lay= re->scene->lay;
/* applies changes fully, still using G.scene for timing... */
G.scene->r.cfra+=timeoffset;
scene_update_for_newframe(re->scene, lay);
/* if no camera, viewmat should have been set! */
if(re->scene->camera) {
Mat4Ortho(re->scene->camera->obmat);
Mat4Invert(mat, re->scene->camera->obmat);
RE_SetView(re, mat);
}
for(SETLOOPER(re->scene, base)) {
ob= base->object;
/* imat objects has to be done here, since displace can have texture using Object map-input */
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
MTC_Mat4Invert(ob->imat, mat);
/* each object should only be rendered once */
ob->flag &= ~OB_DONE;
}
/* MAKE RENDER DATA */
for(SETLOOPER(re->scene, base)) {
ob= base->object;
/* OB_DONE means the object itself got duplicated, so was already converted */
if(ob->flag & OB_DONE);
else if( (base->lay & lay) || (ob->type==OB_LAMP && (base->lay & re->scene->lay)) ) {
if(ob->transflag & OB_DUPLI) {
/* before make duplis, update particle for current frame */
if(ob->transflag & OB_DUPLIVERTS) {
PartEff *paf= give_parteff(ob);
if(paf) {
if(paf->flag & PAF_ANIMATED) build_particle_system(ob);
}
}
if(ob->type==OB_MBALL) {
init_render_object(re, ob, NULL, 0, 1);
}
else {
DupliObject *dob;
ListBase *lb= object_duplilist(sce, ob);
for(dob= lb->first; dob; dob= dob->next) {
Object *obd= dob->ob;
Mat4CpyMat4(obd->obmat, dob->mat);
if(obd->type!=OB_MBALL) {
init_render_object(re, obd, ob, dob->index, 1);
}
}
free_object_duplilist(lb);
}
}
else {
init_render_object(re, ob, NULL, 0, 1);
}
}
if(re->test_break()) break;
}
if(!re->test_break())
project_renderdata(re, projectverto, re->r.mode & R_PANORAMA, 0);
/* do this in end, particles for example need cfra */
G.scene->r.cfra-=timeoffset;
}
/* choose to use static, to prevent giving too many args to this call */
static void speedvector_project(Render *re, float *zco, VertRen *ver)
{
static float pixelphix=0.0f, pixelphiy=0.0f, zmulx=0.0f, zmuly=0.0f;
static int pano= 0;
float div;
/* initialize */
if(re) {
pano= re->r.mode & R_PANORAMA;
/* precalculate amount of radians 1 pixel rotates */
if(pano) {
/* size of 1 pixel mapped to viewplane coords */
float psize= (re->viewplane.xmax-re->viewplane.xmin)/(float)re->winx;
/* x angle of a pixel */
pixelphix= atan(psize/re->clipsta);
psize= (re->viewplane.ymax-re->viewplane.ymin)/(float)re->winy;
/* y angle of a pixel */
pixelphiy= atan(psize/re->clipsta);
}
zmulx= re->winx/2;
zmuly= re->winy/2;
return;
}
/* now map hocos to screenspace, uses very primitive clip still */
if(ver->ho[3]<0.1f) div= 10.0f;
else div= 1.0f/ver->ho[3];
/* use cylinder projection */
if(pano) {
float vec[3], ang;
/* angle between (0,0,-1) and (ver->co) */
VECCOPY(vec, ver->co);
ang= saacos(-vec[2]/sqrt(vec[0]*vec[0] + vec[2]*vec[2]));
if(vec[0]<0.0f) ang= -ang;
zco[0]= ang/pixelphix + zmulx;
ang= 0.5f*M_PI - saacos(vec[1]/sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]));
zco[1]= ang/pixelphiy + zmuly;
}
else {
zco[0]= zmulx*(1.0f+ver->ho[0]*div);
zco[1]= zmuly*(1.0f+ver->ho[1]*div);
}
}
static void calculate_speedvectors(Render *re, float *vectors, int startvert, int endvert, int step)
{
VertRen *ver= NULL;
float *speed, zco[2];
float len;
float winsq= re->winx*re->winy, winroot= sqrt(winsq);
int a;
/* set first vertex OK */
a= startvert-1;
ver= re->vertnodes[a>>8].vert + (a & 255);
for(a=startvert; a<endvert; a++, vectors+=2) {
if((a & 255)==0)
ver= re->vertnodes[a>>8].vert;
else
ver++;
speedvector_project(NULL, zco, ver);
zco[0]= vectors[0] - zco[0];
zco[1]= vectors[1] - zco[1];
/* enable nice masks for hardly moving stuff or float inaccuracy */
if(zco[0]<0.1f && zco[0]>-0.1f && zco[1]<0.1f && zco[1]>-0.1f ) {
zco[0]= 0.0f;
zco[1]= 0.0f;
}
/* maximize speed for image width, otherwise it never looks good */
len= zco[0]*zco[0] + zco[1]*zco[1];
if(len > winsq) {
len= winroot/sqrt(len);
zco[0]*= len;
zco[1]*= len;
}
speed= RE_vertren_get_winspeed(re, ver, 1);
/* note; in main vecblur loop speedvec is negated again */
if(step) {
speed[2]= -zco[0];
speed[3]= -zco[1];
}
else {
speed[0]= zco[0];
speed[1]= zco[1];
}
}
}
static int load_fluidsimspeedvectors(Render *re, float *vectors, int startvert, int endvert, int step, Object *fsob)
{
VertRen *ver= NULL;
float *speed, div, zco[2];
float zmulx= re->winx/2, zmuly= re->winy/2, len;
float winsq= re->winx*re->winy, winroot= sqrt(winsq);
int a, j;
float hoco[4], fsvec[4], camco[4];
float mat[4][4];
float imat[4][4];
MVert *vverts;
/* only one step needed */
if(step) return 1;
Mat4CpyMat4(mat, re->viewmat);
MTC_Mat4Invert(imat, mat);
/* set first vertex OK */
a= startvert-1;
ver= re->vertnodes[a>>8].vert + (a & 255);
if( (!fsob->fluidsimSettings) || (!fsob->fluidsimSettings->meshSurfNormals) ) return 0;
vverts = fsob->fluidsimSettings->meshSurfNormals;
//fprintf(stderr, "GZ_VEL obj '%s', calc load_fluidsimspeedvectors\n",fsob->id.name); // NT DEBUG
if( endvert-startvert != fsob->fluidsimSettings->meshSurface->totvert ) {
//fprintf(stderr, "load_fluidsimspeedvectors - modified fluidsim mesh, not using speed vectors (%d,%d)...\n", endvert-startvert , fsob->fluidsimSettings->meshSurface->totvert); // DEBUG
return 0;
}
for(a=startvert; a<endvert; a++, vectors+=2) {
if((a & 255)==0)
ver= re->vertnodes[a>>8].vert;
else
ver++;
// get fluid velocity
fsvec[3] = 0.;
//fsvec[0] = fsvec[1] = fsvec[2] = fsvec[3] = 0.; fsvec[2] = 2.; // NT fixed test
for(j=0;j<3;j++) fsvec[j] = vverts[a-startvert].co[j];
// transform (=rotate) to cam space
camco[0]= imat[0][0]*fsvec[0] + imat[0][1]*fsvec[1] + imat[0][2]*fsvec[2];
camco[1]= imat[1][0]*fsvec[0] + imat[1][1]*fsvec[1] + imat[1][2]*fsvec[2];
camco[2]= imat[2][0]*fsvec[0] + imat[2][1]*fsvec[1] + imat[2][2]*fsvec[2];
// get homogenous coordinates
projectverto(camco, re->winmat, hoco);
/* now map hocos to screenspace, uses very primitive clip still */
// use ho[3] of original vertex, xy component of vel. direction
if(ver->ho[3]<0.1f) div= 10.0f;
else div= 1.0f/ver->ho[3];
zco[0]= zmulx*hoco[0]*div;
zco[1]= zmuly*hoco[1]*div;
// maximize speed as usual
len= zco[0]*zco[0] + zco[1]*zco[1];
if(len > winsq) {
len= winroot/sqrt(len);
zco[0]*= len; zco[1]*= len;
}
speed= RE_vertren_get_winspeed(re, ver, 1);
// set both to the same value
speed[0]= speed[2]= zco[0];
speed[1]= speed[3]= zco[1];
//if(a<20) fprintf(stderr,"speed %d %f,%f | camco %f,%f,%f | hoco %f,%f,%f,%f \n", a, speed[0], speed[1], camco[0],camco[1], camco[2], hoco[0],hoco[1], hoco[2],hoco[3]); // NT DEBUG
}
return 1;
}
/* makes copy per object of all vectors */
/* result should be that we can free entire database */
static void copy_dbase_object_vectors(Render *re, ListBase *lb)
{
ObjectRen *obren, *obrenlb;
VertRen *ver;
float *vec;
int a;
for(obren= re->objecttable.first; obren; obren= obren->next) {
obrenlb= MEM_dupallocN(obren);
BLI_addtail(lb, obrenlb);
if(obren->endvert>obren->startvert) {
vec= obrenlb->vectors= MEM_mallocN(2*sizeof(float)*(obren->endvert- obren->startvert), "vector array");
/* first vertex */
a= obren->startvert-1;
ver= re->vertnodes[a>>8].vert + (a & 255);
for(a=obren->startvert; a<obren->endvert; a++, vec+=2) {
if((a & 255)==0)
ver= re->vertnodes[a>>8].vert;
else
ver++;
speedvector_project(NULL, vec, ver);
}
}
}
}
static void free_dbase_object_vectors(ListBase *lb)
{
ObjectRen *obren;
for(obren= lb->first; obren; obren= obren->next)
if(obren->vectors)
MEM_freeN(obren->vectors);
BLI_freelistN(lb);
}
void RE_Database_FromScene_Vectors(Render *re, Scene *sce)
{
ObjectRen *obren, *oldobren;
ListBase *table;
ListBase oldtable= {NULL, NULL}, newtable= {NULL, NULL};
int step;
re->i.infostr= "Calculating previous vectors";
re->r.mode |= R_SPEED;
speedvector_project(re, NULL, NULL); /* initializes projection code */
/* creates entire dbase */
database_fromscene_vectors(re, sce, -1);
/* copy away vertex info */
copy_dbase_object_vectors(re, &oldtable);
/* free dbase and make the future one */
RE_Database_Free(re);
if(!re->test_break()) {
/* creates entire dbase */
re->i.infostr= "Calculating next frame vectors";
database_fromscene_vectors(re, sce, +1);
}
/* copy away vertex info */
copy_dbase_object_vectors(re, &newtable);
/* free dbase and make the real one */
RE_Database_Free(re);
if(!re->test_break())
RE_Database_FromScene(re, sce, 1);
if(!re->test_break()) {
for(step= 0; step<2; step++) {
if(step)
table= &newtable;
else
table= &oldtable;
oldobren= table->first;
for(obren= re->objecttable.first; obren && oldobren; obren= obren->next, oldobren= oldobren->next) {
int ok= 1;
/* find matching object in old table */
if(oldobren->ob!=obren->ob || oldobren->par!=obren->par || oldobren->index!=obren->index) {
ok= 0;
for(oldobren= table->first; oldobren; oldobren= oldobren->next)
if(oldobren->ob==obren->ob && oldobren->par==obren->par && oldobren->index==obren->index)
break;
if(oldobren==NULL)
oldobren= table->first;
else
ok= 1;
}
if(ok==0) {
// printf("speed table: missing object %s\n", obren->ob->id.name+2);
continue;
}
// NT check for fluidsim special treatment
if((obren->ob->fluidsimFlag & OB_FLUIDSIM_ENABLE) && (obren->ob->fluidsimSettings->type & OB_FLUIDSIM_DOMAIN)) {
// use preloaded per vertex simulation data , only does calculation for step=1
// NOTE/FIXME - velocities and meshes loaded unnecessarily often during the database_fromscene_vectors calls...
load_fluidsimspeedvectors(re, oldobren->vectors, obren->startvert, obren->endvert, step, obren->ob);
} else {
/* check if both have same amounts of vertices */
if(obren->endvert-obren->startvert != oldobren->endvert-oldobren->startvert) {
printf("Warning: object %s has different amount of vertices on other frame\n", obren->ob->id.name+2);
continue;
}
calculate_speedvectors(re, oldobren->vectors, obren->startvert, obren->endvert, step);
} // not fluidsim
}
}
}
free_dbase_object_vectors(&oldtable);
free_dbase_object_vectors(&newtable);
re->i.infostr= NULL;
re->stats_draw(&re->i);
}
/* exported call to recalculate hoco for vertices, when winmat changed */
void RE_DataBase_ApplyWindow(Render *re)
{
project_renderdata(re, projectverto, 0, 0);
}
/* **************************************************************** */
/* Displacement mapping */
/* **************************************************************** */
static short test_for_displace(Render *re, Object *ob)
{
/* return 1 when this object uses displacement textures. */
Material *ma;
int i;
for (i=1; i<=ob->totcol; i++) {
ma=give_render_material(re, ob, i);
/* ma->mapto is ORed total of all mapto channels */
if(ma && (ma->mapto & MAP_DISPLACE)) return 1;
}
return 0;
}
static void displace_render_vert(Render *re, ShadeInput *shi, VertRen *vr, float *scale)
{
short texco= shi->mat->texco;
float sample=0;
/* shi->co is current render coord, just make sure at least some vector is here */
VECCOPY(shi->co, vr->co);
/* vertex normal is used for textures type 'col' and 'var' */
VECCOPY(shi->vn, vr->n);
/* set all rendercoords, 'texco' is an ORed value for all textures needed */
if ((texco & TEXCO_ORCO) && (vr->orco)) {
VECCOPY(shi->lo, vr->orco);
}
if (texco & TEXCO_STICKY) {
float *sticky= RE_vertren_get_sticky(re, vr, 0);
if(sticky) {
shi->sticky[0]= sticky[0];
shi->sticky[1]= sticky[1];
shi->sticky[2]= 0.0f;
}
}
if (texco & TEXCO_GLOB) {
VECCOPY(shi->gl, shi->co);
MTC_Mat4MulVecfl(re->viewinv, shi->gl);
}
if (texco & TEXCO_NORM) {
VECCOPY(shi->orn, shi->vn);
}
if(texco & TEXCO_REFL) {
/* not (yet?) */
}
shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
do_material_tex(shi);
//printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2],
//vr->co[0], vr->co[1], vr->co[2]);
/* 0.5 could become button once? */
vr->co[0] += shi->displace[0] * scale[0] ;
vr->co[1] += shi->displace[1] * scale[1] ;
vr->co[2] += shi->displace[2] * scale[2] ;
//printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]);
/* we just don't do this vertex again, bad luck for other face using same vertex with
different material... */
vr->flag |= 1;
/* Pass sample back so displace_face can decide which way to split the quad */
sample = shi->displace[0]*shi->displace[0];
sample += shi->displace[1]*shi->displace[1];
sample += shi->displace[2]*shi->displace[2];
vr->accum=sample;
/* Should be sqrt(sample), but I'm only looking for "bigger". Save the cycles. */
return;
}
static void displace_render_face(Render *re, VlakRen *vlr, float *scale)
{
ShadeInput shi;
// VertRen vr;
// float samp1,samp2, samp3, samp4, xn;
short hasuv=0;
/* set up shadeinput struct for multitex() */
shi.osatex= 0; /* signal not to use dx[] and dy[] texture AA vectors */
shi.vlr= vlr; /* current render face */
shi.mat= vlr->mat; /* current input material */
/* UV coords must come from face */
hasuv = vlr->tface && (shi.mat->texco & TEXCO_UV);
if (hasuv) shi.uv[2]=0.0f;
/* I don't think this is used, but seting it just in case */
/* Displace the verts, flag is set when done */
if (! (vlr->v1->flag)){
if (hasuv) {
shi.uv[0] = 2*vlr->tface->uv[0][0]-1.0f; /* shi.uv and tface->uv are */
shi.uv[1]= 2*vlr->tface->uv[0][1]-1.0f; /* scalled differently */
}
displace_render_vert(re, &shi, vlr->v1, scale);
}
if (! (vlr->v2->flag)) {
if (hasuv) {
shi.uv[0] = 2*vlr->tface->uv[1][0]-1.0f;
shi.uv[1]= 2*vlr->tface->uv[1][1]-1.0f;
}
displace_render_vert(re, &shi, vlr->v2, scale);
}
if (! (vlr->v3->flag)) {
if (hasuv) {
shi.uv[0] = 2*vlr->tface->uv[2][0]-1.0f;
shi.uv[1]= 2*vlr->tface->uv[2][1]-1.0f;
}
displace_render_vert(re, &shi, vlr->v3, scale);
}
if (vlr->v4) {
if (! (vlr->v4->flag)) {
if (hasuv) {
shi.uv[0] = 2*vlr->tface->uv[3][0]-1.0f;
shi.uv[1]= 2*vlr->tface->uv[3][1]-1.0f;
}
displace_render_vert(re, &shi, vlr->v4, scale);
}
/* We want to split the quad along the opposite verts that are */
/* closest in displace value. This will help smooth edges. */
if ( fabs(vlr->v1->accum - vlr->v3->accum) > fabs(vlr->v2->accum - vlr->v4->accum))
vlr->flag |= R_DIVIDE_24;
else vlr->flag &= ~R_DIVIDE_24; // E: typo?, was missing '='
}
/* Recalculate the face normal - if flipped before, flip now */
if(vlr->v4) {
CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
}
else {
CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
}
}
static void do_displacement(Render *re, Object *ob, int startface, int numface, int startvert, int numvert )
{
VertRen *vr;
VlakRen *vlr;
// float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
int i; //, texflag=0;
Object *obt;
/* Object Size with parenting */
obt=ob;
while(obt){
VecAddf(temp, obt->size, obt->dsize);
scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
obt=obt->parent;
}
/* Clear all flags */
for(i=startvert; i<startvert+numvert; i++){
vr= RE_findOrAddVert(re, i);
vr->flag= 0;
}
for(i=startface; i<startface+numface; i++){
vlr=RE_findOrAddVlak(re, i);
displace_render_face(re, vlr, scale);
}
/* Recalc vertex normals */
calc_vertexnormals(re, startvert, startface, 0);
}