do_texture_effector assumed multitex_ext would assign r/g/b colors which isnt true for grey textures. Fallback to PFIELD_TEX_GRAD with grey textures, node this in tooltip also.
		
			
				
	
	
		
			4623 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4623 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* particle_system.c
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * $Id: particle_system.c $
 | 
						|
 *
 | 
						|
 * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version. The Blender
 | 
						|
 * Foundation also sells licenses for use in proprietary software under
 | 
						|
 * the Blender License.  See http://www.blender.org/BL/ for information
 | 
						|
 * about this.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2007 by Janne Karhu.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * The Original Code is: all of this file.
 | 
						|
 *
 | 
						|
 * Contributor(s): none yet.
 | 
						|
 *
 | 
						|
 * ***** END GPL/BL DUAL LICENSE BLOCK *****
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdlib.h>
 | 
						|
#include <math.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#include "MEM_guardedalloc.h"
 | 
						|
 | 
						|
#include "DNA_particle_types.h"
 | 
						|
#include "DNA_mesh_types.h"
 | 
						|
#include "DNA_meshdata_types.h"
 | 
						|
#include "DNA_modifier_types.h"
 | 
						|
#include "DNA_object_force.h"
 | 
						|
#include "DNA_object_types.h"
 | 
						|
#include "DNA_material_types.h"
 | 
						|
#include "DNA_ipo_types.h"
 | 
						|
#include "DNA_curve_types.h"
 | 
						|
#include "DNA_group_types.h"
 | 
						|
#include "DNA_scene_types.h"
 | 
						|
#include "DNA_texture_types.h"
 | 
						|
 | 
						|
#include "BLI_rand.h"
 | 
						|
#include "BLI_jitter.h"
 | 
						|
#include "BLI_arithb.h"
 | 
						|
#include "BLI_blenlib.h"
 | 
						|
#include "BLI_kdtree.h"
 | 
						|
#include "BLI_linklist.h"
 | 
						|
#include "BLI_threads.h"
 | 
						|
 | 
						|
#include "BKE_anim.h"
 | 
						|
#include "BKE_bad_level_calls.h"
 | 
						|
#include "BKE_cdderivedmesh.h"
 | 
						|
#include "BKE_displist.h"
 | 
						|
#include "BKE_particle.h"
 | 
						|
#include "BKE_global.h"
 | 
						|
#include "BKE_utildefines.h"
 | 
						|
#include "BKE_DerivedMesh.h"
 | 
						|
#include "BKE_object.h"
 | 
						|
#include "BKE_material.h"
 | 
						|
#include "BKE_ipo.h"
 | 
						|
#include "BKE_softbody.h"
 | 
						|
#include "BKE_depsgraph.h"
 | 
						|
#include "BKE_lattice.h"
 | 
						|
#include "BKE_pointcache.h"
 | 
						|
#include "BKE_mesh.h"
 | 
						|
#include "BKE_modifier.h"
 | 
						|
#include "BKE_scene.h"
 | 
						|
 | 
						|
#include "BSE_headerbuttons.h"
 | 
						|
 | 
						|
#include "blendef.h"
 | 
						|
 | 
						|
#include "RE_shader_ext.h"
 | 
						|
 | 
						|
/************************************************/
 | 
						|
/*			Reacting to system events			*/
 | 
						|
/************************************************/
 | 
						|
 | 
						|
static int get_current_display_percentage(ParticleSystem *psys)
 | 
						|
{
 | 
						|
	ParticleSettings *part=psys->part;
 | 
						|
 | 
						|
	if(psys->renderdata || (part->child_nbr && part->childtype)) 
 | 
						|
		return 100;
 | 
						|
 | 
						|
	if(part->phystype==PART_PHYS_KEYED){
 | 
						|
		if(psys->flag & PSYS_FIRST_KEYED)
 | 
						|
			return psys->part->disp;
 | 
						|
		else
 | 
						|
			return 100;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		return psys->part->disp;
 | 
						|
}
 | 
						|
 | 
						|
static void alloc_particles(Object *ob, ParticleSystem *psys, int new_totpart)
 | 
						|
{
 | 
						|
	ParticleData *newpars = 0, *pa;
 | 
						|
	int i, totpart, totsaved = 0;
 | 
						|
 | 
						|
	if(new_totpart<0) {
 | 
						|
		if(psys->part->distr==PART_DISTR_GRID) {
 | 
						|
			totpart= psys->part->grid_res;
 | 
						|
			totpart*=totpart*totpart;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			totpart=psys->part->totpart;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		totpart=new_totpart;
 | 
						|
 | 
						|
	if(totpart)
 | 
						|
		newpars= MEM_callocN(totpart*sizeof(ParticleData), "particles");
 | 
						|
	if(psys->particles) {
 | 
						|
		totsaved=MIN2(psys->totpart,totpart);
 | 
						|
		/*save old pars*/
 | 
						|
		if(totsaved)
 | 
						|
			memcpy(newpars,psys->particles,totsaved*sizeof(ParticleData));
 | 
						|
 | 
						|
		for(i=totsaved, pa=psys->particles+totsaved; i<psys->totpart; i++, pa++)
 | 
						|
			if(pa->hair) MEM_freeN(pa->hair);
 | 
						|
 | 
						|
		MEM_freeN(psys->particles);
 | 
						|
	}
 | 
						|
	psys->particles=newpars;
 | 
						|
 | 
						|
	if(psys->child) {
 | 
						|
		MEM_freeN(psys->child);
 | 
						|
		psys->child=0;
 | 
						|
		psys->totchild=0;
 | 
						|
	}
 | 
						|
 | 
						|
	psys->totpart=totpart;
 | 
						|
}
 | 
						|
 | 
						|
static int get_psys_child_number(ParticleSystem *psys)
 | 
						|
{
 | 
						|
	int nbr;
 | 
						|
 | 
						|
	if(!psys->part->childtype)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if(psys->renderdata) {
 | 
						|
		nbr= psys->part->ren_child_nbr;
 | 
						|
		return get_render_child_particle_number(&G.scene->r, nbr);
 | 
						|
	}
 | 
						|
	else
 | 
						|
		return psys->part->child_nbr;
 | 
						|
}
 | 
						|
 | 
						|
static int get_psys_tot_child(ParticleSystem *psys)
 | 
						|
{
 | 
						|
	return psys->totpart*get_psys_child_number(psys);
 | 
						|
}
 | 
						|
 | 
						|
static void alloc_child_particles(ParticleSystem *psys, int tot)
 | 
						|
{
 | 
						|
	if(psys->child){
 | 
						|
		MEM_freeN(psys->child);
 | 
						|
		psys->child=0;
 | 
						|
		psys->totchild=0;
 | 
						|
	}
 | 
						|
 | 
						|
	if(psys->part->childtype) {
 | 
						|
		psys->totchild= tot;
 | 
						|
		if(psys->totchild)
 | 
						|
			psys->child= MEM_callocN(psys->totchild*sizeof(ChildParticle), "child_particles");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* only run this if from == PART_FROM_FACE */
 | 
						|
void psys_calc_dmfaces(Object *ob, DerivedMesh *dm, ParticleSystem *psys)
 | 
						|
{
 | 
						|
	/* use for building derived mesh face-origin info,
 | 
						|
	node - the allocated links - total derived mesh face count 
 | 
						|
	node_array - is the array of nodes alligned with the base mesh's faces, so each original face can reference its derived faces
 | 
						|
	*/
 | 
						|
	Mesh *me= (Mesh*)ob->data;
 | 
						|
	ParticleData *pa= 0;
 | 
						|
	int p;
 | 
						|
	
 | 
						|
	/* CACHE LOCATIONS */
 | 
						|
	if(!dm->deformedOnly) {
 | 
						|
		/* Will use later to speed up subsurf/derivedmesh */
 | 
						|
	
 | 
						|
		int tot_dm_face = dm->getNumFaces(dm);
 | 
						|
		int totface = me->totface;
 | 
						|
		int *origindex = DM_get_face_data_layer(dm, CD_ORIGINDEX);
 | 
						|
		int i;
 | 
						|
		LinkNode *node, *node_dm_faces, **node_array;
 | 
						|
		
 | 
						|
		node_dm_faces = node = MEM_callocN(sizeof(LinkNode)*tot_dm_face, "faceindicies");
 | 
						|
		node_array = MEM_callocN(sizeof(LinkNode *)*totface, "faceindicies array");
 | 
						|
		
 | 
						|
		for(i=0; i < tot_dm_face; i++, origindex++, node++) {
 | 
						|
			node->link = (void *)i; // or use the index?
 | 
						|
			if(*origindex != -1) {
 | 
						|
				if(node_array[*origindex]) {
 | 
						|
					/* prepend */
 | 
						|
					node->next = node_array[*origindex];
 | 
						|
					node_array[*origindex] = node;
 | 
						|
				} else {
 | 
						|
					node_array[*origindex] = node;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		
 | 
						|
		/* cache the faces! */
 | 
						|
 | 
						|
 | 
						|
		for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
 | 
						|
			//i = pa->num;
 | 
						|
			//if (i<totface) // should never happen
 | 
						|
			i = psys_particle_dm_face_lookup(ob, dm, pa->num, pa->fuv, node_array[pa->num]);
 | 
						|
			pa->num_dmcache = i;
 | 
						|
		}
 | 
						|
 | 
						|
		//for (i=0; i < totface; i++) {
 | 
						|
		//	i = psys_particle_dm_face_lookup(ob, dm, node_array[], fuv, (LinkNode*)NULL);
 | 
						|
		//}
 | 
						|
		MEM_freeN(node_array);
 | 
						|
		MEM_freeN(node_dm_faces);
 | 
						|
		
 | 
						|
	} else {
 | 
						|
		/* set the num_dmcache to an invalid value, just incase */
 | 
						|
		/* TODO PARTICLE, make the following line unnecessary, each function should know to use the num or num_dmcache */
 | 
						|
		
 | 
						|
		/*
 | 
						|
		for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
 | 
						|
			pa->num_dmcache = pa->num;
 | 
						|
		}
 | 
						|
		*/
 | 
						|
		for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
 | 
						|
			pa->num_dmcache = -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void distribute_particles_in_grid(DerivedMesh *dm, ParticleSystem *psys)
 | 
						|
{
 | 
						|
	ParticleData *pa=0;
 | 
						|
	float min[3], max[3], delta[3], d;
 | 
						|
	MVert *mv, *mvert = dm->getVertDataArray(dm,0);
 | 
						|
	int totvert=dm->getNumVerts(dm), from=psys->part->from;
 | 
						|
	int i, j, k, p, res=psys->part->grid_res, size[3], axis;
 | 
						|
 | 
						|
	mv=mvert;
 | 
						|
 | 
						|
	/* find bounding box of dm */
 | 
						|
	VECCOPY(min,mv->co);
 | 
						|
	VECCOPY(max,mv->co);
 | 
						|
	mv++;
 | 
						|
 | 
						|
	for(i=1; i<totvert; i++, mv++){
 | 
						|
		min[0]=MIN2(min[0],mv->co[0]);
 | 
						|
		min[1]=MIN2(min[1],mv->co[1]);
 | 
						|
		min[2]=MIN2(min[2],mv->co[2]);
 | 
						|
 | 
						|
		max[0]=MAX2(max[0],mv->co[0]);
 | 
						|
		max[1]=MAX2(max[1],mv->co[1]);
 | 
						|
		max[2]=MAX2(max[2],mv->co[2]);
 | 
						|
	}
 | 
						|
 | 
						|
	VECSUB(delta,max,min);
 | 
						|
 | 
						|
	/* determine major axis */
 | 
						|
	axis = (delta[0]>=delta[1])?0:((delta[1]>=delta[2])?1:2);
 | 
						|
 | 
						|
	d = delta[axis]/(float)res;
 | 
						|
 | 
						|
	size[axis]=res;
 | 
						|
	size[(axis+1)%3]=(int)ceil(delta[(axis+1)%3]/d);
 | 
						|
	size[(axis+2)%3]=(int)ceil(delta[(axis+2)%3]/d);
 | 
						|
 | 
						|
	/* float errors grrr.. */
 | 
						|
	size[(axis+1)%3] = MIN2(size[(axis+1)%3],res);
 | 
						|
	size[(axis+2)%3] = MIN2(size[(axis+2)%3],res);
 | 
						|
 | 
						|
	min[0]+=d/2.0f;
 | 
						|
	min[1]+=d/2.0f;
 | 
						|
	min[2]+=d/2.0f;
 | 
						|
 | 
						|
	for(i=0,p=0,pa=psys->particles; i<res; i++){
 | 
						|
		for(j=0; j<res; j++){
 | 
						|
			for(k=0; k<res; k++,p++,pa++){
 | 
						|
				pa->fuv[0]=min[0]+(float)i*d;
 | 
						|
				pa->fuv[1]=min[1]+(float)j*d;
 | 
						|
				pa->fuv[2]=min[2]+(float)k*d;
 | 
						|
				pa->flag |= PARS_UNEXIST;
 | 
						|
				pa->loop=0; /* abused in volume calculation */
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* enable particles near verts/edges/faces/inside surface */
 | 
						|
	if(from==PART_FROM_VERT){
 | 
						|
		float vec[3];
 | 
						|
 | 
						|
		pa=psys->particles;
 | 
						|
 | 
						|
		min[0]-=d/2.0f;
 | 
						|
		min[1]-=d/2.0f;
 | 
						|
		min[2]-=d/2.0f;
 | 
						|
 | 
						|
		for(i=0,mv=mvert; i<totvert; i++,mv++){
 | 
						|
			VecSubf(vec,mv->co,min);
 | 
						|
			vec[0]/=delta[0];
 | 
						|
			vec[1]/=delta[1];
 | 
						|
			vec[2]/=delta[2];
 | 
						|
			(pa	+((int)(vec[0]*(size[0]-1))*res
 | 
						|
				+(int)(vec[1]*(size[1]-1)))*res
 | 
						|
				+(int)(vec[2]*(size[2]-1)))->flag &= ~PARS_UNEXIST;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if(ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)){
 | 
						|
		float co1[3], co2[3];
 | 
						|
 | 
						|
		MFace *mface=0;
 | 
						|
		float v1[3], v2[3], v3[3], v4[4], lambda;
 | 
						|
		int a, a1, a2, a0mul, a1mul, a2mul, totface;
 | 
						|
		int amax= from==PART_FROM_FACE ? 3 : 1;
 | 
						|
 | 
						|
		totface=dm->getNumFaces(dm);
 | 
						|
		mface=dm->getFaceDataArray(dm,CD_MFACE);
 | 
						|
		
 | 
						|
		for(a=0; a<amax; a++){
 | 
						|
			if(a==0){ a0mul=res*res; a1mul=res; a2mul=1; }
 | 
						|
			else if(a==1){ a0mul=res; a1mul=1; a2mul=res*res; }
 | 
						|
			else{ a0mul=1; a1mul=res*res; a2mul=res; }
 | 
						|
 | 
						|
			for(a1=0; a1<size[(a+1)%3]; a1++){
 | 
						|
				for(a2=0; a2<size[(a+2)%3]; a2++){
 | 
						|
					mface=dm->getFaceDataArray(dm,CD_MFACE);
 | 
						|
 | 
						|
					pa=psys->particles + a1*a1mul + a2*a2mul;
 | 
						|
					VECCOPY(co1,pa->fuv);
 | 
						|
					co1[a]-=d/2.0f;
 | 
						|
					VECCOPY(co2,co1);
 | 
						|
					co2[a]+=delta[a] + 0.001f*d;
 | 
						|
					co1[a]-=0.001f*d;
 | 
						|
					
 | 
						|
					/* lets intersect the faces */
 | 
						|
					for(i=0; i<totface; i++,mface++){
 | 
						|
						VECCOPY(v1,mvert[mface->v1].co);
 | 
						|
						VECCOPY(v2,mvert[mface->v2].co);
 | 
						|
						VECCOPY(v3,mvert[mface->v3].co);
 | 
						|
 | 
						|
						if(AxialLineIntersectsTriangle(a,co1, co2, v2, v3, v1, &lambda)){
 | 
						|
							if(from==PART_FROM_FACE)
 | 
						|
								(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
 | 
						|
							else /* store number of intersections */
 | 
						|
								(pa+(int)(lambda*size[a])*a0mul)->loop++;
 | 
						|
						}
 | 
						|
						
 | 
						|
						if(mface->v4){
 | 
						|
							VECCOPY(v4,mvert[mface->v4].co);
 | 
						|
 | 
						|
							if(AxialLineIntersectsTriangle(a,co1, co2, v4, v1, v3, &lambda)){
 | 
						|
								if(from==PART_FROM_FACE)
 | 
						|
									(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
 | 
						|
								else
 | 
						|
									(pa+(int)(lambda*size[a])*a0mul)->loop++;
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
 | 
						|
					if(from==PART_FROM_VOLUME){
 | 
						|
						int in=pa->loop%2;
 | 
						|
						if(in) pa->loop++;
 | 
						|
						for(i=0; i<size[0]; i++){
 | 
						|
							if(in || (pa+i*a0mul)->loop%2)
 | 
						|
								(pa+i*a0mul)->flag &= ~PARS_UNEXIST;
 | 
						|
							/* odd intersections == in->out / out->in */
 | 
						|
							/* even intersections -> in stays same */
 | 
						|
							in=(in + (pa+i*a0mul)->loop) % 2;
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if(psys->part->flag & PART_GRID_INVERT){
 | 
						|
		for(i=0,pa=psys->particles; i<size[0]; i++){
 | 
						|
			for(j=0; j<size[1]; j++){
 | 
						|
				pa=psys->particles + res*(i*res + j);
 | 
						|
				for(k=0; k<size[2]; k++, pa++){
 | 
						|
					pa->flag ^= PARS_UNEXIST;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* modified copy from effect.c */
 | 
						|
static void init_mv_jit(float *jit, int num, int seed2, float amount)
 | 
						|
{
 | 
						|
	RNG *rng;
 | 
						|
	float *jit2, x, rad1, rad2, rad3;
 | 
						|
	int i, num2;
 | 
						|
 | 
						|
	if(num==0) return;
 | 
						|
 | 
						|
	rad1= (float)(1.0/sqrt((float)num));
 | 
						|
	rad2= (float)(1.0/((float)num));
 | 
						|
	rad3= (float)sqrt((float)num)/((float)num);
 | 
						|
 | 
						|
	rng = rng_new(31415926 + num + seed2);
 | 
						|
	x= 0;
 | 
						|
        num2 = 2 * num;
 | 
						|
	for(i=0; i<num2; i+=2) {
 | 
						|
	
 | 
						|
		jit[i]= x + amount*rad1*(0.5f - rng_getFloat(rng));
 | 
						|
		jit[i+1]= i/(2.0f*num) + amount*rad1*(0.5f - rng_getFloat(rng));
 | 
						|
		
 | 
						|
		jit[i]-= (float)floor(jit[i]);
 | 
						|
		jit[i+1]-= (float)floor(jit[i+1]);
 | 
						|
		
 | 
						|
		x+= rad3;
 | 
						|
		x -= (float)floor(x);
 | 
						|
	}
 | 
						|
 | 
						|
	jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
 | 
						|
 | 
						|
	for (i=0 ; i<4 ; i++) {
 | 
						|
		BLI_jitterate1(jit, jit2, num, rad1);
 | 
						|
		BLI_jitterate1(jit, jit2, num, rad1);
 | 
						|
		BLI_jitterate2(jit, jit2, num, rad2);
 | 
						|
	}
 | 
						|
	MEM_freeN(jit2);
 | 
						|
	rng_free(rng);
 | 
						|
}
 | 
						|
 | 
						|
static void psys_uv_to_w(float u, float v, int quad, float *w)
 | 
						|
{
 | 
						|
	float vert[4][3], co[3];
 | 
						|
 | 
						|
	if(!quad) {
 | 
						|
		if(u+v > 1.0f)
 | 
						|
			v= 1.0f-v;
 | 
						|
		else
 | 
						|
			u= 1.0f-u;
 | 
						|
	}
 | 
						|
 | 
						|
	vert[0][0]= 0.0f; vert[0][1]= 0.0f; vert[0][2]= 0.0f;
 | 
						|
	vert[1][0]= 1.0f; vert[1][1]= 0.0f; vert[1][2]= 0.0f;
 | 
						|
	vert[2][0]= 1.0f; vert[2][1]= 1.0f; vert[2][2]= 0.0f;
 | 
						|
 | 
						|
	co[0]= u;
 | 
						|
	co[1]= v;
 | 
						|
	co[2]= 0.0f;
 | 
						|
 | 
						|
	if(quad) {
 | 
						|
		vert[3][0]= 0.0f; vert[3][1]= 1.0f; vert[3][2]= 0.0f;
 | 
						|
		MeanValueWeights(vert, 4, co, w);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		MeanValueWeights(vert, 3, co, w);
 | 
						|
		w[3]= 0.0f;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int binary_search_distribution(float *sum, int n, float value)
 | 
						|
{
 | 
						|
	int mid, low=0, high=n;
 | 
						|
 | 
						|
	while(low <= high) {
 | 
						|
		mid= (low + high)/2;
 | 
						|
		if(sum[mid] <= value && value <= sum[mid+1])
 | 
						|
			return mid;
 | 
						|
		else if(sum[mid] > value)
 | 
						|
			high= mid - 1;
 | 
						|
		else if(sum[mid] < value)
 | 
						|
			low= mid + 1;
 | 
						|
		else
 | 
						|
			return mid;
 | 
						|
	}
 | 
						|
 | 
						|
	return low;
 | 
						|
}
 | 
						|
 | 
						|
/* note: this function must be thread safe, for from == PART_FROM_CHILD */
 | 
						|
#define ONLY_WORKING_WITH_PA_VERTS 0
 | 
						|
void psys_thread_distribute_particle(ParticleThread *thread, ParticleData *pa, ChildParticle *cpa, int p)
 | 
						|
{
 | 
						|
	ParticleThreadContext *ctx= thread->ctx;
 | 
						|
	Object *ob= ctx->ob;
 | 
						|
	DerivedMesh *dm= ctx->dm;
 | 
						|
	ParticleData *tpa;
 | 
						|
	ParticleSettings *part= ctx->psys->part;
 | 
						|
	float *v1, *v2, *v3, *v4, nor[3], orco1[3], co1[3], co2[3], nor1[3], ornor1[3];
 | 
						|
	float cur_d, min_d;
 | 
						|
	int from= ctx->from;
 | 
						|
	int cfrom= ctx->cfrom;
 | 
						|
	int distr= ctx->distr;
 | 
						|
	int i, intersect, tot;
 | 
						|
 | 
						|
	if(from == PART_FROM_VERT) {
 | 
						|
		/* TODO_PARTICLE - use original index */
 | 
						|
		pa->num= ctx->index[p];
 | 
						|
		pa->fuv[0] = 1.0f;
 | 
						|
		pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
 | 
						|
		//pa->verts[0] = pa->verts[1] = pa->verts[2] = 0;
 | 
						|
 | 
						|
#if ONLY_WORKING_WITH_PA_VERTS
 | 
						|
		if(ctx->tree){
 | 
						|
			KDTreeNearest ptn[3];
 | 
						|
			int w, maxw;
 | 
						|
 | 
						|
			psys_particle_on_dm(ctx->ob,ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0);
 | 
						|
			transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1);
 | 
						|
			maxw = BLI_kdtree_find_n_nearest(ctx->tree,3,orco1,NULL,ptn);
 | 
						|
 | 
						|
			for(w=0; w<maxw; w++){
 | 
						|
				pa->verts[w]=ptn->num;
 | 
						|
			}
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	else if(from == PART_FROM_FACE || from == PART_FROM_VOLUME) {
 | 
						|
		MFace *mface;
 | 
						|
 | 
						|
		pa->num = i = ctx->index[p];
 | 
						|
		mface = dm->getFaceData(dm,i,CD_MFACE);
 | 
						|
		
 | 
						|
		switch(distr){
 | 
						|
		case PART_DISTR_JIT:
 | 
						|
			ctx->jitoff[i] = fmod(ctx->jitoff[i],(float)ctx->jitlevel);
 | 
						|
			psys_uv_to_w(ctx->jit[2*(int)ctx->jitoff[i]], ctx->jit[2*(int)ctx->jitoff[i]+1], mface->v4, pa->fuv);
 | 
						|
			ctx->jitoff[i]++;
 | 
						|
			//ctx->jitoff[i]=(float)fmod(ctx->jitoff[i]+ctx->maxweight/ctx->weight[i],(float)ctx->jitlevel);
 | 
						|
			break;
 | 
						|
		case PART_DISTR_RAND:
 | 
						|
			psys_uv_to_w(rng_getFloat(thread->rng), rng_getFloat(thread->rng), mface->v4, pa->fuv);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		pa->foffset= 0.0f;
 | 
						|
		
 | 
						|
		/*
 | 
						|
		pa->verts[0] = mface->v1;
 | 
						|
		pa->verts[1] = mface->v2;
 | 
						|
		pa->verts[2] = mface->v3;
 | 
						|
		*/
 | 
						|
		
 | 
						|
		/* experimental */
 | 
						|
		if(from==PART_FROM_VOLUME){
 | 
						|
			MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
 | 
						|
 | 
						|
			tot=dm->getNumFaces(dm);
 | 
						|
 | 
						|
			psys_interpolate_face(mvert,mface,0,0,pa->fuv,co1,nor,0,0,0,0);
 | 
						|
 | 
						|
			Normalize(nor);
 | 
						|
			VecMulf(nor,-100.0);
 | 
						|
 | 
						|
			VECADD(co2,co1,nor);
 | 
						|
 | 
						|
			min_d=2.0;
 | 
						|
			intersect=0;
 | 
						|
 | 
						|
			for(i=0,mface=dm->getFaceDataArray(dm,CD_MFACE); i<tot; i++,mface++){
 | 
						|
				if(i==pa->num) continue;
 | 
						|
 | 
						|
				v1=mvert[mface->v1].co;
 | 
						|
				v2=mvert[mface->v2].co;
 | 
						|
				v3=mvert[mface->v3].co;
 | 
						|
 | 
						|
				if(LineIntersectsTriangle(co1, co2, v2, v3, v1, &cur_d, 0)){
 | 
						|
					if(cur_d<min_d){
 | 
						|
						min_d=cur_d;
 | 
						|
						pa->foffset=cur_d*50.0f; /* to the middle of volume */
 | 
						|
						intersect=1;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				if(mface->v4){
 | 
						|
					v4=mvert[mface->v4].co;
 | 
						|
 | 
						|
					if(LineIntersectsTriangle(co1, co2, v4, v1, v3, &cur_d, 0)){
 | 
						|
						if(cur_d<min_d){
 | 
						|
							min_d=cur_d;
 | 
						|
							pa->foffset=cur_d*50.0f; /* to the middle of volume */
 | 
						|
							intersect=1;
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if(intersect==0)
 | 
						|
				pa->foffset=0.0;
 | 
						|
			else switch(distr){
 | 
						|
				case PART_DISTR_JIT:
 | 
						|
					pa->foffset*= ctx->jit[2*(int)ctx->jitoff[i]];
 | 
						|
					break;
 | 
						|
				case PART_DISTR_RAND:
 | 
						|
					pa->foffset*=BLI_frand();
 | 
						|
					break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if(from == PART_FROM_PARTICLE) {
 | 
						|
		//pa->verts[0]=0; /* not applicable */
 | 
						|
		//pa->verts[1]=0;
 | 
						|
		//pa->verts[2]=0;
 | 
						|
 | 
						|
		tpa=ctx->tpars+ctx->index[p];
 | 
						|
		pa->num=ctx->index[p];
 | 
						|
		pa->fuv[0]=tpa->fuv[0];
 | 
						|
		pa->fuv[1]=tpa->fuv[1];
 | 
						|
		/* abusing foffset a little for timing in near reaction */
 | 
						|
		pa->foffset=ctx->weight[ctx->index[p]];
 | 
						|
		ctx->weight[ctx->index[p]]+=ctx->maxweight;
 | 
						|
	}
 | 
						|
	else if(from == PART_FROM_CHILD) {
 | 
						|
		MFace *mf;
 | 
						|
 | 
						|
		if(ctx->index[p] < 0) {
 | 
						|
			cpa->num=0;
 | 
						|
			cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f;
 | 
						|
			cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
 | 
						|
			cpa->rand[0]=cpa->rand[1]=cpa->rand[2]=0.0f;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		mf= dm->getFaceData(dm, ctx->index[p], CD_MFACE);
 | 
						|
 | 
						|
		//switch(distr){
 | 
						|
		//	case PART_DISTR_JIT:
 | 
						|
		//		i=index[p];
 | 
						|
		//		psys_uv_to_w(ctx->jit[2*(int)ctx->jitoff[i]], ctx->jit[2*(int)ctx->jitoff[i]+1], mf->v4, cpa->fuv);
 | 
						|
		//		ctx->jitoff[i]=(float)fmod(ctx->jitoff[i]+ctx->maxweight/ctx->weight[i],(float)ctx->jitlevel);
 | 
						|
		//		break;
 | 
						|
		//	case PART_DISTR_RAND:
 | 
						|
				psys_uv_to_w(rng_getFloat(thread->rng), rng_getFloat(thread->rng), mf->v4, cpa->fuv);
 | 
						|
		//		break;
 | 
						|
		//}
 | 
						|
 | 
						|
		cpa->rand[0] = rng_getFloat(thread->rng);
 | 
						|
		cpa->rand[1] = rng_getFloat(thread->rng);
 | 
						|
		cpa->rand[2] = rng_getFloat(thread->rng);
 | 
						|
		cpa->num = ctx->index[p];
 | 
						|
 | 
						|
		if(ctx->tree){
 | 
						|
			KDTreeNearest ptn[10];
 | 
						|
			int w,maxw, do_seams;
 | 
						|
			float maxd,mind,dd,totw=0.0;
 | 
						|
			int parent[10];
 | 
						|
			float pweight[10];
 | 
						|
 | 
						|
			do_seams= (part->flag&PART_CHILD_SEAMS && ctx->seams);
 | 
						|
 | 
						|
			psys_particle_on_dm(ob,dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,0,0,orco1,ornor1);
 | 
						|
			transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1);
 | 
						|
			maxw = BLI_kdtree_find_n_nearest(ctx->tree,(do_seams)?10:4,orco1,ornor1,ptn);
 | 
						|
 | 
						|
			maxd=ptn[maxw-1].dist;
 | 
						|
			mind=ptn[0].dist;
 | 
						|
			dd=maxd-mind;
 | 
						|
			
 | 
						|
			/* the weights here could be done better */
 | 
						|
			for(w=0; w<maxw; w++){
 | 
						|
				parent[w]=ptn[w].index;
 | 
						|
				pweight[w]=(float)pow(2.0,(double)(-6.0f*ptn[w].dist/maxd));
 | 
						|
				//pweight[w]= (1.0f - ptn[w].dist*ptn[w].dist/(maxd*maxd));
 | 
						|
				//pweight[w] *= pweight[w];
 | 
						|
			}
 | 
						|
			for(;w<10; w++){
 | 
						|
				parent[w]=-1;
 | 
						|
				pweight[w]=0.0f;
 | 
						|
			}
 | 
						|
			if(do_seams){
 | 
						|
				ParticleSeam *seam=ctx->seams;
 | 
						|
				float temp[3],temp2[3],tan[3];
 | 
						|
				float inp,cur_len,min_len=10000.0f;
 | 
						|
				int min_seam=0, near_vert=0;
 | 
						|
				/* find closest seam */
 | 
						|
				for(i=0; i<ctx->totseam; i++, seam++){
 | 
						|
					VecSubf(temp,co1,seam->v0);
 | 
						|
					inp=Inpf(temp,seam->dir)/seam->length2;
 | 
						|
					if(inp<0.0f){
 | 
						|
						cur_len=VecLenf(co1,seam->v0);
 | 
						|
					}
 | 
						|
					else if(inp>1.0f){
 | 
						|
						cur_len=VecLenf(co1,seam->v1);
 | 
						|
					}
 | 
						|
					else{
 | 
						|
						VecCopyf(temp2,seam->dir);
 | 
						|
						VecMulf(temp2,inp);
 | 
						|
						cur_len=VecLenf(temp,temp2);
 | 
						|
					}
 | 
						|
					if(cur_len<min_len){
 | 
						|
						min_len=cur_len;
 | 
						|
						min_seam=i;
 | 
						|
						if(inp<0.0f) near_vert=-1;
 | 
						|
						else if(inp>1.0f) near_vert=1;
 | 
						|
						else near_vert=0;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				seam=ctx->seams+min_seam;
 | 
						|
				
 | 
						|
				VecCopyf(temp,seam->v0);
 | 
						|
				
 | 
						|
				if(near_vert){
 | 
						|
					if(near_vert==-1)
 | 
						|
						VecSubf(tan,co1,seam->v0);
 | 
						|
					else{
 | 
						|
						VecSubf(tan,co1,seam->v1);
 | 
						|
						VecCopyf(temp,seam->v1);
 | 
						|
					}
 | 
						|
 | 
						|
					Normalize(tan);
 | 
						|
				}
 | 
						|
				else{
 | 
						|
					VecCopyf(tan,seam->tan);
 | 
						|
					VecSubf(temp2,co1,temp);
 | 
						|
					if(Inpf(tan,temp2)<0.0f)
 | 
						|
						VecMulf(tan,-1.0f);
 | 
						|
				}
 | 
						|
				for(w=0; w<maxw; w++){
 | 
						|
					VecSubf(temp2,ptn[w].co,temp);
 | 
						|
					if(Inpf(tan,temp2)<0.0f){
 | 
						|
						parent[w]=-1;
 | 
						|
						pweight[w]=0.0f;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			for(w=0,i=0; w<maxw && i<4; w++){
 | 
						|
				if(parent[w]>=0){
 | 
						|
					cpa->pa[i]=parent[w];
 | 
						|
					cpa->w[i]=pweight[w];
 | 
						|
					totw+=pweight[w];
 | 
						|
					i++;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			for(;i<4; i++){
 | 
						|
				cpa->pa[i]=-1;
 | 
						|
				cpa->w[i]=0.0f;
 | 
						|
			}
 | 
						|
 | 
						|
			if(totw>0.0f) for(w=0; w<4; w++)
 | 
						|
				cpa->w[w]/=totw;
 | 
						|
 | 
						|
			cpa->parent=cpa->pa[0];
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void *exec_distribution(void *data)
 | 
						|
{
 | 
						|
	ParticleThread *thread= (ParticleThread*)data;
 | 
						|
	ParticleSystem *psys= thread->ctx->psys;
 | 
						|
	ParticleData *pa;
 | 
						|
	ChildParticle *cpa;
 | 
						|
	int p, totpart;
 | 
						|
 | 
						|
	if(thread->ctx->from == PART_FROM_CHILD) {
 | 
						|
		totpart= psys->totchild;
 | 
						|
		cpa= psys->child;
 | 
						|
 | 
						|
		for(p=0; p<totpart; p++, cpa++) {
 | 
						|
			if(thread->ctx->skip) /* simplification skip */
 | 
						|
				rng_skip(thread->rng, 5*thread->ctx->skip[p]);
 | 
						|
 | 
						|
			if((p+thread->num) % thread->tot == 0)
 | 
						|
				psys_thread_distribute_particle(thread, NULL, cpa, p);
 | 
						|
			else /* thread skip */
 | 
						|
				rng_skip(thread->rng, 5);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		totpart= psys->totpart;
 | 
						|
		pa= psys->particles + thread->num;
 | 
						|
		for(p=thread->num; p<totpart; p+=thread->tot, pa+=thread->tot)
 | 
						|
			psys_thread_distribute_particle(thread, pa, NULL, p);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* not thread safe, but qsort doesn't take userdata argument */
 | 
						|
static int *COMPARE_ORIG_INDEX = NULL;
 | 
						|
static int compare_orig_index(const void *p1, const void *p2)
 | 
						|
{
 | 
						|
	int index1 = COMPARE_ORIG_INDEX[*(const int*)p1];
 | 
						|
	int index2 = COMPARE_ORIG_INDEX[*(const int*)p2];
 | 
						|
 | 
						|
	if(index1 < index2)
 | 
						|
		return -1;
 | 
						|
	else if(index1 == index2)
 | 
						|
		return 0;
 | 
						|
	else
 | 
						|
		return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* creates a distribution of coordinates on a DerivedMesh	*/
 | 
						|
/*															*/
 | 
						|
/* 1. lets check from what we are emitting					*/
 | 
						|
/* 2. now we know that we have something to emit from so	*/
 | 
						|
/*	  let's calculate some weights							*/
 | 
						|
/* 2.1 from even distribution								*/
 | 
						|
/* 2.2 and from vertex groups								*/
 | 
						|
/* 3. next we determine the indexes of emitting thing that	*/
 | 
						|
/*	  the particles will have								*/
 | 
						|
/* 4. let's do jitter if we need it							*/
 | 
						|
/* 5. now we're ready to set the indexes & distributions to	*/
 | 
						|
/*	  the particles											*/
 | 
						|
/* 6. and we're done!										*/
 | 
						|
 | 
						|
/* This is to denote functionality that does not yet work with mesh - only derived mesh */
 | 
						|
int psys_threads_init_distribution(ParticleThread *threads, DerivedMesh *finaldm, int from)
 | 
						|
{
 | 
						|
	ParticleThreadContext *ctx= threads[0].ctx;
 | 
						|
	Object *ob= ctx->ob;
 | 
						|
	ParticleSystem *psys= ctx->psys;
 | 
						|
	Object *tob;
 | 
						|
	ParticleData *pa=0, *tpars= 0;
 | 
						|
	ParticleSettings *part;
 | 
						|
	ParticleSystem *tpsys;
 | 
						|
	ParticleSeam *seams= 0;
 | 
						|
	ChildParticle *cpa=0;
 | 
						|
	KDTree *tree=0;
 | 
						|
	DerivedMesh *dm= NULL;
 | 
						|
	float *jit= NULL;
 | 
						|
	int i, seed, p=0, totthread= threads[0].tot;
 | 
						|
	int no_distr=0, cfrom=0;
 | 
						|
	int tot=0, totpart, *index=0, children=0, totseam=0;
 | 
						|
	//int *vertpart=0;
 | 
						|
	int jitlevel= 1, distr;
 | 
						|
	float *weight=0,*sum=0,*jitoff=0;
 | 
						|
	float cur, maxweight=0.0, tweight, totweight, co[3], nor[3], orco[3], ornor[3];
 | 
						|
	
 | 
						|
	if(ob==0 || psys==0 || psys->part==0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	part=psys->part;
 | 
						|
	totpart=psys->totpart;
 | 
						|
	if(totpart==0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!finaldm->deformedOnly && !CustomData_has_layer( &finaldm->faceData, CD_ORIGINDEX ) ) {
 | 
						|
		error("Can't paint with the current modifier stack, disable destructive modifiers");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	BLI_srandom(31415926 + psys->seed);
 | 
						|
	
 | 
						|
	if(from==PART_FROM_CHILD){
 | 
						|
		distr=PART_DISTR_RAND;
 | 
						|
		if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){
 | 
						|
			dm= finaldm;
 | 
						|
			children=1;
 | 
						|
 | 
						|
			tree=BLI_kdtree_new(totpart);
 | 
						|
 | 
						|
			for(p=0,pa=psys->particles; p<totpart; p++,pa++){
 | 
						|
				psys_particle_on_dm(ob,dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,ornor);
 | 
						|
				transform_mesh_orco_verts((Mesh*)ob->data, &orco, 1, 1);
 | 
						|
				BLI_kdtree_insert(tree, p, orco, ornor);
 | 
						|
			}
 | 
						|
 | 
						|
			BLI_kdtree_balance(tree);
 | 
						|
 | 
						|
			totpart=get_psys_tot_child(psys);
 | 
						|
			cfrom=from=PART_FROM_FACE;
 | 
						|
 | 
						|
			if(part->flag&PART_CHILD_SEAMS){
 | 
						|
				MEdge *ed, *medge=dm->getEdgeDataArray(dm,CD_MEDGE);
 | 
						|
				MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
 | 
						|
				int totedge=dm->getNumEdges(dm);
 | 
						|
 | 
						|
				for(p=0, ed=medge; p<totedge; p++,ed++)
 | 
						|
					if(ed->flag&ME_SEAM)
 | 
						|
						totseam++;
 | 
						|
 | 
						|
				if(totseam){
 | 
						|
					ParticleSeam *cur_seam=seams=MEM_callocN(totseam*sizeof(ParticleSeam),"Child Distribution Seams");
 | 
						|
					float temp[3],temp2[3];
 | 
						|
 | 
						|
					for(p=0, ed=medge; p<totedge; p++,ed++){
 | 
						|
						if(ed->flag&ME_SEAM){
 | 
						|
							VecCopyf(cur_seam->v0,(mvert+ed->v1)->co);
 | 
						|
							VecCopyf(cur_seam->v1,(mvert+ed->v2)->co);
 | 
						|
 | 
						|
							VecSubf(cur_seam->dir,cur_seam->v1,cur_seam->v0);
 | 
						|
 | 
						|
							cur_seam->length2=VecLength(cur_seam->dir);
 | 
						|
							cur_seam->length2*=cur_seam->length2;
 | 
						|
 | 
						|
							temp[0]=(float)((mvert+ed->v1)->no[0]);
 | 
						|
							temp[1]=(float)((mvert+ed->v1)->no[1]);
 | 
						|
							temp[2]=(float)((mvert+ed->v1)->no[2]);
 | 
						|
							temp2[0]=(float)((mvert+ed->v2)->no[0]);
 | 
						|
							temp2[1]=(float)((mvert+ed->v2)->no[1]);
 | 
						|
							temp2[2]=(float)((mvert+ed->v2)->no[2]);
 | 
						|
 | 
						|
							VecAddf(cur_seam->nor,temp,temp2);
 | 
						|
							Normalize(cur_seam->nor);
 | 
						|
 | 
						|
							Crossf(cur_seam->tan,cur_seam->dir,cur_seam->nor);
 | 
						|
 | 
						|
							Normalize(cur_seam->tan);
 | 
						|
 | 
						|
							cur_seam++;
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
				
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else{
 | 
						|
			/* no need to figure out distribution */
 | 
						|
			int child_nbr= get_psys_child_number(psys);
 | 
						|
 | 
						|
			totpart= get_psys_tot_child(psys);
 | 
						|
			alloc_child_particles(psys, totpart);
 | 
						|
			cpa=psys->child;
 | 
						|
			for(i=0; i<child_nbr; i++){
 | 
						|
				for(p=0; p<psys->totpart; p++,cpa++){
 | 
						|
					float length=2.0;
 | 
						|
					cpa->parent=p;
 | 
						|
					
 | 
						|
					/* create even spherical distribution inside unit sphere */
 | 
						|
					while(length>=1.0f){
 | 
						|
						cpa->fuv[0]=2.0f*BLI_frand()-1.0f;
 | 
						|
						cpa->fuv[1]=2.0f*BLI_frand()-1.0f;
 | 
						|
						cpa->fuv[2]=2.0f*BLI_frand()-1.0f;
 | 
						|
						length=VecLength(cpa->fuv);
 | 
						|
					}
 | 
						|
 | 
						|
					cpa->rand[0]=BLI_frand();
 | 
						|
					cpa->rand[1]=BLI_frand();
 | 
						|
					cpa->rand[2]=BLI_frand();
 | 
						|
 | 
						|
					cpa->num=-1;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else{
 | 
						|
		dm= CDDM_from_mesh((Mesh*)ob->data, ob);
 | 
						|
 | 
						|
		/* special handling of grid distribution */
 | 
						|
		if(part->distr==PART_DISTR_GRID){
 | 
						|
			distribute_particles_in_grid(dm,psys);
 | 
						|
			dm->release(dm);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		/* we need orco for consistent distributions */
 | 
						|
		DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, get_mesh_orco_verts(ob));
 | 
						|
 | 
						|
		distr=part->distr;
 | 
						|
		pa=psys->particles;
 | 
						|
		if(from==PART_FROM_VERT){
 | 
						|
			MVert *mv= dm->getVertDataArray(dm, CD_MVERT);
 | 
						|
			float (*orcodata)[3]= dm->getVertDataArray(dm, CD_ORCO);
 | 
						|
			int totvert = dm->getNumVerts(dm);
 | 
						|
 | 
						|
			tree=BLI_kdtree_new(totvert);
 | 
						|
 | 
						|
			for(p=0; p<totvert; p++){
 | 
						|
				if(orcodata) {
 | 
						|
					VECCOPY(co,orcodata[p])
 | 
						|
					transform_mesh_orco_verts((Mesh*)ob->data, &co, 1, 1);
 | 
						|
				}
 | 
						|
				else
 | 
						|
					VECCOPY(co,mv[p].co)
 | 
						|
				BLI_kdtree_insert(tree,p,co,NULL);
 | 
						|
			}
 | 
						|
 | 
						|
			BLI_kdtree_balance(tree);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* 1. */
 | 
						|
	switch(from){
 | 
						|
		case PART_FROM_VERT:
 | 
						|
			tot = dm->getNumVerts(dm);
 | 
						|
			break;
 | 
						|
		case PART_FROM_VOLUME:
 | 
						|
		case PART_FROM_FACE:
 | 
						|
			tot = dm->getNumFaces(dm);
 | 
						|
			break;
 | 
						|
		case PART_FROM_PARTICLE:
 | 
						|
			if(psys->target_ob)
 | 
						|
				tob=psys->target_ob;
 | 
						|
			else
 | 
						|
				tob=ob;
 | 
						|
 | 
						|
			if((tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1))){
 | 
						|
				tpars=tpsys->particles;
 | 
						|
				tot=tpsys->totpart;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if(tot==0){
 | 
						|
		no_distr=1;
 | 
						|
		if(children){
 | 
						|
			fprintf(stderr,"Particle child distribution error: Nothing to emit from!\n");
 | 
						|
			for(p=0,cpa=psys->child; p<totpart; p++,cpa++){
 | 
						|
				cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]= 0.0;
 | 
						|
				cpa->foffset= 0.0f;
 | 
						|
				cpa->parent=0;
 | 
						|
				cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
 | 
						|
				cpa->num= -1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			fprintf(stderr,"Particle distribution error: Nothing to emit from!\n");
 | 
						|
			for(p=0,pa=psys->particles; p<totpart; p++,pa++){
 | 
						|
				pa->fuv[0]=pa->fuv[1]=pa->fuv[2]= pa->fuv[3]= 0.0;
 | 
						|
				pa->foffset= 0.0f;
 | 
						|
				pa->num= -1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if(dm != finaldm) dm->release(dm);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* 2. */
 | 
						|
 | 
						|
	weight=MEM_callocN(sizeof(float)*tot, "particle_distribution_weights");
 | 
						|
	index=MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes");
 | 
						|
	sum=MEM_callocN(sizeof(float)*(tot+1), "particle_distribution_sum");
 | 
						|
	jitoff=MEM_callocN(sizeof(float)*tot, "particle_distribution_jitoff");
 | 
						|
 | 
						|
	/* 2.1 */
 | 
						|
	if((part->flag&PART_EDISTR || children) && ELEM(from,PART_FROM_PARTICLE,PART_FROM_VERT)==0){
 | 
						|
		MVert *v1, *v2, *v3, *v4;
 | 
						|
		float totarea=0.0, co1[3], co2[3], co3[3], co4[3];
 | 
						|
		float (*orcodata)[3];
 | 
						|
		
 | 
						|
		orcodata= dm->getVertDataArray(dm, CD_ORCO);
 | 
						|
 | 
						|
		for(i=0; i<tot; i++){
 | 
						|
			MFace *mf=dm->getFaceData(dm,i,CD_MFACE);
 | 
						|
 | 
						|
			if(orcodata) {
 | 
						|
				VECCOPY(co1, orcodata[mf->v1]);
 | 
						|
				VECCOPY(co2, orcodata[mf->v2]);
 | 
						|
				VECCOPY(co3, orcodata[mf->v3]);
 | 
						|
				transform_mesh_orco_verts((Mesh*)ob->data, &co1, 1, 1);
 | 
						|
				transform_mesh_orco_verts((Mesh*)ob->data, &co2, 1, 1);
 | 
						|
				transform_mesh_orco_verts((Mesh*)ob->data, &co3, 1, 1);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				v1= (MVert*)dm->getVertData(dm,mf->v1,CD_MVERT);
 | 
						|
				v2= (MVert*)dm->getVertData(dm,mf->v2,CD_MVERT);
 | 
						|
				v3= (MVert*)dm->getVertData(dm,mf->v3,CD_MVERT);
 | 
						|
				VECCOPY(co1, v1->co);
 | 
						|
				VECCOPY(co2, v2->co);
 | 
						|
				VECCOPY(co3, v3->co);
 | 
						|
			}
 | 
						|
 | 
						|
			if (mf->v4){
 | 
						|
				if(orcodata) {
 | 
						|
					VECCOPY(co4, orcodata[mf->v4]);
 | 
						|
					transform_mesh_orco_verts((Mesh*)ob->data, &co4, 1, 1);
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					v4= (MVert*)dm->getVertData(dm,mf->v4,CD_MVERT);
 | 
						|
					VECCOPY(co4, v4->co);
 | 
						|
				}
 | 
						|
				cur= AreaQ3Dfl(co1, co2, co3, co4);
 | 
						|
			}
 | 
						|
			else
 | 
						|
				cur= AreaT3Dfl(co1, co2, co3);
 | 
						|
			
 | 
						|
			if(cur>maxweight)
 | 
						|
				maxweight=cur;
 | 
						|
 | 
						|
			weight[i]= cur;
 | 
						|
			totarea+=cur;
 | 
						|
		}
 | 
						|
 | 
						|
		for(i=0; i<tot; i++)
 | 
						|
			weight[i] /= totarea;
 | 
						|
 | 
						|
		maxweight /= totarea;
 | 
						|
	}
 | 
						|
	else if(from==PART_FROM_PARTICLE){
 | 
						|
		float val=(float)tot/(float)totpart;
 | 
						|
		for(i=0; i<tot; i++)
 | 
						|
			weight[i]=val;
 | 
						|
		maxweight=val;
 | 
						|
	}
 | 
						|
	else{
 | 
						|
		float min=1.0f/(float)(MIN2(tot,totpart));
 | 
						|
		for(i=0; i<tot; i++)
 | 
						|
			weight[i]=min;
 | 
						|
		maxweight=min;
 | 
						|
	}
 | 
						|
 | 
						|
	/* 2.2 */
 | 
						|
	if(ELEM3(from,PART_FROM_VERT,PART_FROM_FACE,PART_FROM_VOLUME)){
 | 
						|
		float *vweight= psys_cache_vgroup(dm,psys,PSYS_VG_DENSITY);
 | 
						|
 | 
						|
		if(vweight){
 | 
						|
			if(from==PART_FROM_VERT) {
 | 
						|
				for(i=0;i<tot; i++)
 | 
						|
					weight[i]*=vweight[i];
 | 
						|
			}
 | 
						|
			else { /* PART_FROM_FACE / PART_FROM_VOLUME */
 | 
						|
				for(i=0;i<tot; i++){
 | 
						|
					MFace *mf=dm->getFaceData(dm,i,CD_MFACE);
 | 
						|
					tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3];
 | 
						|
				
 | 
						|
					if(mf->v4) {
 | 
						|
						tweight += vweight[mf->v4];
 | 
						|
						tweight /= 4.0;
 | 
						|
					}
 | 
						|
					else {
 | 
						|
						tweight /= 3.0;
 | 
						|
					}
 | 
						|
 | 
						|
					weight[i]*=tweight;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			MEM_freeN(vweight);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* 3. */
 | 
						|
	totweight= 0.0f;
 | 
						|
	for(i=0;i<tot; i++)
 | 
						|
		totweight += weight[i];
 | 
						|
 | 
						|
	if(totweight > 0.0f)
 | 
						|
		totweight= 1.0f/totweight;
 | 
						|
 | 
						|
	sum[0]= 0.0f;
 | 
						|
	for(i=0;i<tot; i++)
 | 
						|
		sum[i+1]= sum[i]+weight[i]*totweight;
 | 
						|
	
 | 
						|
	if((part->flag&PART_TRAND) || (part->simplify_flag&PART_SIMPLIFY_ENABLE)) {
 | 
						|
		float pos;
 | 
						|
 | 
						|
		for(p=0; p<totpart; p++) {
 | 
						|
			pos= BLI_frand();
 | 
						|
			index[p]= binary_search_distribution(sum, tot, pos);
 | 
						|
			index[p]= MIN2(tot-1, index[p]);
 | 
						|
			jitoff[index[p]]= pos;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		double step, pos;
 | 
						|
		
 | 
						|
		step= (totpart <= 1)? 0.5: 1.0/(totpart-1);
 | 
						|
		pos= 1e-16f; /* tiny offset to avoid zero weight face */
 | 
						|
		i= 0;
 | 
						|
 | 
						|
		for(p=0; p<totpart; p++, pos+=step) {
 | 
						|
			while((i < tot) && (pos > sum[i+1]))
 | 
						|
				i++;
 | 
						|
 | 
						|
			index[p]= MIN2(tot-1, i);
 | 
						|
 | 
						|
			/* avoid zero weight face */
 | 
						|
			if(p == totpart-1 && weight[index[p]] == 0.0f)
 | 
						|
				index[p]= index[p-1];
 | 
						|
 | 
						|
			jitoff[index[p]]= pos;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	MEM_freeN(sum);
 | 
						|
 | 
						|
	/* for hair, sort by origindex, allows optimizations in rendering */
 | 
						|
	if(part->type == PART_HAIR) {
 | 
						|
		COMPARE_ORIG_INDEX= dm->getFaceDataArray(dm, CD_ORIGINDEX);
 | 
						|
		if(COMPARE_ORIG_INDEX)
 | 
						|
			qsort(index, totpart, sizeof(int), compare_orig_index);
 | 
						|
	}
 | 
						|
 | 
						|
	/* weights are no longer used except for FROM_PARTICLE, which needs them zeroed for indexing */
 | 
						|
	if(from==PART_FROM_PARTICLE){
 | 
						|
		for(i=0; i<tot; i++)
 | 
						|
			weight[i]=0.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	/* 4. */
 | 
						|
	if(distr==PART_DISTR_JIT && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
 | 
						|
		jitlevel= part->userjit;
 | 
						|
		
 | 
						|
		if(jitlevel == 0) {
 | 
						|
			jitlevel= totpart/tot;
 | 
						|
			if(part->flag & PART_EDISTR) jitlevel*= 2;	/* looks better in general, not very scietific */
 | 
						|
			if(jitlevel<3) jitlevel= 3;
 | 
						|
			//if(jitlevel>100) jitlevel= 100;
 | 
						|
		}
 | 
						|
		
 | 
						|
		jit= MEM_callocN(2+ jitlevel*2*sizeof(float), "jit");
 | 
						|
 | 
						|
		init_mv_jit(jit, jitlevel, psys->seed, part->jitfac);
 | 
						|
		BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */
 | 
						|
	}
 | 
						|
 | 
						|
	/* 5. */
 | 
						|
	ctx->tree= tree;
 | 
						|
	ctx->seams= seams;
 | 
						|
	ctx->totseam= totseam;
 | 
						|
	ctx->psys= psys;
 | 
						|
	ctx->index= index;
 | 
						|
	ctx->jit= jit;
 | 
						|
	ctx->jitlevel= jitlevel;
 | 
						|
	ctx->jitoff= jitoff;
 | 
						|
	ctx->weight= weight;
 | 
						|
	ctx->maxweight= maxweight;
 | 
						|
	ctx->from= (children)? PART_FROM_CHILD: from;
 | 
						|
	ctx->cfrom= cfrom;
 | 
						|
	ctx->distr= distr;
 | 
						|
	ctx->dm= dm;
 | 
						|
	ctx->tpars= tpars;
 | 
						|
 | 
						|
	if(children) {
 | 
						|
		totpart= psys_render_simplify_distribution(ctx, totpart);
 | 
						|
		alloc_child_particles(psys, totpart);
 | 
						|
	}
 | 
						|
 | 
						|
	if(!children || psys->totchild < 10000)
 | 
						|
		totthread= 1;
 | 
						|
	
 | 
						|
	seed= 31415926 + ctx->psys->seed;
 | 
						|
	for(i=0; i<totthread; i++) {
 | 
						|
		threads[i].rng= rng_new(seed);
 | 
						|
		threads[i].tot= totthread;
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void distribute_particles_on_dm(DerivedMesh *finaldm, Object *ob, ParticleSystem *psys, int from)
 | 
						|
{
 | 
						|
	ListBase threads;
 | 
						|
	ParticleThread *pthreads;
 | 
						|
	ParticleThreadContext *ctx;
 | 
						|
	int i, totthread;
 | 
						|
 | 
						|
	pthreads= psys_threads_create(ob, psys, G.scene->r.threads);
 | 
						|
 | 
						|
	if(!psys_threads_init_distribution(pthreads, finaldm, from)) {
 | 
						|
		psys_threads_free(pthreads);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	totthread= pthreads[0].tot;
 | 
						|
	if(totthread > 1) {
 | 
						|
		BLI_init_threads(&threads, exec_distribution, totthread);
 | 
						|
 | 
						|
		for(i=0; i<totthread; i++)
 | 
						|
			BLI_insert_thread(&threads, &pthreads[i]);
 | 
						|
 | 
						|
		BLI_end_threads(&threads);
 | 
						|
	}
 | 
						|
	else
 | 
						|
		exec_distribution(&pthreads[0]);
 | 
						|
 | 
						|
	if (from == PART_FROM_FACE)
 | 
						|
		psys_calc_dmfaces(ob, finaldm, psys);
 | 
						|
 | 
						|
	ctx= pthreads[0].ctx;
 | 
						|
	if(ctx->dm != finaldm)
 | 
						|
		ctx->dm->release(ctx->dm);
 | 
						|
 | 
						|
	psys_threads_free(pthreads);
 | 
						|
}
 | 
						|
 | 
						|
/* ready for future use, to emit particles without geometry */
 | 
						|
static void distribute_particles_on_shape(Object *ob, ParticleSystem *psys, int from)
 | 
						|
{
 | 
						|
	ParticleData *pa;
 | 
						|
	int totpart=psys->totpart, p;
 | 
						|
 | 
						|
	fprintf(stderr,"Shape emission not yet possible!\n");
 | 
						|
 | 
						|
	for(p=0,pa=psys->particles; p<totpart; p++,pa++){
 | 
						|
		pa->fuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0;
 | 
						|
		pa->foffset= 0.0f;
 | 
						|
		pa->num= -1;
 | 
						|
	}
 | 
						|
}
 | 
						|
static void distribute_particles(Object *ob, ParticleSystem *psys, int from)
 | 
						|
{
 | 
						|
	ParticleSystemModifierData *psmd=0;
 | 
						|
	int distr_error=0;
 | 
						|
	psmd=psys_get_modifier(ob,psys);
 | 
						|
 | 
						|
	if(psmd){
 | 
						|
		if(psmd->dm)
 | 
						|
			distribute_particles_on_dm(psmd->dm,ob,psys,from);
 | 
						|
		else
 | 
						|
			distr_error=1;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		distribute_particles_on_shape(ob,psys,from);
 | 
						|
 | 
						|
	if(distr_error){
 | 
						|
		ParticleData *pa;
 | 
						|
		int totpart=psys->totpart, p;
 | 
						|
 | 
						|
		fprintf(stderr,"Particle distribution error!\n");
 | 
						|
 | 
						|
		for(p=0,pa=psys->particles; p<totpart; p++,pa++){
 | 
						|
			pa->fuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0;
 | 
						|
			pa->foffset= 0.0f;
 | 
						|
			pa->num= -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* threaded child particle distribution and path caching */
 | 
						|
ParticleThread *psys_threads_create(struct Object *ob, struct ParticleSystem *psys, int totthread)
 | 
						|
{
 | 
						|
	ParticleThread *threads;
 | 
						|
	ParticleThreadContext *ctx;
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	threads= MEM_callocN(sizeof(ParticleThread)*totthread, "ParticleThread");
 | 
						|
	ctx= MEM_callocN(sizeof(ParticleThreadContext), "ParticleThreadContext");
 | 
						|
 | 
						|
	ctx->ob= ob;
 | 
						|
	ctx->psys= psys;
 | 
						|
	ctx->psmd= psys_get_modifier(ob, psys);
 | 
						|
	ctx->dm= ctx->psmd->dm;
 | 
						|
	ctx->ma= give_current_material(ob, psys->part->omat);
 | 
						|
 | 
						|
	memset(threads, 0, sizeof(ParticleThread)*totthread);
 | 
						|
 | 
						|
	for(i=0; i<totthread; i++) {
 | 
						|
		threads[i].ctx= ctx;
 | 
						|
		threads[i].num= i;
 | 
						|
		threads[i].tot= totthread;
 | 
						|
	}
 | 
						|
 | 
						|
	return threads;
 | 
						|
}
 | 
						|
 | 
						|
void psys_threads_free(ParticleThread *threads)
 | 
						|
{
 | 
						|
	ParticleThreadContext *ctx= threads[0].ctx;
 | 
						|
	int i, totthread= threads[0].tot;
 | 
						|
 | 
						|
	/* path caching */
 | 
						|
	if(ctx->vg_length)
 | 
						|
		MEM_freeN(ctx->vg_length);
 | 
						|
	if(ctx->vg_clump)
 | 
						|
		MEM_freeN(ctx->vg_clump);
 | 
						|
	if(ctx->vg_kink)
 | 
						|
		MEM_freeN(ctx->vg_kink);
 | 
						|
	if(ctx->vg_rough1)
 | 
						|
		MEM_freeN(ctx->vg_rough1);
 | 
						|
	if(ctx->vg_rough2)
 | 
						|
		MEM_freeN(ctx->vg_rough2);
 | 
						|
	if(ctx->vg_roughe)
 | 
						|
		MEM_freeN(ctx->vg_roughe);
 | 
						|
 | 
						|
	if(ctx->psys->lattice){
 | 
						|
		end_latt_deform();
 | 
						|
		ctx->psys->lattice=0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* distribution */
 | 
						|
	if(ctx->jit) MEM_freeN(ctx->jit);
 | 
						|
	if(ctx->jitoff) MEM_freeN(ctx->jitoff);
 | 
						|
	if(ctx->weight) MEM_freeN(ctx->weight);
 | 
						|
	if(ctx->index) MEM_freeN(ctx->index);
 | 
						|
	if(ctx->skip) MEM_freeN(ctx->skip);
 | 
						|
	if(ctx->seams) MEM_freeN(ctx->seams);
 | 
						|
	//if(ctx->vertpart) MEM_freeN(ctx->vertpart);
 | 
						|
	BLI_kdtree_free(ctx->tree);
 | 
						|
 | 
						|
	/* threads */
 | 
						|
	for(i=0; i<totthread; i++) {
 | 
						|
		if(threads[i].rng)
 | 
						|
			rng_free(threads[i].rng);
 | 
						|
		if(threads[i].rng_path)
 | 
						|
			rng_free(threads[i].rng_path);
 | 
						|
	}
 | 
						|
 | 
						|
	MEM_freeN(ctx);
 | 
						|
	MEM_freeN(threads);
 | 
						|
}
 | 
						|
 | 
						|
/* set particle parameters that don't change during particle's life */
 | 
						|
void initialize_particle(ParticleData *pa, int p, Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
 | 
						|
{
 | 
						|
	ParticleSettings *part;
 | 
						|
	ParticleTexture ptex;
 | 
						|
	Material *ma=0;
 | 
						|
	IpoCurve *icu=0;
 | 
						|
	int totpart;
 | 
						|
	float rand,length;
 | 
						|
 | 
						|
	part=psys->part;
 | 
						|
 | 
						|
	totpart=psys->totpart;
 | 
						|
 | 
						|
	ptex.life=ptex.size=ptex.exist=ptex.length=1.0;
 | 
						|
	ptex.time=(float)p/(float)totpart;
 | 
						|
 | 
						|
	BLI_srandom(psys->seed+p);
 | 
						|
 | 
						|
	if(part->from!=PART_FROM_PARTICLE){
 | 
						|
		ma=give_current_material(ob,part->omat);
 | 
						|
 | 
						|
		/* TODO: needs some work to make most blendtypes generally usefull */
 | 
						|
		psys_get_texture(ob,ma,psmd,psys,pa,&ptex,MAP_PA_INIT);
 | 
						|
	}
 | 
						|
	
 | 
						|
	pa->lifetime= part->lifetime*ptex.life;
 | 
						|
 | 
						|
	if(part->type==PART_HAIR)
 | 
						|
		pa->time=0.0f;
 | 
						|
	else if(part->type==PART_REACTOR && (part->flag&PART_REACT_STA_END)==0)
 | 
						|
		pa->time=MAXFRAMEF;
 | 
						|
	else{
 | 
						|
		//icu=find_ipocurve(psys->part->ipo,PART_EMIT_TIME);
 | 
						|
		//if(icu){
 | 
						|
		//	calc_icu(icu,100*ptex.time);
 | 
						|
		//	ptex.time=icu->curval;
 | 
						|
		//}
 | 
						|
 | 
						|
		pa->time= part->sta + (part->end - part->sta)*ptex.time;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	if(part->type==PART_HAIR){
 | 
						|
		pa->lifetime=100.0f;
 | 
						|
	}
 | 
						|
	else{
 | 
						|
		icu=find_ipocurve(psys->part->ipo,PART_EMIT_LIFE);
 | 
						|
		if(icu){
 | 
						|
			calc_icu(icu,100*ptex.time);
 | 
						|
			pa->lifetime*=icu->curval;
 | 
						|
		}
 | 
						|
 | 
						|
	/* need to get every rand even if we don't use them so that randoms don't affect eachother */
 | 
						|
		rand= BLI_frand();
 | 
						|
		if(part->randlife!=0.0)
 | 
						|
			pa->lifetime*= 1.0f - part->randlife*rand;
 | 
						|
	}
 | 
						|
 | 
						|
	pa->dietime= pa->time+pa->lifetime;
 | 
						|
 | 
						|
	pa->sizemul= BLI_frand();
 | 
						|
 | 
						|
	rand= BLI_frand();
 | 
						|
 | 
						|
	/* while loops are to have a spherical distribution (avoid cubic distribution) */
 | 
						|
	length=2.0f;
 | 
						|
	while(length>1.0){
 | 
						|
		pa->r_ve[0]=2.0f*(BLI_frand()-0.5f);
 | 
						|
		pa->r_ve[1]=2.0f*(BLI_frand()-0.5f);
 | 
						|
		pa->r_ve[2]=2.0f*(BLI_frand()-0.5f);
 | 
						|
		length=VecLength(pa->r_ve);
 | 
						|
	}
 | 
						|
 | 
						|
	length=2.0f;
 | 
						|
	while(length>1.0){
 | 
						|
		pa->r_ave[0]=2.0f*(BLI_frand()-0.5f);
 | 
						|
		pa->r_ave[1]=2.0f*(BLI_frand()-0.5f);
 | 
						|
		pa->r_ave[2]=2.0f*(BLI_frand()-0.5f);
 | 
						|
		length=VecLength(pa->r_ave);
 | 
						|
	}
 | 
						|
 | 
						|
	pa->r_rot[0]=2.0f*(BLI_frand()-0.5f);
 | 
						|
	pa->r_rot[1]=2.0f*(BLI_frand()-0.5f);
 | 
						|
	pa->r_rot[2]=2.0f*(BLI_frand()-0.5f);
 | 
						|
	pa->r_rot[3]=2.0f*(BLI_frand()-0.5f);
 | 
						|
 | 
						|
	NormalQuat(pa->r_rot);
 | 
						|
 | 
						|
	if(part->distr!=PART_DISTR_GRID){
 | 
						|
		/* any unique random number will do (r_ave[0]) */
 | 
						|
		if(ptex.exist < 0.5*(1.0+pa->r_ave[0]))
 | 
						|
			pa->flag |= PARS_UNEXIST;
 | 
						|
		else
 | 
						|
			pa->flag &= ~PARS_UNEXIST;
 | 
						|
	}
 | 
						|
 | 
						|
	pa->loop=0;
 | 
						|
	/* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */
 | 
						|
	/* usage other than straight after distribute has to handle this index by itself - jahka*/
 | 
						|
	//pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we dont have a derived mesh face */
 | 
						|
}
 | 
						|
static void initialize_all_particles(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
 | 
						|
{
 | 
						|
	IpoCurve *icu=0;
 | 
						|
	ParticleData *pa;
 | 
						|
	int p, totpart=psys->totpart;
 | 
						|
 | 
						|
	for(p=0, pa=psys->particles; p<totpart; p++, pa++)
 | 
						|
		initialize_particle(pa,p,ob,psys,psmd);
 | 
						|
	
 | 
						|
	/* store the derived mesh face index for each particle */
 | 
						|
	icu=find_ipocurve(psys->part->ipo,PART_EMIT_FREQ);
 | 
						|
	if(icu){
 | 
						|
		float time=psys->part->sta, end=psys->part->end;
 | 
						|
		float v1, v2, a=0.0f, t1,t2, d;
 | 
						|
 | 
						|
		p=0;
 | 
						|
		pa=psys->particles;
 | 
						|
 | 
						|
		calc_icu(icu,time);
 | 
						|
		v1=icu->curval;
 | 
						|
		if(v1<0.0f) v1=0.0f;
 | 
						|
 | 
						|
		calc_icu(icu,time+1.0f);
 | 
						|
		v2=icu->curval;
 | 
						|
		if(v2<0.0f) v2=0.0f;
 | 
						|
 | 
						|
		for(p=0, pa=psys->particles; p<totpart && time<end; p++, pa++){
 | 
						|
			while(a+0.5f*(v1+v2) < (float)(p+1) && time<end){
 | 
						|
				a+=0.5f*(v1+v2);
 | 
						|
				v1=v2;
 | 
						|
				time++;
 | 
						|
				calc_icu(icu,time+1.0f);
 | 
						|
				v2=icu->curval;
 | 
						|
			}
 | 
						|
			if(time<end){
 | 
						|
				if(v1==v2){
 | 
						|
					pa->time=time+((float)(p+1)-a)/v1;
 | 
						|
				}
 | 
						|
				else{
 | 
						|
					d=(float)sqrt(v1*v1-2.0f*(v2-v1)*(a-(float)(p+1)));
 | 
						|
					t1=(-v1+d)/(v2-v1);
 | 
						|
					t2=(-v1-d)/(v2-v1);
 | 
						|
 | 
						|
					/* the root between 0-1 is the correct one */
 | 
						|
					if(t1>0.0f && t1<=1.0f)
 | 
						|
						pa->time=time+t1;
 | 
						|
					else
 | 
						|
						pa->time=time+t2;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			pa->dietime = pa->time+pa->lifetime;
 | 
						|
			pa->flag &= ~PARS_UNEXIST;
 | 
						|
		}
 | 
						|
		for(; p<totpart; p++, pa++){
 | 
						|
			pa->flag |= PARS_UNEXIST;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
/* sets particle to the emitter surface with initial velocity & rotation */
 | 
						|
void reset_particle(ParticleData *pa, ParticleSystem *psys, ParticleSystemModifierData *psmd, Object *ob,
 | 
						|
					float dtime, float cfra, float *vg_vel, float *vg_tan, float *vg_rot)
 | 
						|
{
 | 
						|
	ParticleSettings *part;
 | 
						|
	ParticleTexture ptex;
 | 
						|
	ParticleKey state;
 | 
						|
	IpoCurve *icu=0;
 | 
						|
	float fac, phasefac, nor[3]={0,0,0},loc[3],tloc[3],vel[3]={0.0,0.0,0.0},rot[4],*q2=0;
 | 
						|
	float r_vel[3],r_ave[3],r_rot[4],p_vel[3]={0.0,0.0,0.0};
 | 
						|
	float x_vec[3]={1.0,0.0,0.0}, utan[3]={0.0,1.0,0.0}, vtan[3]={0.0,0.0,1.0}, rot_vec[3]={0.0,0.0,0.0};
 | 
						|
	float q_phase[4];
 | 
						|
	part=psys->part;
 | 
						|
 | 
						|
	ptex.ivel=1.0;
 | 
						|
	
 | 
						|
	if(part->from==PART_FROM_PARTICLE){
 | 
						|
		Object *tob;
 | 
						|
		ParticleSystem *tpsys=0;
 | 
						|
		float speed;
 | 
						|
 | 
						|
		tob=psys->target_ob;
 | 
						|
		if(tob==0)
 | 
						|
			tob=ob;
 | 
						|
 | 
						|
		tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1);
 | 
						|
		
 | 
						|
		/*TODO: get precise location of particle at birth*/
 | 
						|
 | 
						|
		state.time=cfra;
 | 
						|
		psys_get_particle_state(tob,tpsys,pa->num,&state,1);
 | 
						|
		psys_get_from_key(&state,loc,nor,rot,0);
 | 
						|
 | 
						|
		QuatMulVecf(rot,vtan);
 | 
						|
		QuatMulVecf(rot,utan);
 | 
						|
		VECCOPY(r_vel,pa->r_ve);
 | 
						|
		VECCOPY(r_rot,pa->r_rot);
 | 
						|
		VECCOPY(r_ave,pa->r_ave);
 | 
						|
 | 
						|
		VECCOPY(p_vel,state.vel);
 | 
						|
		speed=Normalize(p_vel);
 | 
						|
		VecMulf(p_vel,Inpf(pa->r_ve,p_vel));
 | 
						|
		VECSUB(p_vel,pa->r_ve,p_vel);
 | 
						|
		Normalize(p_vel);
 | 
						|
		VecMulf(p_vel,speed);
 | 
						|
	}
 | 
						|
	else{
 | 
						|
		/* get precise emitter matrix if particle is born */
 | 
						|
		if(part->type!=PART_HAIR && pa->time < cfra && pa->time >= psys->cfra)
 | 
						|
			where_is_object_time(ob,pa->time);
 | 
						|
 | 
						|
		/* get birth location from object		*/
 | 
						|
		psys_particle_on_emitter(ob,psmd,part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan,0,0);
 | 
						|
		
 | 
						|
		/* save local coordinates for later		*/
 | 
						|
		VECCOPY(tloc,loc);
 | 
						|
		
 | 
						|
		/* get possible textural influence */
 | 
						|
		psys_get_texture(ob,give_current_material(ob,part->omat),psmd,psys,pa,&ptex,MAP_PA_IVEL);
 | 
						|
 | 
						|
		if(vg_vel){
 | 
						|
			ptex.ivel*=psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_vel);
 | 
						|
		}
 | 
						|
 | 
						|
		/* particles live in global space so	*/
 | 
						|
		/* let's convert:						*/
 | 
						|
		/* -location							*/
 | 
						|
		Mat4MulVecfl(ob->obmat,loc);
 | 
						|
		
 | 
						|
		/* -normal								*/
 | 
						|
		VECADD(nor,tloc,nor);
 | 
						|
		Mat4MulVecfl(ob->obmat,nor);
 | 
						|
		VECSUB(nor,nor,loc);
 | 
						|
		Normalize(nor);
 | 
						|
 | 
						|
		/* -tangent								*/
 | 
						|
		if(part->tanfac!=0.0){
 | 
						|
			float phase=vg_rot?2.0f*(psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_rot)-0.5f):0.0f;
 | 
						|
			VecMulf(vtan,-(float)cos(M_PI*(part->tanphase+phase)));
 | 
						|
			fac=-(float)sin(M_PI*(part->tanphase+phase));
 | 
						|
			VECADDFAC(vtan,vtan,utan,fac);
 | 
						|
 | 
						|
			VECADD(vtan,tloc,vtan);
 | 
						|
			Mat4MulVecfl(ob->obmat,vtan);
 | 
						|
			VECSUB(vtan,vtan,loc);
 | 
						|
 | 
						|
			VECCOPY(utan,nor);
 | 
						|
			VecMulf(utan,Inpf(vtan,nor));
 | 
						|
			VECSUB(vtan,vtan,utan);
 | 
						|
			
 | 
						|
			Normalize(vtan);
 | 
						|
		}
 | 
						|
		
 | 
						|
 | 
						|
		/* -velocity							*/
 | 
						|
		if(part->randfac!=0.0){
 | 
						|
			VECADD(r_vel,tloc,pa->r_ve);
 | 
						|
			Mat4MulVecfl(ob->obmat,r_vel);
 | 
						|
			VECSUB(r_vel,r_vel,loc);
 | 
						|
			Normalize(r_vel);
 | 
						|
		}
 | 
						|
 | 
						|
		/* -angular velocity					*/
 | 
						|
		if(part->avemode==PART_AVE_RAND){
 | 
						|
			VECADD(r_ave,tloc,pa->r_ave);
 | 
						|
			Mat4MulVecfl(ob->obmat,r_ave);
 | 
						|
			VECSUB(r_ave,r_ave,loc);
 | 
						|
			Normalize(r_ave);
 | 
						|
		}
 | 
						|
		
 | 
						|
		/* -rotation							*/
 | 
						|
		if(part->randrotfac != 0.0f){
 | 
						|
			QUATCOPY(r_rot,pa->r_rot);
 | 
						|
			Mat4ToQuat(ob->obmat,rot);
 | 
						|
			QuatMul(r_rot,r_rot,rot);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* conversion done so now we apply new:	*/
 | 
						|
	/* -velocity from:						*/
 | 
						|
	/*		*emitter velocity				*/
 | 
						|
	if(dtime!=0.0 && part->obfac!=0.0){
 | 
						|
		VECSUB(vel,loc,pa->state.co);
 | 
						|
		VecMulf(vel,part->obfac/dtime);
 | 
						|
	}
 | 
						|
	
 | 
						|
	/*		*emitter normal					*/
 | 
						|
	if(part->normfac!=0.0)
 | 
						|
		VECADDFAC(vel,vel,nor,part->normfac);
 | 
						|
	
 | 
						|
	/*		*emitter tangent				*/
 | 
						|
	if(part->tanfac!=0.0)
 | 
						|
		VECADDFAC(vel,vel,vtan,part->tanfac*(vg_tan?psys_interpolate_value_from_verts(psmd->dm,part->from,pa->num,pa->fuv,vg_tan):1.0f));
 | 
						|
 | 
						|
	/*		*texture						*/
 | 
						|
	/* TODO	*/
 | 
						|
 | 
						|
	/*		*random							*/
 | 
						|
	if(part->randfac!=0.0)
 | 
						|
		VECADDFAC(vel,vel,r_vel,part->randfac);
 | 
						|
 | 
						|
	/*		*particle						*/
 | 
						|
	if(part->partfac!=0.0)
 | 
						|
		VECADDFAC(vel,vel,p_vel,part->partfac);
 | 
						|
 | 
						|
	icu=find_ipocurve(psys->part->ipo,PART_EMIT_VEL);
 | 
						|
	if(icu){
 | 
						|
		calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta)));
 | 
						|
		ptex.ivel*=icu->curval;
 | 
						|
	}
 | 
						|
 | 
						|
	VecMulf(vel,ptex.ivel);
 | 
						|
	
 | 
						|
	VECCOPY(pa->state.vel,vel);
 | 
						|
 | 
						|
	/* -location from emitter				*/
 | 
						|
	VECCOPY(pa->state.co,loc);
 | 
						|
 | 
						|
	/* -rotation							*/
 | 
						|
	pa->state.rot[0]=1.0;
 | 
						|
	pa->state.rot[1]=pa->state.rot[2]=pa->state.rot[3]=0.0;
 | 
						|
 | 
						|
	if(part->rotmode){
 | 
						|
		/* create vector into which rotation is aligned */
 | 
						|
		switch(part->rotmode){
 | 
						|
			case PART_ROT_NOR:
 | 
						|
				VecCopyf(rot_vec, nor);
 | 
						|
				break;
 | 
						|
			case PART_ROT_VEL:
 | 
						|
				VecCopyf(rot_vec, vel);
 | 
						|
				break;
 | 
						|
			case PART_ROT_GLOB_X:
 | 
						|
			case PART_ROT_GLOB_Y:
 | 
						|
			case PART_ROT_GLOB_Z:
 | 
						|
				rot_vec[part->rotmode - PART_ROT_GLOB_X] = 1.0f;
 | 
						|
				break;
 | 
						|
			case PART_ROT_OB_X:
 | 
						|
			case PART_ROT_OB_Y:
 | 
						|
			case PART_ROT_OB_Z:
 | 
						|
				VecCopyf(rot_vec, ob->obmat[part->rotmode - PART_ROT_OB_X]);
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		
 | 
						|
		/* create rotation quat */
 | 
						|
		VecMulf(rot_vec,-1.0);
 | 
						|
		q2= vectoquat(rot_vec, OB_POSX, OB_POSZ);
 | 
						|
 | 
						|
		/* randomize rotation quat */
 | 
						|
		if(part->randrotfac!=0.0f)
 | 
						|
			QuatInterpol(rot, q2, r_rot, part->randrotfac);
 | 
						|
		else
 | 
						|
			QuatCopy(rot,q2);
 | 
						|
 | 
						|
		/* rotation phase */
 | 
						|
		phasefac = part->phasefac;
 | 
						|
		if(part->randphasefac != 0.0f) /* abuse r_ave[0] as a random number */
 | 
						|
			phasefac += part->randphasefac * pa->r_ave[0];
 | 
						|
		VecRotToQuat(x_vec, phasefac*(float)M_PI, q_phase);
 | 
						|
 | 
						|
		/* combine base rotation & phase */
 | 
						|
		QuatMul(pa->state.rot, rot, q_phase);
 | 
						|
	}
 | 
						|
 | 
						|
	/* -angular velocity					*/
 | 
						|
 | 
						|
	pa->state.ave[0] = pa->state.ave[1] = pa->state.ave[2] = 0.0;
 | 
						|
 | 
						|
	if(part->avemode){
 | 
						|
		switch(part->avemode){
 | 
						|
			case PART_AVE_SPIN:
 | 
						|
				VECCOPY(pa->state.ave,vel);
 | 
						|
				break;
 | 
						|
			case PART_AVE_RAND:
 | 
						|
				VECCOPY(pa->state.ave,r_ave);
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		Normalize(pa->state.ave);
 | 
						|
		VecMulf(pa->state.ave,part->avefac);
 | 
						|
 | 
						|
		icu=find_ipocurve(psys->part->ipo,PART_EMIT_AVE);
 | 
						|
		if(icu){
 | 
						|
			calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta)));
 | 
						|
			VecMulf(pa->state.ave,icu->curval);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	pa->dietime = pa->time + pa->lifetime;
 | 
						|
 | 
						|
	if(pa->time >= cfra)
 | 
						|
		pa->alive = PARS_UNBORN;
 | 
						|
 | 
						|
	pa->state.time = cfra;
 | 
						|
 | 
						|
	pa->stick_ob = 0;
 | 
						|
	pa->flag &= ~PARS_STICKY;
 | 
						|
}
 | 
						|
static void reset_all_particles(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float dtime, float cfra, int from)
 | 
						|
{
 | 
						|
	ParticleData *pa;
 | 
						|
	int p, totpart=psys->totpart;
 | 
						|
	float *vg_vel=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_VEL);
 | 
						|
	float *vg_tan=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_TAN);
 | 
						|
	float *vg_rot=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_ROT);
 | 
						|
	
 | 
						|
	for(p=from, pa=psys->particles+from; p<totpart; p++, pa++)
 | 
						|
		reset_particle(pa, psys, psmd, ob, dtime, cfra, vg_vel, vg_tan, vg_rot);
 | 
						|
 | 
						|
	if(vg_vel)
 | 
						|
		MEM_freeN(vg_vel);
 | 
						|
}
 | 
						|
/************************************************/
 | 
						|
/*			Keyed particles						*/
 | 
						|
/************************************************/
 | 
						|
/* a bit of an unintuitive function :) counts objects in a keyed chain and returns 1 if some of them were selected (used in drawing) */
 | 
						|
int psys_count_keyed_targets(Object *ob, ParticleSystem *psys)
 | 
						|
{
 | 
						|
	ParticleSystem *kpsys=psys,*tpsys;
 | 
						|
	ParticleSettings *tpart;
 | 
						|
	Object *kob=ob,*tob;
 | 
						|
	int select=ob->flag&SELECT;
 | 
						|
	short totkeyed=0;
 | 
						|
	Base *base;
 | 
						|
 | 
						|
	ListBase lb;
 | 
						|
	lb.first=lb.last=0;
 | 
						|
 | 
						|
	tob=psys->keyed_ob;
 | 
						|
	while(tob){
 | 
						|
		if((tpsys=BLI_findlink(&tob->particlesystem,kpsys->keyed_psys-1))){
 | 
						|
			tpart=tpsys->part;
 | 
						|
 | 
						|
			if(tpart->phystype==PART_PHYS_KEYED){
 | 
						|
				if(lb.first){
 | 
						|
					for(base=lb.first;base;base=base->next){
 | 
						|
						if(tob==base->object){
 | 
						|
							fprintf(stderr,"Error: loop in keyed chain!\n");
 | 
						|
							BLI_freelistN(&lb);
 | 
						|
							return select;
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
				base=MEM_callocN(sizeof(Base), "keyed base");
 | 
						|
				base->object=tob;
 | 
						|
				BLI_addtail(&lb,base);
 | 
						|
 | 
						|
				if(tob->flag&SELECT)
 | 
						|
					select++;
 | 
						|
				kob=tob;
 | 
						|
				kpsys=tpsys;
 | 
						|
				tob=tpsys->keyed_ob;
 | 
						|
				totkeyed++;
 | 
						|
			}
 | 
						|
			else{
 | 
						|
				tob=0;
 | 
						|
				totkeyed++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else
 | 
						|
			tob=0;
 | 
						|
	}
 | 
						|
	psys->totkeyed=totkeyed;
 | 
						|
	BLI_freelistN(&lb);
 | 
						|
	return select;
 | 
						|
}
 | 
						|
void set_keyed_keys(Object *ob, ParticleSystem *psys)
 | 
						|
{
 | 
						|
	Object *kob = ob;
 | 
						|
	ParticleSystem *kpsys = psys;
 | 
						|
	ParticleData *pa;
 | 
						|
	ParticleKey state;
 | 
						|
	int totpart = psys->totpart, i, k, totkeys = psys->totkeyed + 1;
 | 
						|
	float prevtime, nexttime, keyedtime;
 | 
						|
 | 
						|
	/* no proper targets so let's clear and bail out */
 | 
						|
	if(psys->totkeyed==0){
 | 
						|
		free_keyed_keys(psys);
 | 
						|
		psys->flag &= ~PSYS_KEYED;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if(totpart && psys->particles->totkey != totkeys){
 | 
						|
		free_keyed_keys(psys);
 | 
						|
		
 | 
						|
		psys->particles->keys = MEM_callocN(psys->totpart * totkeys * sizeof(ParticleKey),"Keyed keys");
 | 
						|
 | 
						|
		psys->particles->totkey = totkeys;
 | 
						|
		
 | 
						|
		for(i=1, pa=psys->particles+1; i<totpart; i++,pa++){
 | 
						|
			pa->keys = (pa-1)->keys + totkeys;
 | 
						|
			pa->totkey = totkeys;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	psys->flag &= ~PSYS_KEYED;
 | 
						|
	state.time=-1.0;
 | 
						|
 | 
						|
	for(k=0; k<totkeys; k++){
 | 
						|
		for(i=0,pa=psys->particles; i<totpart; i++, pa++){
 | 
						|
			psys_get_particle_state(kob, kpsys, i%kpsys->totpart, pa->keys + k, 1);
 | 
						|
 | 
						|
			if(k==0)
 | 
						|
				pa->keys->time = pa->time;
 | 
						|
			else if(k==totkeys-1)
 | 
						|
				(pa->keys + k)->time = pa->time + pa->lifetime;
 | 
						|
			else{
 | 
						|
				if(psys->flag & PSYS_KEYED_TIME){
 | 
						|
					prevtime = (pa->keys + k - 1)->time;
 | 
						|
					nexttime = pa->time + pa->lifetime;
 | 
						|
					keyedtime = kpsys->part->keyed_time;
 | 
						|
					(pa->keys + k)->time = (1.0f - keyedtime) * prevtime + keyedtime * nexttime;
 | 
						|
				}
 | 
						|
				else
 | 
						|
					(pa->keys+k)->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if(kpsys->keyed_ob){
 | 
						|
			kob = kpsys->keyed_ob;
 | 
						|
			kpsys = BLI_findlink(&kob->particlesystem, kpsys->keyed_psys - 1);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	psys->flag |= PSYS_KEYED;
 | 
						|
}
 | 
						|
/************************************************/
 | 
						|
/*			Reactors							*/
 | 
						|
/************************************************/
 | 
						|
static void push_reaction(Object* ob, ParticleSystem *psys, int pa_num, int event, ParticleKey *state)
 | 
						|
{
 | 
						|
	Object *rob;
 | 
						|
	ParticleSystem *rpsys;
 | 
						|
	ParticleSettings *rpart;
 | 
						|
	ParticleData *pa;
 | 
						|
	ListBase *lb=&psys->effectors;
 | 
						|
	ParticleEffectorCache *ec;
 | 
						|
	ParticleReactEvent *re;
 | 
						|
 | 
						|
	if(lb->first) for(ec = lb->first; ec; ec= ec->next){
 | 
						|
		if(ec->type & PSYS_EC_REACTOR){
 | 
						|
			/* all validity checks already done in add_to_effectors */
 | 
						|
			rob=ec->ob;
 | 
						|
			rpsys=BLI_findlink(&rob->particlesystem,ec->psys_nbr);
 | 
						|
			rpart=rpsys->part;
 | 
						|
			if(rpsys->part->reactevent==event){
 | 
						|
				pa=psys->particles+pa_num;
 | 
						|
				re= MEM_callocN(sizeof(ParticleReactEvent), "react event");
 | 
						|
				re->event=event;
 | 
						|
				re->pa_num = pa_num;
 | 
						|
				re->ob = ob;
 | 
						|
				re->psys = psys;
 | 
						|
				re->size = pa->size;
 | 
						|
				copy_particle_key(&re->state,state,1);
 | 
						|
 | 
						|
				switch(event){
 | 
						|
					case PART_EVENT_DEATH:
 | 
						|
						re->time=pa->dietime;
 | 
						|
						break;
 | 
						|
					case PART_EVENT_COLLIDE:
 | 
						|
						re->time=state->time;
 | 
						|
						break;
 | 
						|
					case PART_EVENT_NEAR:
 | 
						|
						re->time=state->time;
 | 
						|
						break;
 | 
						|
				}
 | 
						|
 | 
						|
				BLI_addtail(&rpsys->reactevents, re);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
static void react_to_events(ParticleSystem *psys, int pa_num)
 | 
						|
{
 | 
						|
	ParticleSettings *part=psys->part;
 | 
						|
	ParticleData *pa=psys->particles+pa_num;
 | 
						|
	ParticleReactEvent *re=psys->reactevents.first;
 | 
						|
	int birth=0;
 | 
						|
	float dist=0.0f;
 | 
						|
 | 
						|
	for(re=psys->reactevents.first; re; re=re->next){
 | 
						|
		birth=0;
 | 
						|
		if(part->from==PART_FROM_PARTICLE){
 | 
						|
			if(pa->num==re->pa_num){
 | 
						|
				if(re->event==PART_EVENT_NEAR){
 | 
						|
					ParticleData *tpa = re->psys->particles+re->pa_num;
 | 
						|
					float pa_time=tpa->time + pa->foffset*tpa->lifetime;
 | 
						|
					if(re->time > pa_time){
 | 
						|
						pa->alive=PARS_ALIVE;
 | 
						|
						pa->time=pa_time;
 | 
						|
						pa->dietime=pa->time+pa->lifetime;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				else{
 | 
						|
					if(pa->alive==PARS_UNBORN){
 | 
						|
						pa->alive=PARS_ALIVE;
 | 
						|
						pa->time=re->time;
 | 
						|
						pa->dietime=pa->time+pa->lifetime;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else{
 | 
						|
			dist=VecLenf(pa->state.co, re->state.co);
 | 
						|
			if(dist <= re->size){
 | 
						|
				if(pa->alive==PARS_UNBORN){
 | 
						|
					pa->alive=PARS_ALIVE;
 | 
						|
					pa->time=re->time;
 | 
						|
					pa->dietime=pa->time+pa->lifetime;
 | 
						|
					birth=1;
 | 
						|
				}
 | 
						|
				if(birth || part->flag&PART_REACT_MULTIPLE){
 | 
						|
					float vec[3];
 | 
						|
					VECSUB(vec,pa->state.co, re->state.co);
 | 
						|
					if(birth==0)
 | 
						|
						VecMulf(vec,(float)pow(1.0f-dist/re->size,part->reactshape));
 | 
						|
					VECADDFAC(pa->state.vel,pa->state.vel,vec,part->reactfac);
 | 
						|
					VECADDFAC(pa->state.vel,pa->state.vel,re->state.vel,part->partfac);
 | 
						|
				}
 | 
						|
				if(birth)
 | 
						|
					VecMulf(pa->state.vel,(float)pow(1.0f-dist/re->size,part->reactshape));
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
void psys_get_reactor_target(Object *ob, ParticleSystem *psys, Object **target_ob, ParticleSystem **target_psys)
 | 
						|
{
 | 
						|
	Object *tob;
 | 
						|
 | 
						|
	tob=psys->target_ob;
 | 
						|
	if(tob==0)
 | 
						|
		tob=ob;
 | 
						|
	
 | 
						|
	*target_psys=BLI_findlink(&tob->particlesystem,psys->target_psys-1);
 | 
						|
	if(*target_psys)
 | 
						|
		*target_ob=tob;
 | 
						|
	else
 | 
						|
		*target_ob=0;
 | 
						|
}
 | 
						|
/************************************************/
 | 
						|
/*			Point Cache							*/
 | 
						|
/************************************************/
 | 
						|
void clear_particles_from_cache(Object *ob, ParticleSystem *psys, int cfra)
 | 
						|
{
 | 
						|
	ParticleSystemModifierData *psmd = psys_get_modifier(ob,psys);
 | 
						|
	int stack_index = modifiers_indexInObject(ob,(ModifierData*)psmd);
 | 
						|
 | 
						|
	BKE_ptcache_id_clear((ID *)ob, PTCACHE_CLEAR_ALL, cfra, stack_index);
 | 
						|
}
 | 
						|
static void write_particles_to_cache(Object *ob, ParticleSystem *psys, int cfra)
 | 
						|
{
 | 
						|
	FILE *fp = NULL;
 | 
						|
	ParticleSystemModifierData *psmd = psys_get_modifier(ob,psys);
 | 
						|
	ParticleData *pa;
 | 
						|
	int stack_index = modifiers_indexInObject(ob,(ModifierData*)psmd);
 | 
						|
	int i, totpart = psys->totpart;
 | 
						|
 | 
						|
	if(totpart == 0) return;
 | 
						|
 | 
						|
	fp = BKE_ptcache_id_fopen((ID *)ob, 'w', cfra, stack_index);
 | 
						|
	if(!fp) return;
 | 
						|
 | 
						|
	for(i=0, pa=psys->particles; i<totpart; i++, pa++)
 | 
						|
		fwrite(&pa->state, sizeof(ParticleKey), 1, fp);
 | 
						|
	
 | 
						|
	fclose(fp);
 | 
						|
}
 | 
						|
static int get_particles_from_cache(Object *ob, ParticleSystem *psys, int cfra)
 | 
						|
{
 | 
						|
	FILE *fp = NULL;
 | 
						|
	ParticleSystemModifierData *psmd = psys_get_modifier(ob,psys);
 | 
						|
	ParticleData *pa;
 | 
						|
	int stack_index = modifiers_indexInObject(ob,(ModifierData*)psmd);
 | 
						|
	int i, totpart = psys->totpart, ret = 1;
 | 
						|
 | 
						|
	if(totpart == 0) return 0;
 | 
						|
 | 
						|
	fp = BKE_ptcache_id_fopen((ID *)ob, 'r', cfra, stack_index);
 | 
						|
	if(!fp)
 | 
						|
		ret = 0;
 | 
						|
	else {
 | 
						|
		for(i=0, pa=psys->particles; i<totpart; i++, pa++)
 | 
						|
			if((fread(&pa->state, sizeof(ParticleKey), 1, fp)) != 1) {
 | 
						|
				ret = 0;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		
 | 
						|
		fclose(fp);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
/************************************************/
 | 
						|
/*			Effectors							*/
 | 
						|
/************************************************/
 | 
						|
static float falloff_func(float fac, int usemin, float mindist, int usemax, float maxdist, float power)
 | 
						|
{
 | 
						|
	if(!usemin)
 | 
						|
		mindist= 0.0f;
 | 
						|
 | 
						|
	if(fac < mindist) {
 | 
						|
		return 1.0f;
 | 
						|
	}
 | 
						|
	else if(usemax) {
 | 
						|
		if(fac>maxdist || (maxdist-mindist)<=0.0f)
 | 
						|
			return 0.0f;
 | 
						|
 | 
						|
		fac= (fac-mindist)/(maxdist-mindist);
 | 
						|
		return 1.0f - (float)pow((double)fac, (double)power);
 | 
						|
	}
 | 
						|
	else
 | 
						|
		return pow((double)1.0f+fac-mindist, (double)-power);
 | 
						|
}
 | 
						|
 | 
						|
static float falloff_func_dist(PartDeflect *pd, float fac)
 | 
						|
{
 | 
						|
	return falloff_func(fac, pd->flag&PFIELD_USEMIN, pd->mindist, pd->flag&PFIELD_USEMAX, pd->maxdist, pd->f_power);
 | 
						|
}
 | 
						|
 | 
						|
static float falloff_func_rad(PartDeflect *pd, float fac)
 | 
						|
{
 | 
						|
	return falloff_func(fac, pd->flag&PFIELD_USEMINR, pd->minrad, pd->flag&PFIELD_USEMAXR, pd->maxrad, pd->f_power_r);
 | 
						|
}
 | 
						|
 | 
						|
static float effector_falloff(PartDeflect *pd, float *eff_velocity, float *vec_to_part)
 | 
						|
{
 | 
						|
	float eff_dir[3], temp[3];
 | 
						|
	float falloff=1.0, fac, r_fac;
 | 
						|
	
 | 
						|
	VecCopyf(eff_dir,eff_velocity);
 | 
						|
	Normalize(eff_dir);
 | 
						|
 | 
						|
	if(pd->flag & PFIELD_POSZ && Inpf(eff_dir,vec_to_part)<0.0f)
 | 
						|
		falloff=0.0f;
 | 
						|
	else switch(pd->falloff){
 | 
						|
		case PFIELD_FALL_SPHERE:
 | 
						|
			fac=VecLength(vec_to_part);
 | 
						|
			falloff= falloff_func_dist(pd, fac);
 | 
						|
			break;
 | 
						|
 | 
						|
		case PFIELD_FALL_TUBE:
 | 
						|
			fac=Inpf(vec_to_part,eff_dir);
 | 
						|
			falloff= falloff_func_dist(pd, ABS(fac));
 | 
						|
			if(falloff == 0.0f)
 | 
						|
				break;
 | 
						|
 | 
						|
			VECADDFAC(temp,vec_to_part,eff_dir,-fac);
 | 
						|
			r_fac=VecLength(temp);
 | 
						|
			falloff*= falloff_func_rad(pd, r_fac);
 | 
						|
			break;
 | 
						|
		case PFIELD_FALL_CONE:
 | 
						|
			fac=Inpf(vec_to_part,eff_dir);
 | 
						|
			falloff= falloff_func_dist(pd, ABS(fac));
 | 
						|
			if(falloff == 0.0f)
 | 
						|
				break;
 | 
						|
 | 
						|
			r_fac=saacos(fac/VecLength(vec_to_part))*180.0f/(float)M_PI;
 | 
						|
			falloff*= falloff_func_rad(pd, r_fac);
 | 
						|
 | 
						|
			break;
 | 
						|
//		case PFIELD_FALL_INSIDE:
 | 
						|
				//for(i=0; i<totface; i++,mface++){
 | 
						|
				//	VECCOPY(v1,mvert[mface->v1].co);
 | 
						|
				//	VECCOPY(v2,mvert[mface->v2].co);
 | 
						|
				//	VECCOPY(v3,mvert[mface->v3].co);
 | 
						|
 | 
						|
				//	if(AxialLineIntersectsTriangle(a,co1, co2, v2, v3, v1, &lambda)){
 | 
						|
				//		if(from==PART_FROM_FACE)
 | 
						|
				//			(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
 | 
						|
				//		else /* store number of intersections */
 | 
						|
				//			(pa+(int)(lambda*size[a])*a0mul)->loop++;
 | 
						|
				//	}
 | 
						|
				//	
 | 
						|
				//	if(mface->v4){
 | 
						|
				//		VECCOPY(v4,mvert[mface->v4].co);
 | 
						|
 | 
						|
				//		if(AxialLineIntersectsTriangle(a,co1, co2, v4, v1, v3, &lambda)){
 | 
						|
				//			if(from==PART_FROM_FACE)
 | 
						|
				//				(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
 | 
						|
				//			else
 | 
						|
				//				(pa+(int)(lambda*size[a])*a0mul)->loop++;
 | 
						|
				//		}
 | 
						|
				//	}
 | 
						|
				//}
 | 
						|
 | 
						|
//			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return falloff;
 | 
						|
}
 | 
						|
static void do_physical_effector(short type, float force_val, float distance, float falloff, float size, float damp,
 | 
						|
							float *eff_velocity, float *vec_to_part, float *velocity, float *field, int planar)
 | 
						|
{
 | 
						|
	float mag_vec[3]={0,0,0};
 | 
						|
	float temp[3], temp2[3];
 | 
						|
	float eff_vel[3];
 | 
						|
 | 
						|
	VecCopyf(eff_vel,eff_velocity);
 | 
						|
	Normalize(eff_vel);
 | 
						|
 | 
						|
	switch(type){
 | 
						|
		case PFIELD_WIND:
 | 
						|
			VECCOPY(mag_vec,eff_vel);
 | 
						|
 | 
						|
			VecMulf(mag_vec,force_val*falloff);
 | 
						|
			VecAddf(field,field,mag_vec);
 | 
						|
			break;
 | 
						|
 | 
						|
		case PFIELD_FORCE:
 | 
						|
			if(planar)
 | 
						|
				Projf(mag_vec,vec_to_part,eff_vel);
 | 
						|
			else
 | 
						|
				VecCopyf(mag_vec,vec_to_part);
 | 
						|
 | 
						|
			VecMulf(mag_vec,force_val*falloff);
 | 
						|
			VecAddf(field,field,mag_vec);
 | 
						|
			break;
 | 
						|
 | 
						|
		case PFIELD_VORTEX:
 | 
						|
			Crossf(mag_vec,eff_vel,vec_to_part);
 | 
						|
			Normalize(mag_vec);
 | 
						|
 | 
						|
			VecMulf(mag_vec,force_val*distance*falloff);
 | 
						|
			VecAddf(field,field,mag_vec);
 | 
						|
 | 
						|
			break;
 | 
						|
		case PFIELD_MAGNET:
 | 
						|
			if(planar)
 | 
						|
				VecCopyf(temp,eff_vel);
 | 
						|
			else
 | 
						|
				/* magnetic field of a moving charge */
 | 
						|
				Crossf(temp,eff_vel,vec_to_part);
 | 
						|
 | 
						|
			Crossf(temp2,velocity,temp);
 | 
						|
			VecAddf(mag_vec,mag_vec,temp2);
 | 
						|
 | 
						|
			VecMulf(mag_vec,force_val*falloff);
 | 
						|
			VecAddf(field,field,mag_vec);
 | 
						|
			break;
 | 
						|
		case PFIELD_HARMONIC:
 | 
						|
			if(planar)
 | 
						|
				Projf(mag_vec,vec_to_part,eff_vel);
 | 
						|
			else
 | 
						|
				VecCopyf(mag_vec,vec_to_part);
 | 
						|
 | 
						|
			VecMulf(mag_vec,force_val*falloff);
 | 
						|
			VecSubf(field,field,mag_vec);
 | 
						|
 | 
						|
			VecCopyf(mag_vec,velocity);
 | 
						|
			/* 1.9 is an experimental value to get critical damping at damp=1.0 */
 | 
						|
			VecMulf(mag_vec,damp*1.9f*(float)sqrt(force_val));
 | 
						|
			VecSubf(field,field,mag_vec);
 | 
						|
			break;
 | 
						|
		case PFIELD_NUCLEAR:
 | 
						|
			/*pow here is root of cosine expression below*/
 | 
						|
			//rad=(float)pow(2.0,-1.0/power)*distance/size;
 | 
						|
			//VECCOPY(mag_vec,vec_to_part);
 | 
						|
			//Normalize(mag_vec);
 | 
						|
			//VecMulf(mag_vec,(float)cos(3.0*M_PI/2.0*(1.0-1.0/(pow(rad,power)+1.0)))/(rad+0.2f));
 | 
						|
			//VECADDFAC(field,field,mag_vec,force_val);
 | 
						|
			break;
 | 
						|
	}
 | 
						|
}
 | 
						|
static void do_texture_effector(Tex *tex, short mode, short is_2d, float nabla, short object, float *pa_co, float obmat[4][4], float force_val, float falloff, float *field)
 | 
						|
{
 | 
						|
	TexResult result[4];
 | 
						|
	float tex_co[3], strength, mag_vec[3];
 | 
						|
	int hasrgb;
 | 
						|
	if(tex==NULL) return;
 | 
						|
 | 
						|
	result[0].nor = result[1].nor = result[2].nor = result[3].nor = 0;
 | 
						|
 | 
						|
	strength= force_val*falloff;///(float)pow((double)distance,(double)power);
 | 
						|
 | 
						|
	VECCOPY(tex_co,pa_co);
 | 
						|
 | 
						|
	if(is_2d){
 | 
						|
		float fac=-Inpf(tex_co,obmat[2]);
 | 
						|
		VECADDFAC(tex_co,tex_co,obmat[2],fac);
 | 
						|
	}
 | 
						|
 | 
						|
	if(object){
 | 
						|
		VecSubf(tex_co,tex_co,obmat[3]);
 | 
						|
		Mat4Mul3Vecfl(obmat,tex_co);
 | 
						|
	}
 | 
						|
 | 
						|
	hasrgb = multitex_ext(tex, tex_co, NULL,NULL, 1, result);
 | 
						|
 | 
						|
	if(hasrgb && mode==PFIELD_TEX_RGB){
 | 
						|
		mag_vec[0]= (0.5f-result->tr)*strength;
 | 
						|
		mag_vec[1]= (0.5f-result->tg)*strength;
 | 
						|
		mag_vec[2]= (0.5f-result->tb)*strength;
 | 
						|
	}
 | 
						|
	else{
 | 
						|
		strength/=nabla;
 | 
						|
 | 
						|
		tex_co[0]+= nabla;
 | 
						|
		multitex_ext(tex, tex_co, NULL,NULL, 1, result+1);
 | 
						|
 | 
						|
		tex_co[0]-= nabla;
 | 
						|
		tex_co[1]+= nabla;
 | 
						|
		multitex_ext(tex, tex_co, NULL,NULL, 1, result+2);
 | 
						|
 | 
						|
		tex_co[1]-= nabla;
 | 
						|
		tex_co[2]+= nabla;
 | 
						|
		multitex_ext(tex, tex_co, NULL,NULL, 1, result+3);
 | 
						|
 | 
						|
		if(mode==PFIELD_TEX_GRAD || !hasrgb){ /* if we dont have rgb fall back to grad */
 | 
						|
			mag_vec[0]= (result[0].tin-result[1].tin)*strength;
 | 
						|
			mag_vec[1]= (result[0].tin-result[2].tin)*strength;
 | 
						|
			mag_vec[2]= (result[0].tin-result[3].tin)*strength;
 | 
						|
		}
 | 
						|
		else{ /*PFIELD_TEX_CURL*/
 | 
						|
			float dbdy,dgdz,drdz,dbdx,dgdx,drdy;
 | 
						|
 | 
						|
			dbdy= result[2].tb-result[0].tb;
 | 
						|
			dgdz= result[3].tg-result[0].tg;
 | 
						|
			drdz= result[3].tr-result[0].tr;
 | 
						|
			dbdx= result[1].tb-result[0].tb;
 | 
						|
			dgdx= result[1].tg-result[0].tg;
 | 
						|
			drdy= result[2].tr-result[0].tr;
 | 
						|
 | 
						|
			mag_vec[0]=(dbdy-dgdz)*strength;
 | 
						|
			mag_vec[1]=(drdz-dbdx)*strength;
 | 
						|
			mag_vec[2]=(dgdx-drdy)*strength;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if(is_2d){
 | 
						|
		float fac=-Inpf(mag_vec,obmat[2]);
 | 
						|
		VECADDFAC(mag_vec,mag_vec,obmat[2],fac);
 | 
						|
	}
 | 
						|
 | 
						|
	VecAddf(field,field,mag_vec);
 | 
						|
}
 | 
						|
static void add_to_effectors(ListBase *lb, Object *ob, Object *obsrc, ParticleSystem *psys)
 | 
						|
{
 | 
						|
	ParticleEffectorCache *ec;
 | 
						|
	PartDeflect *pd= ob->pd;
 | 
						|
	short type=0,i;
 | 
						|
 | 
						|
	if(pd && ob != obsrc){
 | 
						|
		if(pd->forcefield == PFIELD_GUIDE) {
 | 
						|
			if(ob->type==OB_CURVE) {
 | 
						|
				Curve *cu= ob->data;
 | 
						|
				if(cu->flag & CU_PATH) {
 | 
						|
					if(cu->path==NULL || cu->path->data==NULL)
 | 
						|
						makeDispListCurveTypes(ob, 0);
 | 
						|
					if(cu->path && cu->path->data) {
 | 
						|
						type |= PSYS_EC_EFFECTOR;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if(pd->forcefield)
 | 
						|
			type |= PSYS_EC_EFFECTOR;
 | 
						|
	}
 | 
						|
	
 | 
						|
	if(pd && pd->deflect)
 | 
						|
		type |= PSYS_EC_DEFLECT;
 | 
						|
 | 
						|
	if(type){
 | 
						|
		ec= MEM_callocN(sizeof(ParticleEffectorCache), "effector cache");
 | 
						|
		ec->ob= ob;
 | 
						|
		ec->type=type;
 | 
						|
		ec->distances=0;
 | 
						|
		ec->locations=0;
 | 
						|
		BLI_addtail(lb, ec);
 | 
						|
	}
 | 
						|
 | 
						|
	type=0;
 | 
						|
 | 
						|
	/* add particles as different effectors */
 | 
						|
	if(ob->particlesystem.first){
 | 
						|
		ParticleSystem *epsys=ob->particlesystem.first;
 | 
						|
		ParticleSettings *epart=0;
 | 
						|
		Object *tob;
 | 
						|
 | 
						|
		for(i=0; epsys; epsys=epsys->next,i++){
 | 
						|
			type=0;
 | 
						|
			if(epsys!=psys){
 | 
						|
				epart=epsys->part;
 | 
						|
 | 
						|
				if(epsys->part->pd && epsys->part->pd->forcefield)
 | 
						|
					type=PSYS_EC_PARTICLE;
 | 
						|
 | 
						|
				if(epart->type==PART_REACTOR) {
 | 
						|
					tob=epsys->target_ob;
 | 
						|
					if(tob==0)
 | 
						|
						tob=ob;
 | 
						|
					if(BLI_findlink(&tob->particlesystem,epsys->target_psys-1)==psys)
 | 
						|
						type|=PSYS_EC_REACTOR;
 | 
						|
				}
 | 
						|
 | 
						|
				if(type){
 | 
						|
					ec= MEM_callocN(sizeof(ParticleEffectorCache), "effector cache");
 | 
						|
					ec->ob= ob;
 | 
						|
					ec->type=type;
 | 
						|
					ec->psys_nbr=i;
 | 
						|
					BLI_addtail(lb, ec);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
				
 | 
						|
	}
 | 
						|
}
 | 
						|
void psys_init_effectors(Object *obsrc, Group *group, ParticleSystem *psys)
 | 
						|
{
 | 
						|
	ListBase *listb=&psys->effectors;
 | 
						|
	Base *base;
 | 
						|
	unsigned int layer= obsrc->lay;
 | 
						|
 | 
						|
	listb->first=listb->last=0;
 | 
						|
	
 | 
						|
	if(group) {
 | 
						|
		GroupObject *go;
 | 
						|
		
 | 
						|
		for(go= group->gobject.first; go; go= go->next) {
 | 
						|
			if( (go->ob->lay & layer) && (go->ob->pd || go->ob->particlesystem.first)) {
 | 
						|
				add_to_effectors(listb, go->ob, obsrc, psys);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		for(base = G.scene->base.first; base; base= base->next) {
 | 
						|
			if( (base->lay & layer) && (base->object->pd || base->object->particlesystem.first)) {
 | 
						|
				add_to_effectors(listb, base->object, obsrc, psys);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void psys_end_effectors(ParticleSystem *psys)
 | 
						|
{
 | 
						|
	ListBase *lb=&psys->effectors;
 | 
						|
	if(lb->first) {
 | 
						|
		ParticleEffectorCache *ec;
 | 
						|
		for(ec= lb->first; ec; ec= ec->next){
 | 
						|
			if(ec->distances)
 | 
						|
				MEM_freeN(ec->distances);
 | 
						|
 | 
						|
			if(ec->locations)
 | 
						|
				MEM_freeN(ec->locations);
 | 
						|
 | 
						|
			if(ec->face_minmax)
 | 
						|
				MEM_freeN(ec->face_minmax);
 | 
						|
 | 
						|
			if(ec->vert_cos)
 | 
						|
				MEM_freeN(ec->vert_cos);
 | 
						|
 | 
						|
			if(ec->tree)
 | 
						|
				BLI_kdtree_free(ec->tree);
 | 
						|
		}
 | 
						|
 | 
						|
		BLI_freelistN(lb);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
 | 
						|
{
 | 
						|
	ListBase *lb=&psys->effectors;
 | 
						|
	ParticleEffectorCache *ec;
 | 
						|
	ParticleSettings *part=psys->part;
 | 
						|
	ParticleData *pa;
 | 
						|
	float vec2[3],loc[3],*co=0;
 | 
						|
	int p,totpart,totvert;
 | 
						|
	
 | 
						|
	for(ec= lb->first; ec; ec= ec->next) {
 | 
						|
		PartDeflect *pd= ec->ob->pd;
 | 
						|
		
 | 
						|
		if(ec->type==PSYS_EC_EFFECTOR && pd->forcefield==PFIELD_GUIDE && ec->ob->type==OB_CURVE 
 | 
						|
			&& part->phystype!=PART_PHYS_BOIDS) {
 | 
						|
			float vec[4];
 | 
						|
 | 
						|
			where_on_path(ec->ob, 0.0, vec, vec2);
 | 
						|
 | 
						|
			Mat4MulVecfl(ec->ob->obmat,vec);
 | 
						|
			Mat4Mul3Vecfl(ec->ob->obmat,vec2);
 | 
						|
 | 
						|
			QUATCOPY(ec->firstloc,vec);
 | 
						|
			VECCOPY(ec->firstdir,vec2);
 | 
						|
 | 
						|
			totpart=psys->totpart;
 | 
						|
 | 
						|
			if(totpart){
 | 
						|
				ec->distances=MEM_callocN(totpart*sizeof(float),"particle distances");
 | 
						|
				ec->locations=MEM_callocN(totpart*3*sizeof(float),"particle locations");
 | 
						|
 | 
						|
				for(p=0,pa=psys->particles; p<totpart; p++, pa++){
 | 
						|
					psys_particle_on_emitter(ob,psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,0,0,0,0,0);
 | 
						|
					Mat4MulVecfl(ob->obmat,loc);
 | 
						|
					ec->distances[p]=VecLenf(loc,vec);
 | 
						|
					VECSUB(loc,loc,vec);
 | 
						|
					VECCOPY(ec->locations+3*p,loc);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if(ec->type==PSYS_EC_DEFLECT){
 | 
						|
			DerivedMesh *dm;
 | 
						|
			MFace *mface=0;
 | 
						|
			MVert *mvert=0;
 | 
						|
			int i, totface;
 | 
						|
			float v1[3],v2[3],v3[3],v4[4], *min, *max;
 | 
						|
 | 
						|
			if(ob==ec->ob)
 | 
						|
				dm=psmd->dm;
 | 
						|
			else{
 | 
						|
				psys_disable_all(ec->ob);
 | 
						|
 | 
						|
				dm=mesh_get_derived_final(ec->ob,0);
 | 
						|
				
 | 
						|
				psys_enable_all(ec->ob);
 | 
						|
			}
 | 
						|
 | 
						|
			if(dm){
 | 
						|
				totvert=dm->getNumVerts(dm);
 | 
						|
				totface=dm->getNumFaces(dm);
 | 
						|
				mface=dm->getFaceDataArray(dm,CD_MFACE);
 | 
						|
				mvert=dm->getVertDataArray(dm,CD_MVERT);
 | 
						|
 | 
						|
				/* Decide which is faster to calculate by the amount of*/
 | 
						|
				/* matrice multiplications needed to convert spaces. */
 | 
						|
				/* With size deflect we have to convert allways because */
 | 
						|
				/* the object can be scaled nonuniformly (sphere->ellipsoid). */
 | 
						|
				if(totvert<2*psys->totpart || part->flag & PART_SIZE_DEFL){
 | 
						|
					co=ec->vert_cos=MEM_callocN(sizeof(float)*3*totvert,"Particle deflection vert cos");
 | 
						|
					/* convert vert coordinates to global (particle) coordinates */
 | 
						|
					for(i=0; i<totvert; i++, co+=3){
 | 
						|
						VECCOPY(co,mvert[i].co);
 | 
						|
						Mat4MulVecfl(ec->ob->obmat,co);
 | 
						|
					}
 | 
						|
					co=ec->vert_cos;
 | 
						|
				}
 | 
						|
				else
 | 
						|
					ec->vert_cos=0;
 | 
						|
 | 
						|
				INIT_MINMAX(ec->ob_minmax,ec->ob_minmax+3);
 | 
						|
 | 
						|
				min=ec->face_minmax=MEM_callocN(sizeof(float)*6*totface,"Particle deflection face minmax");
 | 
						|
				max=min+3;
 | 
						|
 | 
						|
				for(i=0; i<totface; i++,mface++,min+=6,max+=6){
 | 
						|
					if(co){
 | 
						|
						VECCOPY(v1,co+3*mface->v1);
 | 
						|
						VECCOPY(v2,co+3*mface->v2);
 | 
						|
						VECCOPY(v3,co+3*mface->v3);
 | 
						|
					}
 | 
						|
					else{
 | 
						|
						VECCOPY(v1,mvert[mface->v1].co);
 | 
						|
						VECCOPY(v2,mvert[mface->v2].co);
 | 
						|
						VECCOPY(v3,mvert[mface->v3].co);
 | 
						|
					}
 | 
						|
					INIT_MINMAX(min,max);
 | 
						|
					DO_MINMAX(v1,min,max);
 | 
						|
					DO_MINMAX(v2,min,max);
 | 
						|
					DO_MINMAX(v3,min,max);
 | 
						|
 | 
						|
					if(mface->v4){
 | 
						|
						if(co){
 | 
						|
							VECCOPY(v4,co+3*mface->v4);
 | 
						|
						}
 | 
						|
						else{
 | 
						|
							VECCOPY(v4,mvert[mface->v4].co);
 | 
						|
						}
 | 
						|
						DO_MINMAX(v4,min,max);
 | 
						|
					}
 | 
						|
 | 
						|
					DO_MINMAX(min,ec->ob_minmax,ec->ob_minmax+3);
 | 
						|
					DO_MINMAX(max,ec->ob_minmax,ec->ob_minmax+3);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else
 | 
						|
				ec->face_minmax=0;
 | 
						|
		}
 | 
						|
		else if(ec->type==PSYS_EC_PARTICLE){
 | 
						|
			if(psys->part->phystype==PART_PHYS_BOIDS){
 | 
						|
				Object *eob = ec->ob;
 | 
						|
				ParticleSystem *epsys;
 | 
						|
				ParticleSettings *epart;
 | 
						|
				ParticleData *epa;
 | 
						|
				ParticleKey state;
 | 
						|
				PartDeflect *pd;
 | 
						|
				int totepart, p;
 | 
						|
				epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
 | 
						|
				epart= epsys->part;
 | 
						|
				pd= epart->pd;
 | 
						|
				totepart= epsys->totpart;
 | 
						|
				if(pd->forcefield==PFIELD_FORCE && totepart){
 | 
						|
					KDTree *tree;
 | 
						|
 | 
						|
					tree=BLI_kdtree_new(totepart);
 | 
						|
					ec->tree=tree;
 | 
						|
 | 
						|
					for(p=0, epa=epsys->particles; p<totepart; p++,epa++)
 | 
						|
						if(epa->alive==PARS_ALIVE && psys_get_particle_state(eob,epsys,p,&state,0))
 | 
						|
							BLI_kdtree_insert(tree, p, state.co, NULL);
 | 
						|
 | 
						|
					BLI_kdtree_balance(tree);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* calculate forces that all effectors apply to a particle*/
 | 
						|
void do_effectors(int pa_no, ParticleData *pa, ParticleKey *state, Object *ob, ParticleSystem *psys, float *force_field, float *vel,float framestep, float cfra)
 | 
						|
{
 | 
						|
	Object *eob;
 | 
						|
	ParticleSystem *epsys;
 | 
						|
	ParticleSettings *epart;
 | 
						|
	ParticleData *epa;
 | 
						|
	ParticleKey estate;
 | 
						|
	PartDeflect *pd;
 | 
						|
	ListBase *lb=&psys->effectors;
 | 
						|
	ParticleEffectorCache *ec;
 | 
						|
	float distance, vec_to_part[3];
 | 
						|
	float falloff;
 | 
						|
	int p;
 | 
						|
 | 
						|
	/* check all effector objects for interaction */
 | 
						|
	if(lb->first){
 | 
						|
		for(ec = lb->first; ec; ec= ec->next){
 | 
						|
			eob= ec->ob;
 | 
						|
			if(ec->type & PSYS_EC_EFFECTOR){
 | 
						|
				pd=eob->pd;
 | 
						|
				if(psys->part->type!=PART_HAIR && psys->part->integrator)
 | 
						|
					where_is_object_time(eob,cfra);
 | 
						|
				/* Get IPO force strength and fall off values here */
 | 
						|
				//if (has_ipo_code(eob->ipo, OB_PD_FSTR))
 | 
						|
				//	force_val = IPO_GetFloatValue(eob->ipo, OB_PD_FSTR, cfra);
 | 
						|
				//else 
 | 
						|
				//	force_val = pd->f_strength;
 | 
						|
				
 | 
						|
				//if (has_ipo_code(eob->ipo, OB_PD_FFALL)) 
 | 
						|
				//	ffall_val = IPO_GetFloatValue(eob->ipo, OB_PD_FFALL, cfra);
 | 
						|
				//else 
 | 
						|
				//	ffall_val = pd->f_power;
 | 
						|
 | 
						|
				//if (has_ipo_code(eob->ipo, OB_PD_FMAXD)) 
 | 
						|
				//	maxdist = IPO_GetFloatValue(eob->ipo, OB_PD_FMAXD, cfra);
 | 
						|
				//else 
 | 
						|
				//	maxdist = pd->maxdist;
 | 
						|
 | 
						|
				/* use center of object for distance calculus */
 | 
						|
				//obloc= eob->obmat[3];
 | 
						|
				VecSubf(vec_to_part, state->co, eob->obmat[3]);
 | 
						|
				distance = VecLength(vec_to_part);
 | 
						|
 | 
						|
				falloff=effector_falloff(pd,eob->obmat[2],vec_to_part);
 | 
						|
 | 
						|
				if(falloff<=0.0f)
 | 
						|
					;	/* don't do anything */
 | 
						|
				else if(pd->forcefield==PFIELD_TEXTURE)
 | 
						|
					do_texture_effector(pd->tex, pd->tex_mode, pd->flag&PFIELD_TEX_2D, pd->tex_nabla,
 | 
						|
										pd->flag & PFIELD_TEX_OBJECT, state->co, eob->obmat,
 | 
						|
										pd->f_strength, falloff, force_field);
 | 
						|
				else
 | 
						|
					do_physical_effector(pd->forcefield,pd->f_strength,distance,
 | 
						|
										falloff,pd->f_dist,pd->f_damp,eob->obmat[2],vec_to_part,
 | 
						|
										pa->state.vel,force_field,pd->flag&PFIELD_PLANAR);
 | 
						|
			}
 | 
						|
			if(ec->type & PSYS_EC_PARTICLE){
 | 
						|
				int totepart;
 | 
						|
				epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
 | 
						|
				epart= epsys->part;
 | 
						|
				pd= epart->pd;
 | 
						|
				totepart= epsys->totpart;
 | 
						|
 | 
						|
				if(pd->forcefield==PFIELD_HARMONIC){
 | 
						|
					/* every particle is mapped to only one harmonic effector particle */
 | 
						|
					p= pa_no%epsys->totpart;
 | 
						|
					totepart= p+1;
 | 
						|
				}
 | 
						|
				else{
 | 
						|
					p=0;
 | 
						|
				}
 | 
						|
 | 
						|
				epsys->lattice=psys_get_lattice(ob,psys);
 | 
						|
 | 
						|
				for(; p<totepart; p++){
 | 
						|
					epa = epsys->particles + p;
 | 
						|
					estate.time=-1.0;
 | 
						|
					if(psys_get_particle_state(eob,epsys,p,&estate,0)){
 | 
						|
						VECSUB(vec_to_part, state->co, estate.co);
 | 
						|
						distance = VecLength(vec_to_part);
 | 
						|
 | 
						|
						//if(pd->forcefield==PFIELD_HARMONIC){
 | 
						|
						//	//if(cfra < epa->time + radius){ /* radius is fade-in in ui */
 | 
						|
						//	//	eforce*=(cfra-epa->time)/radius;
 | 
						|
						//	//}
 | 
						|
						//}
 | 
						|
						//else{
 | 
						|
						//	/* Limit minimum distance to effector particle so that */
 | 
						|
						//	/* the force is not too big */
 | 
						|
						//	if (distance < 0.001) distance = 0.001f;
 | 
						|
						//}
 | 
						|
						
 | 
						|
						falloff=effector_falloff(pd,estate.vel,vec_to_part);
 | 
						|
 | 
						|
						if(falloff<=0.0f)
 | 
						|
							;	/* don't do anything */
 | 
						|
						else
 | 
						|
							do_physical_effector(pd->forcefield,pd->f_strength,distance,
 | 
						|
							falloff,epart->size,pd->f_damp,estate.vel,vec_to_part,
 | 
						|
							state->vel,force_field,0);
 | 
						|
					}
 | 
						|
					else if(pd->forcefield==PFIELD_HARMONIC && cfra-framestep <= epa->dietime && cfra>epa->dietime){
 | 
						|
						/* first step after key release */
 | 
						|
						psys_get_particle_state(eob,epsys,p,&estate,1);
 | 
						|
						VECADD(vel,vel,estate.vel);
 | 
						|
						/* TODO: add rotation handling here too */
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				if(epsys->lattice){
 | 
						|
					end_latt_deform();
 | 
						|
					epsys->lattice=0;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/************************************************/
 | 
						|
/*			Newtonian physics					*/
 | 
						|
/************************************************/
 | 
						|
/* gathers all forces that effect particles and calculates a new state for the particle */
 | 
						|
static void apply_particle_forces(int pa_no, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, float timestep, float dfra, float cfra, ParticleKey *state)
 | 
						|
{
 | 
						|
	ParticleKey states[5], tkey;
 | 
						|
	float force[3],tvel[3],dx[4][3],dv[4][3];
 | 
						|
	float dtime=dfra*timestep, time, pa_mass=part->mass, fac, fra=psys->cfra;
 | 
						|
	int i, steps=1;
 | 
						|
	
 | 
						|
	/* maintain angular velocity */
 | 
						|
	VECCOPY(state->ave,pa->state.ave);
 | 
						|
 | 
						|
	if(part->flag & PART_SIZEMASS)
 | 
						|
		pa_mass*=pa->size;
 | 
						|
 | 
						|
	switch(part->integrator){
 | 
						|
		case PART_INT_EULER:
 | 
						|
			steps=1;
 | 
						|
			break;
 | 
						|
		case PART_INT_MIDPOINT:
 | 
						|
			steps=2;
 | 
						|
			break;
 | 
						|
		case PART_INT_RK4:
 | 
						|
			steps=4;
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	copy_particle_key(states,&pa->state,1);
 | 
						|
 | 
						|
	for(i=0; i<steps; i++){
 | 
						|
		force[0]=force[1]=force[2]=0.0;
 | 
						|
		tvel[0]=tvel[1]=tvel[2]=0.0;
 | 
						|
		/* add effectors */
 | 
						|
		if(part->type != PART_HAIR)
 | 
						|
			do_effectors(pa_no,pa,states+i,ob,psys,force,tvel,dfra,fra);
 | 
						|
 | 
						|
		/* calculate air-particle interaction */
 | 
						|
		if(part->dragfac!=0.0f){
 | 
						|
			fac=-part->dragfac*pa->size*pa->size*VecLength(states[i].vel);
 | 
						|
			VECADDFAC(force,force,states[i].vel,fac);
 | 
						|
		}
 | 
						|
 | 
						|
		/* brownian force */
 | 
						|
		if(part->brownfac!=0.0){
 | 
						|
			force[0]+=(BLI_frand()-0.5f)*part->brownfac;
 | 
						|
			force[1]+=(BLI_frand()-0.5f)*part->brownfac;
 | 
						|
			force[2]+=(BLI_frand()-0.5f)*part->brownfac;
 | 
						|
		}
 | 
						|
 | 
						|
		/* force to acceleration*/
 | 
						|
		VecMulf(force,1.0f/pa_mass);
 | 
						|
 | 
						|
		/* add global acceleration (gravitation) */
 | 
						|
		VECADD(force,force,part->acc);
 | 
						|
 | 
						|
		//VecMulf(force,dtime);
 | 
						|
		
 | 
						|
		/* calculate next state */
 | 
						|
		VECADD(states[i].vel,states[i].vel,tvel);
 | 
						|
 | 
						|
		//VecMulf(force,0.5f*dt);
 | 
						|
		switch(part->integrator){
 | 
						|
			case PART_INT_EULER:
 | 
						|
				VECADDFAC(state->co,states->co,states->vel,dtime);
 | 
						|
				VECADDFAC(state->vel,states->vel,force,dtime);
 | 
						|
				break;
 | 
						|
			case PART_INT_MIDPOINT:
 | 
						|
				if(i==0){
 | 
						|
					VECADDFAC(states[1].co,states->co,states->vel,dtime*0.5f);
 | 
						|
					VECADDFAC(states[1].vel,states->vel,force,dtime*0.5f);
 | 
						|
					fra=psys->cfra+0.5f*dfra;
 | 
						|
				}
 | 
						|
				else{
 | 
						|
					VECADDFAC(state->co,states->co,states[1].vel,dtime);
 | 
						|
					VECADDFAC(state->vel,states->vel,force,dtime);
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case PART_INT_RK4:
 | 
						|
				switch(i){
 | 
						|
					case 0:
 | 
						|
						VECCOPY(dx[0],states->vel);
 | 
						|
						VecMulf(dx[0],dtime);
 | 
						|
						VECCOPY(dv[0],force);
 | 
						|
						VecMulf(dv[0],dtime);
 | 
						|
 | 
						|
						VECADDFAC(states[1].co,states->co,dx[0],0.5f);
 | 
						|
						VECADDFAC(states[1].vel,states->vel,dv[0],0.5f);
 | 
						|
						fra=psys->cfra+0.5f*dfra;
 | 
						|
						break;
 | 
						|
					case 1:
 | 
						|
						VECADDFAC(dx[1],states->vel,dv[0],0.5f);
 | 
						|
						VecMulf(dx[1],dtime);
 | 
						|
						VECCOPY(dv[1],force);
 | 
						|
						VecMulf(dv[1],dtime);
 | 
						|
 | 
						|
						VECADDFAC(states[2].co,states->co,dx[1],0.5f);
 | 
						|
						VECADDFAC(states[2].vel,states->vel,dv[1],0.5f);
 | 
						|
						break;
 | 
						|
					case 2:
 | 
						|
						VECADDFAC(dx[2],states->vel,dv[1],0.5f);
 | 
						|
						VecMulf(dx[2],dtime);
 | 
						|
						VECCOPY(dv[2],force);
 | 
						|
						VecMulf(dv[2],dtime);
 | 
						|
 | 
						|
						VECADD(states[3].co,states->co,dx[2]);
 | 
						|
						VECADD(states[3].vel,states->vel,dv[2]);
 | 
						|
						fra=cfra;
 | 
						|
						break;
 | 
						|
					case 3:
 | 
						|
						VECADD(dx[3],states->vel,dv[2]);
 | 
						|
						VecMulf(dx[3],dtime);
 | 
						|
						VECCOPY(dv[3],force);
 | 
						|
						VecMulf(dv[3],dtime);
 | 
						|
 | 
						|
						VECADDFAC(state->co,states->co,dx[0],1.0f/6.0f);
 | 
						|
						VECADDFAC(state->co,state->co,dx[1],1.0f/3.0f);
 | 
						|
						VECADDFAC(state->co,state->co,dx[2],1.0f/3.0f);
 | 
						|
						VECADDFAC(state->co,state->co,dx[3],1.0f/6.0f);
 | 
						|
 | 
						|
						VECADDFAC(state->vel,states->vel,dv[0],1.0f/6.0f);
 | 
						|
						VECADDFAC(state->vel,state->vel,dv[1],1.0f/3.0f);
 | 
						|
						VECADDFAC(state->vel,state->vel,dv[2],1.0f/3.0f);
 | 
						|
						VECADDFAC(state->vel,state->vel,dv[3],1.0f/6.0f);
 | 
						|
				}
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		//VECADD(states[i+1].co,states[i+1].co,force);
 | 
						|
	}
 | 
						|
 | 
						|
	/* damp affects final velocity */
 | 
						|
	if(part->dampfac!=0.0)
 | 
						|
		VecMulf(state->vel,1.0f-part->dampfac);
 | 
						|
 | 
						|
	/* finally we do guides */
 | 
						|
	time=(cfra-pa->time)/pa->lifetime;
 | 
						|
	CLAMP(time,0.0,1.0);
 | 
						|
 | 
						|
	VECCOPY(tkey.co,state->co);
 | 
						|
	VECCOPY(tkey.vel,state->vel);
 | 
						|
	tkey.time=state->time;
 | 
						|
	if(do_guide(&tkey,pa_no,time,&psys->effectors)){
 | 
						|
		VECCOPY(state->co,tkey.co);
 | 
						|
		/* guides don't produce valid velocity */
 | 
						|
		VECSUB(state->vel,tkey.co,pa->state.co);
 | 
						|
		VecMulf(state->vel,1.0f/dtime);
 | 
						|
		state->time=tkey.time;
 | 
						|
	}
 | 
						|
}
 | 
						|
static void rotate_particle(ParticleSettings *part, ParticleData *pa, float dfra, float timestep, ParticleKey *state)
 | 
						|
{
 | 
						|
	float rotfac, rot1[4], rot2[4]={1.0,0.0,0.0,0.0}, dtime=dfra*timestep;
 | 
						|
 | 
						|
	if((part->flag & PART_ROT_DYN)==0){
 | 
						|
		if(part->avemode==PART_AVE_SPIN){
 | 
						|
			float angle;
 | 
						|
			float len1 = VecLength(pa->state.vel);
 | 
						|
			float len2 = VecLength(state->vel);
 | 
						|
 | 
						|
			if(len1==0.0f || len2==0.0f)
 | 
						|
				state->ave[0]=state->ave[1]=state->ave[2]=0.0f;
 | 
						|
			else{
 | 
						|
				Crossf(state->ave,pa->state.vel,state->vel);
 | 
						|
				Normalize(state->ave);
 | 
						|
				angle=Inpf(pa->state.vel,state->vel)/(len1*len2);
 | 
						|
				VecMulf(state->ave,saacos(angle)/dtime);
 | 
						|
			}
 | 
						|
 | 
						|
			VecRotToQuat(state->vel,dtime*part->avefac,rot2);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	rotfac=VecLength(state->ave);
 | 
						|
	if(rotfac==0.0){ /* QuatOne (in VecRotToQuat) doesn't give unit quat [1,0,0,0]?? */
 | 
						|
		rot1[0]=1.0;
 | 
						|
		rot1[1]=rot1[2]=rot1[3]=0;
 | 
						|
	}
 | 
						|
	else{
 | 
						|
		VecRotToQuat(state->ave,rotfac*dtime,rot1);
 | 
						|
	}
 | 
						|
	QuatMul(state->rot,rot1,pa->state.rot);
 | 
						|
	QuatMul(state->rot,rot2,state->rot);
 | 
						|
 | 
						|
	/* keep rotation quat in good health */
 | 
						|
	NormalQuat(state->rot);
 | 
						|
}
 | 
						|
 | 
						|
/* convert from triangle barycentric weights to quad mean value weights */
 | 
						|
static void intersect_dm_quad_weights(float *v1, float *v2, float *v3, float *v4, float *w)
 | 
						|
{
 | 
						|
	float co[3], vert[4][3];
 | 
						|
 | 
						|
	VECCOPY(vert[0], v1);
 | 
						|
	VECCOPY(vert[1], v2);
 | 
						|
	VECCOPY(vert[2], v3);
 | 
						|
	VECCOPY(vert[3], v4);
 | 
						|
 | 
						|
	co[0]= v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2] + v4[0]*w[3];
 | 
						|
	co[1]= v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2] + v4[1]*w[3];
 | 
						|
	co[2]= v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2] + v4[2]*w[3];
 | 
						|
 | 
						|
	MeanValueWeights(vert, 4, co, w);
 | 
						|
}
 | 
						|
 | 
						|
/* check intersection with a derivedmesh */
 | 
						|
int psys_intersect_dm(Object *ob, DerivedMesh *dm, float *vert_cos, float *co1, float* co2, float *min_d, int *min_face, float *min_w,
 | 
						|
						  float *face_minmax, float *pa_minmax, float radius, float *ipoint)
 | 
						|
{
 | 
						|
	MFace *mface=0;
 | 
						|
	MVert *mvert=0;
 | 
						|
	int i, totface, intersect=0;
 | 
						|
	float cur_d, cur_uv[2], v1[3], v2[3], v3[3], v4[3], min[3], max[3], p_min[3],p_max[3];
 | 
						|
	float cur_ipoint[3];
 | 
						|
	
 | 
						|
	if(dm==0){
 | 
						|
		psys_disable_all(ob);
 | 
						|
 | 
						|
		dm=mesh_get_derived_final(ob,0);
 | 
						|
		if(dm==0)
 | 
						|
			mesh_get_derived_deform(ob,0);
 | 
						|
 | 
						|
		psys_enable_all(ob);
 | 
						|
 | 
						|
		if(dm==0)
 | 
						|
			return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	
 | 
						|
 | 
						|
	if(pa_minmax==0){
 | 
						|
		INIT_MINMAX(p_min,p_max);
 | 
						|
		DO_MINMAX(co1,p_min,p_max);
 | 
						|
		DO_MINMAX(co2,p_min,p_max);
 | 
						|
	}
 | 
						|
	else{
 | 
						|
		VECCOPY(p_min,pa_minmax);
 | 
						|
		VECCOPY(p_max,pa_minmax+3);
 | 
						|
	}
 | 
						|
 | 
						|
	totface=dm->getNumFaces(dm);
 | 
						|
	mface=dm->getFaceDataArray(dm,CD_MFACE);
 | 
						|
	mvert=dm->getVertDataArray(dm,CD_MVERT);
 | 
						|
	
 | 
						|
	/* lets intersect the faces */
 | 
						|
	for(i=0; i<totface; i++,mface++){
 | 
						|
		if(vert_cos){
 | 
						|
			VECCOPY(v1,vert_cos+3*mface->v1);
 | 
						|
			VECCOPY(v2,vert_cos+3*mface->v2);
 | 
						|
			VECCOPY(v3,vert_cos+3*mface->v3);
 | 
						|
			if(mface->v4)
 | 
						|
				VECCOPY(v4,vert_cos+3*mface->v4)
 | 
						|
		}
 | 
						|
		else{
 | 
						|
			VECCOPY(v1,mvert[mface->v1].co);
 | 
						|
			VECCOPY(v2,mvert[mface->v2].co);
 | 
						|
			VECCOPY(v3,mvert[mface->v3].co);
 | 
						|
			if(mface->v4)
 | 
						|
				VECCOPY(v4,mvert[mface->v4].co)
 | 
						|
		}
 | 
						|
 | 
						|
		if(face_minmax==0){
 | 
						|
			INIT_MINMAX(min,max);
 | 
						|
			DO_MINMAX(v1,min,max);
 | 
						|
			DO_MINMAX(v2,min,max);
 | 
						|
			DO_MINMAX(v3,min,max);
 | 
						|
			if(mface->v4)
 | 
						|
				DO_MINMAX(v4,min,max)
 | 
						|
			if(AabbIntersectAabb(min,max,p_min,p_max)==0)
 | 
						|
				continue;
 | 
						|
		}
 | 
						|
		else{
 | 
						|
			VECCOPY(min, face_minmax+6*i);
 | 
						|
			VECCOPY(max, face_minmax+6*i+3);
 | 
						|
			if(AabbIntersectAabb(min,max,p_min,p_max)==0)
 | 
						|
				continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if(radius>0.0f){
 | 
						|
			if(SweepingSphereIntersectsTriangleUV(co1, co2, radius, v2, v3, v1, &cur_d, cur_ipoint)){
 | 
						|
				if(cur_d<*min_d){
 | 
						|
					*min_d=cur_d;
 | 
						|
					VECCOPY(ipoint,cur_ipoint);
 | 
						|
					*min_face=i;
 | 
						|
					intersect=1;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if(mface->v4){
 | 
						|
				if(SweepingSphereIntersectsTriangleUV(co1, co2, radius, v4, v1, v3, &cur_d, cur_ipoint)){
 | 
						|
					if(cur_d<*min_d){
 | 
						|
						*min_d=cur_d;
 | 
						|
						VECCOPY(ipoint,cur_ipoint);
 | 
						|
						*min_face=i;
 | 
						|
						intersect=1;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else{
 | 
						|
			if(LineIntersectsTriangle(co1, co2, v1, v2, v3, &cur_d, cur_uv)){
 | 
						|
				if(cur_d<*min_d){
 | 
						|
					*min_d=cur_d;
 | 
						|
					min_w[0]= 1.0 - cur_uv[0] - cur_uv[1];
 | 
						|
					min_w[1]= cur_uv[0];
 | 
						|
					min_w[2]= cur_uv[1];
 | 
						|
					min_w[3]= 0.0f;
 | 
						|
					if(mface->v4)
 | 
						|
						intersect_dm_quad_weights(v1, v2, v3, v4, min_w);
 | 
						|
					*min_face=i;
 | 
						|
					intersect=1;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if(mface->v4){
 | 
						|
				if(LineIntersectsTriangle(co1, co2, v1, v3, v4, &cur_d, cur_uv)){
 | 
						|
					if(cur_d<*min_d){
 | 
						|
						*min_d=cur_d;
 | 
						|
						min_w[0]= 1.0 - cur_uv[0] - cur_uv[1];
 | 
						|
						min_w[1]= 0.0f;
 | 
						|
						min_w[2]= cur_uv[0];
 | 
						|
						min_w[3]= cur_uv[1];
 | 
						|
						intersect_dm_quad_weights(v1, v2, v3, v4, min_w);
 | 
						|
						*min_face=i;
 | 
						|
						intersect=1;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return intersect;
 | 
						|
}
 | 
						|
/* particle - mesh collision code */
 | 
						|
/* in addition to basic point to surface collisions handles friction & damping,*/
 | 
						|
/* angular momentum <-> linear momentum and swept sphere - mesh collisions */
 | 
						|
/* 1. check for all possible deflectors for closest intersection on particle path */
 | 
						|
/* 2. if deflection was found kill the particle or calculate new coordinates */
 | 
						|
static void deflect_particle(Object *pob, ParticleSystemModifierData *psmd, ParticleSystem *psys, ParticleSettings *part, ParticleData *pa, int p, float dfra, float cfra, ParticleKey *state, int *pa_die){
 | 
						|
	Object *ob, *min_ob;
 | 
						|
	MFace *mface;
 | 
						|
	MVert *mvert;
 | 
						|
	DerivedMesh *dm;
 | 
						|
	ListBase *lb=&psys->effectors;
 | 
						|
	ParticleEffectorCache *ec;
 | 
						|
	ParticleKey cstate;
 | 
						|
	float imat[4][4];
 | 
						|
	float co1[3],co2[3],def_loc[3],def_nor[3],unit_nor[3],def_tan[3],dvec[3],def_vel[3],dave[3],dvel[3];
 | 
						|
	float t_co1[3],t_co2[3];
 | 
						|
	float pa_minmax[6];
 | 
						|
	float min_w[4], zerovec[3]={0.0,0.0,0.0}, ipoint[3];
 | 
						|
	float min_d,dotprod,damp,frict,o_len,d_len,radius=-1.0f;
 | 
						|
	int min_face=0, intersect=1, through=0;
 | 
						|
	short deflections=0, global=0;
 | 
						|
 | 
						|
	VECCOPY(def_loc,pa->state.co);
 | 
						|
	VECCOPY(def_vel,pa->state.vel);
 | 
						|
 | 
						|
	/* 10 iterations to catch multiple deflections */
 | 
						|
	if(lb->first) while(deflections<10){
 | 
						|
		intersect=0;
 | 
						|
		global=0;
 | 
						|
		min_d=20000.0;
 | 
						|
		min_ob=NULL;
 | 
						|
		/* 1. */
 | 
						|
		for(ec=lb->first; ec; ec=ec->next){
 | 
						|
			if(ec->type & PSYS_EC_DEFLECT){
 | 
						|
				ob= ec->ob;
 | 
						|
 | 
						|
				if(part->type!=PART_HAIR)
 | 
						|
					where_is_object_time(ob,cfra);
 | 
						|
 | 
						|
				if(ob==pob){
 | 
						|
					dm=psmd->dm;
 | 
						|
					/* particles should not collide with emitter at birth */
 | 
						|
					if(pa->time < cfra && pa->time >= psys->cfra)
 | 
						|
						continue;
 | 
						|
				}
 | 
						|
				else
 | 
						|
					dm=0;
 | 
						|
				
 | 
						|
				VECCOPY(co1,def_loc);
 | 
						|
				VECCOPY(co2,state->co);
 | 
						|
 | 
						|
				if(ec->vert_cos==0){
 | 
						|
					/* convert particle coordinates to object coordinates */
 | 
						|
					Mat4Invert(imat,ob->obmat);
 | 
						|
 | 
						|
					VECCOPY(t_co1,co1);
 | 
						|
					VECCOPY(t_co2,co2);
 | 
						|
					Mat4MulVecfl(imat,co1);
 | 
						|
					Mat4MulVecfl(imat,co2);
 | 
						|
				}
 | 
						|
 | 
						|
				INIT_MINMAX(pa_minmax,pa_minmax+3);
 | 
						|
				DO_MINMAX(co1,pa_minmax,pa_minmax+3);
 | 
						|
				DO_MINMAX(co2,pa_minmax,pa_minmax+3);
 | 
						|
				if(part->flag&PART_SIZE_DEFL){
 | 
						|
					pa_minmax[0]-=pa->size;
 | 
						|
					pa_minmax[1]-=pa->size;
 | 
						|
					pa_minmax[2]-=pa->size;
 | 
						|
					pa_minmax[3]+=pa->size;
 | 
						|
					pa_minmax[4]+=pa->size;
 | 
						|
					pa_minmax[5]+=pa->size;
 | 
						|
 | 
						|
					radius=pa->size;
 | 
						|
				}
 | 
						|
 | 
						|
				if(ec->face_minmax==0 || AabbIntersectAabb(pa_minmax,pa_minmax+3,ec->ob_minmax,ec->ob_minmax+3))
 | 
						|
					if(psys_intersect_dm(ob,dm,ec->vert_cos,co1,co2,&min_d,&min_face,min_w,
 | 
						|
						ec->face_minmax,pa_minmax,radius,ipoint)){
 | 
						|
						min_ob=ob;
 | 
						|
						if(ec->vert_cos)
 | 
						|
							global=1;
 | 
						|
						else
 | 
						|
							global=0;
 | 
						|
					}
 | 
						|
 | 
						|
				if(ec->vert_cos==0){
 | 
						|
					/* get global coordinates back */
 | 
						|
					VECCOPY(co1,t_co1);
 | 
						|
					VECCOPY(co2,t_co2);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* 2. */
 | 
						|
		if(min_ob){
 | 
						|
			BLI_srandom((int)cfra+p);
 | 
						|
			ob=min_ob;
 | 
						|
 | 
						|
			if(ob==pob){
 | 
						|
				dm=psmd->dm;
 | 
						|
			}
 | 
						|
			else{
 | 
						|
				psys_disable_all(ob);
 | 
						|
 | 
						|
				dm=mesh_get_derived_final(ob,0);
 | 
						|
 | 
						|
				psys_enable_all(ob);
 | 
						|
			}
 | 
						|
 | 
						|
			mface=dm->getFaceDataArray(dm,CD_MFACE);
 | 
						|
			mface+=min_face;
 | 
						|
			mvert=dm->getVertDataArray(dm,CD_MVERT);
 | 
						|
 | 
						|
 | 
						|
			/* permeability check */
 | 
						|
			if(BLI_frand()<ob->pd->pdef_perm)
 | 
						|
				through=1;
 | 
						|
			else
 | 
						|
				through=0;
 | 
						|
 | 
						|
			if(through==0 && (part->flag & PART_DIE_ON_COL || ob->pd->flag & PDEFLE_KILL_PART)){
 | 
						|
				pa->dietime = cfra-(1.0f-min_d)*dfra;
 | 
						|
				VecLerpf(def_loc,co1,co2,min_d);
 | 
						|
 | 
						|
				if(global==0)
 | 
						|
					Mat4MulVecfl(ob->obmat,def_loc);
 | 
						|
 | 
						|
				VECCOPY(state->co,def_loc);
 | 
						|
				VecLerpf(state->vel,pa->state.vel,state->vel,min_d);
 | 
						|
				QuatInterpol(state->rot,pa->state.rot,state->rot,min_d);
 | 
						|
				VecLerpf(state->ave,pa->state.ave,state->ave,min_d);
 | 
						|
 | 
						|
				*pa_die=1;
 | 
						|
 | 
						|
				/* particle is dead so we don't need to calculate further */
 | 
						|
				deflections=10;
 | 
						|
 | 
						|
				/* store for reactors */
 | 
						|
				copy_particle_key(&cstate,state,0);
 | 
						|
 | 
						|
				if(part->flag & PART_STICKY){
 | 
						|
					pa->stick_ob=ob;
 | 
						|
					pa->flag |= PARS_STICKY;
 | 
						|
					//stick_particle_to_object(ob,pa,state);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else{
 | 
						|
				VecLerpf(def_loc,co1,co2,min_d);
 | 
						|
 | 
						|
				if(radius>0.0f){
 | 
						|
					VECSUB(unit_nor,def_loc,ipoint);
 | 
						|
				}
 | 
						|
				else{
 | 
						|
					/* get deflection point & normal */
 | 
						|
					psys_interpolate_face(mvert,mface,0,0,min_w,ipoint,unit_nor,0,0,0,0);
 | 
						|
					if(global){
 | 
						|
						Mat4Mul3Vecfl(ob->obmat,unit_nor);
 | 
						|
						Mat4MulVecfl(ob->obmat,ipoint);
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				Normalize(unit_nor);
 | 
						|
 | 
						|
				VECSUB(dvec,co1,co2);
 | 
						|
				/* scale to remaining length after deflection */
 | 
						|
				VecMulf(dvec,1.0f-min_d);
 | 
						|
 | 
						|
				/* flip normal to face particle */
 | 
						|
				if(Inpf(unit_nor,dvec)<0.0f)
 | 
						|
					VecMulf(unit_nor,-1.0f);
 | 
						|
 | 
						|
				/* store for easy velocity calculation */
 | 
						|
				o_len=VecLength(dvec);
 | 
						|
 | 
						|
				/* project particle movement to normal & create tangent */
 | 
						|
				dotprod=Inpf(dvec,unit_nor);
 | 
						|
				VECCOPY(def_nor,unit_nor);
 | 
						|
				VecMulf(def_nor,dotprod);
 | 
						|
				VECSUB(def_tan,def_nor,dvec);
 | 
						|
 | 
						|
				damp=ob->pd->pdef_damp+ob->pd->pdef_rdamp*2*(BLI_frand()-0.5f);
 | 
						|
 | 
						|
				/* create location after deflection */
 | 
						|
				VECCOPY(dvec,def_nor);
 | 
						|
				damp=ob->pd->pdef_damp+ob->pd->pdef_rdamp*2*(BLI_frand()-0.5f);
 | 
						|
				CLAMP(damp,0.0,1.0);
 | 
						|
				VecMulf(dvec,1.0f-damp);
 | 
						|
				if(through)
 | 
						|
					VecMulf(dvec,-1.0);
 | 
						|
				
 | 
						|
				frict=ob->pd->pdef_frict+ob->pd->pdef_rfrict*2.0f*(BLI_frand()-0.5f);
 | 
						|
				CLAMP(frict,0.0,1.0);
 | 
						|
				VECADDFAC(dvec,dvec,def_tan,1.0f-frict);
 | 
						|
 | 
						|
				/* store for easy velocity calculation */
 | 
						|
				d_len=VecLength(dvec);
 | 
						|
 | 
						|
				/* just to be sure we don't hit the current face again */
 | 
						|
				if(through){
 | 
						|
					VECADDFAC(ipoint,ipoint,unit_nor,-0.0001f);
 | 
						|
					VECADDFAC(def_loc,def_loc,unit_nor,-0.0001f);
 | 
						|
 | 
						|
					if(part->flag & PART_ROT_DYN){
 | 
						|
						VECADDFAC(def_tan,def_tan,unit_nor,-0.0001f);
 | 
						|
						VECADDFAC(def_nor,def_nor,unit_nor,-0.0001f);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				else{
 | 
						|
					VECADDFAC(ipoint,ipoint,unit_nor,0.0001f);
 | 
						|
					VECADDFAC(def_loc,def_loc,unit_nor,0.0001f);
 | 
						|
 | 
						|
					if(part->flag & PART_ROT_DYN){
 | 
						|
						VECADDFAC(def_tan,def_tan,unit_nor,0.0001f);
 | 
						|
						VECADDFAC(def_nor,def_nor,unit_nor,0.0001f);
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				/* lets get back to global space */
 | 
						|
				if(global==0){
 | 
						|
					Mat4Mul3Vecfl(ob->obmat,dvec);
 | 
						|
					Mat4MulVecfl(ob->obmat,ipoint);
 | 
						|
					Mat4MulVecfl(ob->obmat,def_loc);/* def_loc remains as intersection point for next iteration */
 | 
						|
				}
 | 
						|
 | 
						|
				/* store for reactors */
 | 
						|
				VECCOPY(cstate.co,ipoint);
 | 
						|
				VecLerpf(cstate.vel,pa->state.vel,state->vel,min_d);
 | 
						|
				QuatInterpol(cstate.rot,pa->state.rot,state->rot,min_d);
 | 
						|
 | 
						|
				/* slightly unphysical but looks nice enough */
 | 
						|
				if(part->flag & PART_ROT_DYN){
 | 
						|
					if(global==0){
 | 
						|
						Mat4Mul3Vecfl(ob->obmat,def_nor);
 | 
						|
						Mat4Mul3Vecfl(ob->obmat,def_tan);
 | 
						|
					}
 | 
						|
 | 
						|
					Normalize(def_tan);
 | 
						|
					Normalize(def_nor);
 | 
						|
					VECCOPY(unit_nor,def_nor);
 | 
						|
 | 
						|
					/* create normal velocity */
 | 
						|
					VecMulf(def_nor,Inpf(pa->state.vel,def_nor));
 | 
						|
 | 
						|
					/* create tangential velocity */
 | 
						|
					VecMulf(def_tan,Inpf(pa->state.vel,def_tan));
 | 
						|
					
 | 
						|
					/* angular velocity change due to tangential velocity */
 | 
						|
					Crossf(dave,unit_nor,def_tan);
 | 
						|
					VecMulf(dave,1.0f/pa->size);
 | 
						|
 | 
						|
					/* linear velocity change due to angular velocity */
 | 
						|
					VecMulf(unit_nor,pa->size); /* point of impact from particle center */
 | 
						|
					Crossf(dvel,pa->state.ave,unit_nor);
 | 
						|
 | 
						|
					if(through)
 | 
						|
						VecMulf(def_nor,-1.0);
 | 
						|
 | 
						|
					VecMulf(def_nor,1.0f-damp);
 | 
						|
					VECSUB(dvel,dvel,def_nor);
 | 
						|
 | 
						|
					VecMulf(dvel,1.0f-frict);
 | 
						|
					VecMulf(dave,1.0f-frict);
 | 
						|
				}
 | 
						|
				
 | 
						|
				if(d_len<0.001 && VecLength(pa->state.vel)<0.001){
 | 
						|
					/* kill speed to stop slipping */
 | 
						|
					VECCOPY(state->vel,zerovec);
 | 
						|
					VECCOPY(state->co,def_loc);
 | 
						|
					if(part->flag & PART_ROT_DYN)
 | 
						|
						VECCOPY(state->ave,zerovec);
 | 
						|
					deflections=10;
 | 
						|
				}
 | 
						|
				else{
 | 
						|
 | 
						|
					/* apply new coordinates */
 | 
						|
					VECADD(state->co,def_loc,dvec);
 | 
						|
 | 
						|
					Normalize(dvec);
 | 
						|
 | 
						|
					/* we have to use original velocity because otherwise we get slipping	*/
 | 
						|
					/* when forces like gravity balance out damping & friction				*/
 | 
						|
					VecMulf(dvec,VecLength(pa->state.vel)*(d_len/o_len));
 | 
						|
					VECCOPY(state->vel,dvec);
 | 
						|
 | 
						|
					if(part->flag & PART_ROT_DYN){
 | 
						|
						VECADD(state->vel,state->vel,dvel);
 | 
						|
						VecMulf(state->vel,0.5);
 | 
						|
						VECADD(state->ave,state->ave,dave);
 | 
						|
						VecMulf(state->ave,0.5);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			deflections++;
 | 
						|
 | 
						|
			cstate.time=cfra-(1.0f-min_d)*dfra;
 | 
						|
			//particle_react_to_collision(min_ob,pob,psys,pa,p,&cstate);
 | 
						|
			push_reaction(pob,psys,p,PART_EVENT_COLLIDE,&cstate);
 | 
						|
		}
 | 
						|
		else
 | 
						|
			return;
 | 
						|
	}
 | 
						|
}
 | 
						|
/************************************************/
 | 
						|
/*			Boid physics						*/
 | 
						|
/************************************************/
 | 
						|
static int boid_see_mesh(ListBase *lb, Object *pob, ParticleSystem *psys, float *vec1, float *vec2, float *loc, float *nor, float cfra)
 | 
						|
{
 | 
						|
	Object *ob, *min_ob;
 | 
						|
	DerivedMesh *dm;
 | 
						|
	MFace *mface;
 | 
						|
	MVert *mvert;
 | 
						|
	ParticleEffectorCache *ec;
 | 
						|
	ParticleSystemModifierData *psmd=psys_get_modifier(pob,psys);
 | 
						|
	float imat[4][4];
 | 
						|
	float co1[3], co2[3], min_w[4], min_d;
 | 
						|
	int min_face=0, intersect=0;
 | 
						|
 | 
						|
	if(lb->first){
 | 
						|
		intersect=0;
 | 
						|
		min_d=20000.0;
 | 
						|
		min_ob=NULL;
 | 
						|
		for(ec=lb->first; ec; ec=ec->next){
 | 
						|
			if(ec->type & PSYS_EC_DEFLECT){
 | 
						|
				ob= ec->ob;
 | 
						|
 | 
						|
				if(psys->part->type!=PART_HAIR)
 | 
						|
					where_is_object_time(ob,cfra);
 | 
						|
 | 
						|
				if(ob==pob)
 | 
						|
					dm=psmd->dm;
 | 
						|
				else
 | 
						|
					dm=0;
 | 
						|
 | 
						|
				VECCOPY(co1,vec1);
 | 
						|
				VECCOPY(co2,vec2);
 | 
						|
 | 
						|
				if(ec->vert_cos==0){
 | 
						|
					/* convert particle coordinates to object coordinates */
 | 
						|
					Mat4Invert(imat,ob->obmat);
 | 
						|
 | 
						|
					Mat4MulVecfl(imat,co1);
 | 
						|
					Mat4MulVecfl(imat,co2);
 | 
						|
				}
 | 
						|
 | 
						|
				if(psys_intersect_dm(ob,dm,ec->vert_cos,co1,co2,&min_d,&min_face,min_w,ec->face_minmax,0,0,0))
 | 
						|
					min_ob=ob;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if(min_ob){
 | 
						|
			ob=min_ob;
 | 
						|
 | 
						|
			if(ob==pob){
 | 
						|
				dm=psmd->dm;
 | 
						|
			}
 | 
						|
			else{
 | 
						|
				psys_disable_all(ob);
 | 
						|
 | 
						|
				dm=mesh_get_derived_deform(ob,0);
 | 
						|
 | 
						|
				psys_enable_all(ob);
 | 
						|
			}
 | 
						|
 | 
						|
			mface=dm->getFaceDataArray(dm,CD_MFACE);
 | 
						|
			mface+=min_face;
 | 
						|
			mvert=dm->getVertDataArray(dm,CD_MVERT);
 | 
						|
 | 
						|
			/* get deflection point & normal */
 | 
						|
			psys_interpolate_face(mvert,mface,0,0,min_w,loc,nor,0,0,0,0);
 | 
						|
 | 
						|
			VECADD(nor,nor,loc);
 | 
						|
			Mat4MulVecfl(ob->obmat,loc);
 | 
						|
			Mat4MulVecfl(ob->obmat,nor);
 | 
						|
			VECSUB(nor,nor,loc);
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
/* vector calculus functions in 2d vs. 3d */
 | 
						|
static void set_boid_vec_func(BoidVecFunc *bvf, int is_2d)
 | 
						|
{
 | 
						|
	if(is_2d){
 | 
						|
		bvf->Addf = Vec2Addf;
 | 
						|
		bvf->Subf = Vec2Subf;
 | 
						|
		bvf->Mulf = Vec2Mulf;
 | 
						|
		bvf->Length = Vec2Length;
 | 
						|
		bvf->Normalize = Normalize2;
 | 
						|
		bvf->Inpf = Inp2f;
 | 
						|
		bvf->Copyf = Vec2Copyf;
 | 
						|
	}
 | 
						|
	else{
 | 
						|
		bvf->Addf = VecAddf;
 | 
						|
		bvf->Subf = VecSubf;
 | 
						|
		bvf->Mulf = VecMulf;
 | 
						|
		bvf->Length = VecLength;
 | 
						|
		bvf->Normalize = Normalize;
 | 
						|
		bvf->Inpf = Inpf;
 | 
						|
		bvf->Copyf = VecCopyf;
 | 
						|
	}
 | 
						|
}
 | 
						|
/* boids have limited processing capability so once there's too much information (acceleration) no more is processed */
 | 
						|
static int add_boid_acc(BoidVecFunc *bvf, float lat_max, float tan_max, float *lat_accu, float *tan_accu, float *acc, float *dvec, float *vel)
 | 
						|
{
 | 
						|
	static float tangent[3];
 | 
						|
	static float tan_length;
 | 
						|
 | 
						|
	if(vel){
 | 
						|
		bvf->Copyf(tangent,vel);
 | 
						|
		tan_length=bvf->Normalize(tangent);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	else{
 | 
						|
		float cur_tan, cur_lat;
 | 
						|
		float tan_acc[3], lat_acc[3];
 | 
						|
		int ret=0;
 | 
						|
 | 
						|
		bvf->Copyf(tan_acc,tangent);
 | 
						|
 | 
						|
		if(tan_length>0.0){
 | 
						|
			bvf->Mulf(tan_acc,Inpf(tangent,dvec));
 | 
						|
 | 
						|
			bvf->Subf(lat_acc,dvec,tan_acc);
 | 
						|
		}
 | 
						|
		else{
 | 
						|
			bvf->Copyf(tan_acc,dvec);
 | 
						|
			lat_acc[0]=lat_acc[1]=lat_acc[2]=0.0f;
 | 
						|
			*lat_accu=lat_max;
 | 
						|
		}
 | 
						|
 | 
						|
		cur_tan=bvf->Length(tan_acc);
 | 
						|
		cur_lat=bvf->Length(lat_acc);
 | 
						|
 | 
						|
		/* add tangential acceleration */
 | 
						|
		if(*lat_accu+cur_lat<=lat_max){
 | 
						|
			bvf->Addf(acc,acc,lat_acc);
 | 
						|
			*lat_accu+=cur_lat;
 | 
						|
			ret=1;
 | 
						|
		}
 | 
						|
		else{
 | 
						|
			bvf->Mulf(lat_acc,(lat_max-*lat_accu)/cur_lat);
 | 
						|
			bvf->Addf(acc,acc,lat_acc);
 | 
						|
			*lat_accu=lat_max;
 | 
						|
		}
 | 
						|
 | 
						|
		/* add lateral acceleration */
 | 
						|
		if(*tan_accu+cur_tan<=tan_max){
 | 
						|
			bvf->Addf(acc,acc,tan_acc);
 | 
						|
			*tan_accu+=cur_tan;
 | 
						|
			ret=1;
 | 
						|
		}
 | 
						|
		else{
 | 
						|
			bvf->Mulf(tan_acc,(tan_max-*tan_accu)/cur_tan);
 | 
						|
			bvf->Addf(acc,acc,tan_acc);
 | 
						|
			*tan_accu=tan_max;
 | 
						|
		}
 | 
						|
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
}
 | 
						|
/* determines the acceleration that the boid tries to acchieve */
 | 
						|
static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, KDTree *tree, float timestep, float cfra, float *acc, int *pa_die)
 | 
						|
{
 | 
						|
	ParticleData *pars=psys->particles;
 | 
						|
	KDTreeNearest ptn[MAX_BOIDNEIGHBOURS+1];
 | 
						|
	ParticleEffectorCache *ec=0;
 | 
						|
	float dvec[3]={0.0,0.0,0.0}, ob_co[3], ob_nor[3];
 | 
						|
	float avoid[3]={0.0,0.0,0.0}, velocity[3]={0.0,0.0,0.0}, center[3]={0.0,0.0,0.0};
 | 
						|
	float cubedist[MAX_BOIDNEIGHBOURS+1];
 | 
						|
	int i, n, neighbours=0, near, not_finished=1;
 | 
						|
 | 
						|
	float cur_vel;
 | 
						|
	float lat_accu=0.0f, max_lat_acc=part->max_vel*part->max_lat_acc;
 | 
						|
	float tan_accu=0.0f, max_tan_acc=part->max_vel*part->max_tan_acc;
 | 
						|
	float avg_vel=part->average_vel*part->max_vel;
 | 
						|
 | 
						|
	acc[0]=acc[1]=acc[2]=0.0f;
 | 
						|
	/* the +1 neighbour is because boid itself is in the tree */
 | 
						|
	neighbours=BLI_kdtree_find_n_nearest(tree,part->boidneighbours+1,pa->state.co,NULL,ptn);
 | 
						|
 | 
						|
	for(n=1; n<neighbours; n++){
 | 
						|
		cubedist[n]=(float)pow((double)(ptn[n].dist/pa->size),3.0);
 | 
						|
		cubedist[n]=1.0f/MAX2(cubedist[n],1.0f);
 | 
						|
	}
 | 
						|
 | 
						|
	/* initialize tangent */
 | 
						|
	add_boid_acc(bvf,0.0,0.0,0,0,0,0,pa->state.vel);
 | 
						|
 | 
						|
	for(i=0; i<BOID_TOT_RULES && not_finished; i++){
 | 
						|
		switch(part->boidrule[i]){
 | 
						|
			case BOID_COLLIDE:
 | 
						|
				/* collision avoidance */
 | 
						|
				bvf->Copyf(dvec,pa->state.vel);
 | 
						|
				bvf->Mulf(dvec,5.0f);
 | 
						|
				bvf->Addf(dvec,dvec,pa->state.co);
 | 
						|
				if(boid_see_mesh(&psys->effectors,ob,psys,pa->state.co,dvec,ob_co,ob_nor,cfra)){
 | 
						|
					float probelen = bvf->Length(dvec);
 | 
						|
					float proj;
 | 
						|
					float oblen;
 | 
						|
 | 
						|
					Normalize(ob_nor);
 | 
						|
					proj = bvf->Inpf(ob_nor,pa->state.vel);
 | 
						|
 | 
						|
					bvf->Subf(dvec,pa->state.co,ob_co);
 | 
						|
					oblen=bvf->Length(dvec);
 | 
						|
 | 
						|
					bvf->Copyf(dvec,ob_nor);
 | 
						|
					bvf->Mulf(dvec,-proj);
 | 
						|
					bvf->Mulf(dvec,((probelen/oblen)-1.0f)*100.0f*part->boidfac[BOID_COLLIDE]);
 | 
						|
 | 
						|
					not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case BOID_AVOID:
 | 
						|
				/* predator avoidance */
 | 
						|
				if(psys->effectors.first){
 | 
						|
					for(ec=psys->effectors.first; ec; ec=ec->next){
 | 
						|
						if(ec->type & PSYS_EC_EFFECTOR){
 | 
						|
							Object *eob = ec->ob;
 | 
						|
							PartDeflect *pd = eob->pd;
 | 
						|
 | 
						|
							if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0){
 | 
						|
								float distance;
 | 
						|
								VECSUB(dvec,eob->obmat[3],pa->state.co);
 | 
						|
								
 | 
						|
								distance=Normalize(dvec);
 | 
						|
 | 
						|
								if(part->flag & PART_DIE_ON_COL && distance < pd->mindist){
 | 
						|
									*pa_die=1;
 | 
						|
									pa->dietime=cfra;
 | 
						|
									i=BOID_TOT_RULES;
 | 
						|
									break;
 | 
						|
								}
 | 
						|
 | 
						|
								if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
 | 
						|
									;
 | 
						|
								else{
 | 
						|
									bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
 | 
						|
 | 
						|
									not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
 | 
						|
								}
 | 
						|
							}
 | 
						|
						}
 | 
						|
						else if(ec->type & PSYS_EC_PARTICLE){
 | 
						|
							Object *eob = ec->ob;
 | 
						|
							ParticleSystem *epsys;
 | 
						|
							ParticleSettings *epart;
 | 
						|
							ParticleKey state;
 | 
						|
							PartDeflect *pd;
 | 
						|
							KDTreeNearest ptn2[MAX_BOIDNEIGHBOURS];
 | 
						|
							int totepart, p, count;
 | 
						|
							float distance;
 | 
						|
							epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
 | 
						|
							epart= epsys->part;
 | 
						|
							pd= epart->pd;
 | 
						|
							totepart= epsys->totpart;
 | 
						|
 | 
						|
							if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0){
 | 
						|
								count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->state.co,NULL,ptn2);
 | 
						|
								for(p=0; p<count; p++){
 | 
						|
									state.time=-1.0;
 | 
						|
									if(psys_get_particle_state(eob,epsys,ptn2[p].index,&state,0)){
 | 
						|
										VECSUB(dvec, state.co, pa->state.co);
 | 
						|
 | 
						|
										distance = Normalize(dvec);
 | 
						|
 | 
						|
										if(part->flag & PART_DIE_ON_COL && distance < (epsys->particles+ptn2[p].index)->size){
 | 
						|
											*pa_die=1;
 | 
						|
											pa->dietime=cfra;
 | 
						|
											i=BOID_TOT_RULES;
 | 
						|
											break;
 | 
						|
										}
 | 
						|
 | 
						|
										if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
 | 
						|
											;
 | 
						|
										else{
 | 
						|
											bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
 | 
						|
 | 
						|
											not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
 | 
						|
										}
 | 
						|
									}
 | 
						|
								}
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case BOID_CROWD:
 | 
						|
				/* crowd avoidance */
 | 
						|
				near=0;
 | 
						|
				for(n=1; n<neighbours; n++){
 | 
						|
					if(ptn[n].dist<2.0f*pa->size){
 | 
						|
						bvf->Subf(dvec,pa->state.co,pars[ptn[n].index].state.co);
 | 
						|
						bvf->Mulf(dvec,(2.0f*pa->size-ptn[n].dist)/ptn[n].dist);
 | 
						|
						bvf->Addf(avoid,avoid,dvec);
 | 
						|
						near++;
 | 
						|
					}
 | 
						|
					/* ptn[] is distance ordered so no need to check others */
 | 
						|
					else break;
 | 
						|
				}
 | 
						|
				if(near){
 | 
						|
					bvf->Mulf(avoid,part->boidfac[BOID_CROWD]*2.0f/timestep);
 | 
						|
 | 
						|
					not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,avoid,0);
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case BOID_CENTER:
 | 
						|
				/* flock centering */
 | 
						|
				if(neighbours>1){
 | 
						|
					for(n=1; n<neighbours; n++){
 | 
						|
						bvf->Addf(center,center,pars[ptn[n].index].state.co);
 | 
						|
					}
 | 
						|
					bvf->Mulf(center,1.0f/((float)neighbours-1.0f));
 | 
						|
 | 
						|
					bvf->Subf(dvec,center,pa->state.co);
 | 
						|
 | 
						|
					bvf->Mulf(dvec,part->boidfac[BOID_CENTER]*2.0f);
 | 
						|
 | 
						|
					not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case BOID_AV_VEL:
 | 
						|
				/* average velocity */
 | 
						|
				cur_vel=bvf->Length(pa->state.vel);
 | 
						|
				if(cur_vel>0.0){
 | 
						|
					bvf->Copyf(dvec,pa->state.vel);
 | 
						|
					bvf->Mulf(dvec,part->boidfac[BOID_AV_VEL]*(avg_vel-cur_vel)/cur_vel);
 | 
						|
					not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case BOID_VEL_MATCH:
 | 
						|
				/* velocity matching */
 | 
						|
				if(neighbours>1){
 | 
						|
					for(n=1; n<neighbours; n++){
 | 
						|
						bvf->Copyf(dvec,pars[ptn[n].index].state.vel);
 | 
						|
						bvf->Mulf(dvec,cubedist[n]);
 | 
						|
						bvf->Addf(velocity,velocity,dvec);
 | 
						|
					}
 | 
						|
					bvf->Mulf(velocity,1.0f/((float)neighbours-1.0f));
 | 
						|
 | 
						|
					bvf->Subf(dvec,velocity,pa->state.vel);
 | 
						|
 | 
						|
					bvf->Mulf(dvec,part->boidfac[BOID_VEL_MATCH]);
 | 
						|
 | 
						|
					not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case BOID_GOAL:
 | 
						|
				/* goal seeking */
 | 
						|
				if(psys->effectors.first){
 | 
						|
					for(ec=psys->effectors.first; ec; ec=ec->next){
 | 
						|
						if(ec->type & PSYS_EC_EFFECTOR){
 | 
						|
							Object *eob = ec->ob;
 | 
						|
							PartDeflect *pd = eob->pd;
 | 
						|
							float temp[4];
 | 
						|
 | 
						|
							if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0){
 | 
						|
								float distance;
 | 
						|
								VECSUB(dvec,eob->obmat[3],pa->state.co);
 | 
						|
								
 | 
						|
								distance=Normalize(dvec);
 | 
						|
 | 
						|
								if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
 | 
						|
									;
 | 
						|
								else{
 | 
						|
									VecMulf(dvec,pd->f_strength*part->boidfac[BOID_GOAL]/(float)pow((double)distance,(double)pd->f_power));
 | 
						|
 | 
						|
									not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
 | 
						|
								}
 | 
						|
							}
 | 
						|
							else if(pd->forcefield==PFIELD_GUIDE){
 | 
						|
								float distance;
 | 
						|
 | 
						|
								where_on_path(eob, (cfra-pa->time)/pa->lifetime, temp, dvec);
 | 
						|
 | 
						|
								VECSUB(dvec,temp,pa->state.co);
 | 
						|
 | 
						|
								distance=Normalize(dvec);
 | 
						|
 | 
						|
								if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
 | 
						|
									;
 | 
						|
								else{
 | 
						|
									VecMulf(dvec,pd->f_strength*part->boidfac[BOID_GOAL]/(float)pow((double)distance,(double)pd->f_power));
 | 
						|
 | 
						|
									not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
 | 
						|
								}
 | 
						|
							}
 | 
						|
						}
 | 
						|
						else if(ec->type & PSYS_EC_PARTICLE){
 | 
						|
							Object *eob = ec->ob;
 | 
						|
							ParticleSystem *epsys;
 | 
						|
							ParticleSettings *epart;
 | 
						|
							ParticleKey state;
 | 
						|
							PartDeflect *pd;
 | 
						|
							KDTreeNearest ptn2[MAX_BOIDNEIGHBOURS];
 | 
						|
							int totepart, p, count;
 | 
						|
							float distance;
 | 
						|
							epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
 | 
						|
							epart= epsys->part;
 | 
						|
							pd= epart->pd;
 | 
						|
							totepart= epsys->totpart;
 | 
						|
 | 
						|
							if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0){
 | 
						|
								count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->state.co,NULL,ptn2);
 | 
						|
								for(p=0; p<count; p++){
 | 
						|
									state.time=-1.0;
 | 
						|
									if(psys_get_particle_state(eob,epsys,ptn2[p].index,&state,0)){
 | 
						|
										VECSUB(dvec, state.co, pa->state.co);
 | 
						|
 | 
						|
										distance = Normalize(dvec);
 | 
						|
										
 | 
						|
										if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
 | 
						|
											;
 | 
						|
										else{
 | 
						|
											bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
 | 
						|
 | 
						|
											not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
 | 
						|
										}
 | 
						|
									}
 | 
						|
								}
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case BOID_LEVEL:
 | 
						|
				/* level flight */
 | 
						|
				if((part->flag & PART_BOIDS_2D)==0){
 | 
						|
					dvec[0]=dvec[1]=0.0;
 | 
						|
					dvec[2]=-pa->state.vel[2];
 | 
						|
 | 
						|
					VecMulf(dvec,part->boidfac[BOID_LEVEL]);
 | 
						|
					not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
 | 
						|
				}
 | 
						|
				break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
/* tries to realize the wanted acceleration */
 | 
						|
static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys, ParticleSettings *part, float timestep, float *acc, ParticleKey *state)
 | 
						|
{
 | 
						|
	float dvec[3], bvec[3], length, max_vel=part->max_vel;
 | 
						|
	float *q2, q[4];
 | 
						|
	float g=9.81f, pa_mass=part->mass;
 | 
						|
	float yvec[3]={0.0,1.0,0.0}, zvec[3]={0.0,0.0,-1.0}, bank;
 | 
						|
 | 
						|
	/* apply new velocity, location & rotation */
 | 
						|
	copy_particle_key(state,&pa->state,0);
 | 
						|
 | 
						|
	if(part->flag & PART_SIZEMASS)
 | 
						|
		pa_mass*=pa->size;
 | 
						|
 | 
						|
	/* by regarding the acceleration as a force at this stage we*/
 | 
						|
	/* can get better controll allthough it's a bit unphysical	*/
 | 
						|
	bvf->Mulf(acc,1.0f/pa_mass);
 | 
						|
 | 
						|
	bvf->Copyf(dvec,acc);
 | 
						|
	bvf->Mulf(dvec,timestep*timestep*0.5f);
 | 
						|
 | 
						|
	bvf->Copyf(bvec,state->vel);
 | 
						|
	bvf->Mulf(bvec,timestep);
 | 
						|
	bvf->Addf(dvec,dvec,bvec);
 | 
						|
	bvf->Addf(state->co,state->co,dvec);
 | 
						|
	
 | 
						|
	/* air speed from wind effectors */
 | 
						|
	if(psys->effectors.first){
 | 
						|
		ParticleEffectorCache *ec;
 | 
						|
		for(ec=psys->effectors.first; ec; ec=ec->next){
 | 
						|
			if(ec->type & PSYS_EC_EFFECTOR){
 | 
						|
				Object *eob = ec->ob;
 | 
						|
				PartDeflect *pd = eob->pd;
 | 
						|
 | 
						|
				if(pd->forcefield==PFIELD_WIND && pd->f_strength!=0.0){
 | 
						|
					float distance, wind[3];
 | 
						|
					VecCopyf(wind,eob->obmat[2]);
 | 
						|
					distance=VecLenf(state->co,eob->obmat[3]);
 | 
						|
 | 
						|
					if (distance < 0.001) distance = 0.001f;
 | 
						|
 | 
						|
					if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
 | 
						|
						;
 | 
						|
					else{
 | 
						|
						Normalize(wind);
 | 
						|
						VecMulf(wind,pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
 | 
						|
						bvf->Addf(state->co,state->co,wind);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	if((part->flag & PART_BOIDS_2D)==0 && pa->state.vel[0]!=0.0 && pa->state.vel[0]!=0.0 && pa->state.vel[0]!=0.0){
 | 
						|
		Crossf(yvec,state->vel,zvec);
 | 
						|
 | 
						|
		Normalize(yvec);
 | 
						|
 | 
						|
		bank=Inpf(yvec,acc);
 | 
						|
 | 
						|
		bank=-(float)atan((double)(bank/g));
 | 
						|
 | 
						|
		bank*=part->banking;
 | 
						|
 | 
						|
		bank-=pa->bank;
 | 
						|
		if(bank>M_PI*part->max_bank){
 | 
						|
			bank=pa->bank+(float)M_PI*part->max_bank;
 | 
						|
		}
 | 
						|
		else if(bank<-M_PI*part->max_bank){
 | 
						|
			bank=pa->bank-(float)M_PI*part->max_bank;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			bank+=pa->bank;
 | 
						|
 | 
						|
		pa->bank=bank;
 | 
						|
	}
 | 
						|
	else{
 | 
						|
		bank=0.0;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	VecRotToQuat(state->vel,bank,q);
 | 
						|
 | 
						|
	VECCOPY(dvec,state->vel);
 | 
						|
	VecMulf(dvec,-1.0f);
 | 
						|
	q2= vectoquat(dvec, OB_POSX, OB_POSZ);
 | 
						|
 | 
						|
	QuatMul(state->rot,q,q2);
 | 
						|
 | 
						|
	bvf->Mulf(acc,timestep);
 | 
						|
	bvf->Addf(state->vel,state->vel,acc);
 | 
						|
 | 
						|
	if(part->flag & PART_BOIDS_2D){
 | 
						|
		state->vel[2]=0.0;
 | 
						|
		state->co[2]=part->groundz;
 | 
						|
 | 
						|
		if(psys->keyed_ob){
 | 
						|
			Object *zob=psys->keyed_ob;
 | 
						|
			int min_face;
 | 
						|
			float co1[3],co2[3],min_d=2.0,min_w[4],imat[4][4];
 | 
						|
			VECCOPY(co1,state->co);
 | 
						|
			VECCOPY(co2,state->co);
 | 
						|
 | 
						|
			co1[2]=1000.0f;
 | 
						|
			co2[2]=-1000.0f;
 | 
						|
 | 
						|
			Mat4Invert(imat,zob->obmat);
 | 
						|
			Mat4MulVecfl(imat,co1);
 | 
						|
			Mat4MulVecfl(imat,co2);
 | 
						|
 | 
						|
			if(psys_intersect_dm(zob,0,0,co1,co2,&min_d,&min_face,min_w,0,0,0,0)){
 | 
						|
				DerivedMesh *dm;
 | 
						|
				MFace *mface;
 | 
						|
				MVert *mvert;
 | 
						|
				float loc[3],nor[3],q1[4];
 | 
						|
 | 
						|
				psys_disable_all(zob);
 | 
						|
				dm=mesh_get_derived_final(zob,0);
 | 
						|
				psys_enable_all(zob);
 | 
						|
 | 
						|
				mface=dm->getFaceDataArray(dm,CD_MFACE);
 | 
						|
				mface+=min_face;
 | 
						|
				mvert=dm->getVertDataArray(dm,CD_MVERT);
 | 
						|
 | 
						|
				/* get deflection point & normal */
 | 
						|
				psys_interpolate_face(mvert,mface,0,0,min_w,loc,nor,0,0,0,0);
 | 
						|
 | 
						|
				Mat4MulVecfl(zob->obmat,loc);
 | 
						|
				Mat4Mul3Vecfl(zob->obmat,nor);
 | 
						|
 | 
						|
				Normalize(nor);
 | 
						|
 | 
						|
				VECCOPY(state->co,loc);
 | 
						|
 | 
						|
				zvec[2]=1.0;
 | 
						|
 | 
						|
				Crossf(loc,zvec,nor);
 | 
						|
 | 
						|
				bank=VecLength(loc);
 | 
						|
				if(bank>0.0){
 | 
						|
					bank=saasin(bank);
 | 
						|
 | 
						|
					VecRotToQuat(loc,bank,q);
 | 
						|
 | 
						|
					QUATCOPY(q1,state->rot);
 | 
						|
 | 
						|
					QuatMul(state->rot,q,q1);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	length=bvf->Length(state->vel);
 | 
						|
	if(length > max_vel)
 | 
						|
		bvf->Mulf(state->vel,max_vel/length);
 | 
						|
}
 | 
						|
/************************************************/
 | 
						|
/*			Hair								*/
 | 
						|
/************************************************/
 | 
						|
void save_hair(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra){
 | 
						|
	ParticleData *pa;
 | 
						|
	HairKey *key;
 | 
						|
	int totpart;
 | 
						|
	int i;
 | 
						|
 | 
						|
	Mat4Invert(ob->imat,ob->obmat);
 | 
						|
	
 | 
						|
	psys->lattice=psys_get_lattice(ob,psys);
 | 
						|
 | 
						|
	if(psys->totpart==0) return;
 | 
						|
 | 
						|
	totpart=psys->totpart;
 | 
						|
	
 | 
						|
	/* save new keys for elements if needed */
 | 
						|
	for(i=0,pa=psys->particles; i<totpart; i++,pa++) {
 | 
						|
		/* first time alloc */
 | 
						|
		if(pa->totkey==0 || pa->hair==NULL) {
 | 
						|
			pa->hair = MEM_callocN((psys->part->hair_step + 1) * sizeof(HairKey), "HairKeys");
 | 
						|
			pa->totkey = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		key = pa->hair + pa->totkey;
 | 
						|
 | 
						|
		/* convert from global to geometry space */
 | 
						|
		VecCopyf(key->co, pa->state.co);
 | 
						|
		Mat4MulVecfl(ob->imat, key->co);
 | 
						|
 | 
						|
		if(pa->totkey) {
 | 
						|
			VECSUB(key->co, key->co, pa->hair->co);
 | 
						|
			psys_vec_rot_to_face(psmd->dm, pa, key->co);
 | 
						|
		}
 | 
						|
 | 
						|
		key->time = pa->state.time;
 | 
						|
 | 
						|
		key->weight = 1.0f - key->time / 100.0f;
 | 
						|
 | 
						|
		pa->totkey++;
 | 
						|
 | 
						|
		/* root is always in the origin of hair space so we set it to be so after the last key is saved*/
 | 
						|
		if(pa->totkey == psys->part->hair_step + 1)
 | 
						|
			pa->hair->co[0] = pa->hair->co[1] = pa->hair->co[2] = 0.0f;
 | 
						|
	}
 | 
						|
}
 | 
						|
/************************************************/
 | 
						|
/*			System Core							*/
 | 
						|
/************************************************/
 | 
						|
/* unbaked particles are calculated dynamically */
 | 
						|
static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra,
 | 
						|
						  float *vg_vel, float *vg_tan, float *vg_rot, float *vg_size)
 | 
						|
{
 | 
						|
	ParticleData *pa;
 | 
						|
	ParticleKey *outstate, *key;
 | 
						|
	ParticleSettings *part=psys->part;
 | 
						|
	KDTree *tree=0;
 | 
						|
	BoidVecFunc bvf;
 | 
						|
	IpoCurve *icu_esize=find_ipocurve(part->ipo,PART_EMIT_SIZE);
 | 
						|
	Material *ma=give_current_material(ob,part->omat);
 | 
						|
	float timestep;
 | 
						|
	int p, totpart, pa_die;
 | 
						|
	/* current time */
 | 
						|
	float ctime, ipotime;
 | 
						|
	/* frame & time changes */
 | 
						|
	float dfra, dtime, pa_dtime, pa_dfra=0.0;
 | 
						|
	float birthtime, dietime;
 | 
						|
	
 | 
						|
	/* where have we gone in time since last time */
 | 
						|
	dfra= cfra - psys->cfra;
 | 
						|
 | 
						|
	totpart=psys->totpart;
 | 
						|
 | 
						|
	timestep=psys_get_timestep(part);
 | 
						|
	dtime= dfra*timestep;
 | 
						|
	ctime= cfra*timestep;
 | 
						|
	ipotime= cfra;
 | 
						|
 | 
						|
	if(part->flag&PART_ABS_TIME && part->ipo){
 | 
						|
		calc_ipo(part->ipo, cfra);
 | 
						|
		execute_ipo((ID *)part, part->ipo);
 | 
						|
	}
 | 
						|
 | 
						|
	if(dfra<0.0){
 | 
						|
		float *vg_size=0;
 | 
						|
		if(part->type==PART_REACTOR)
 | 
						|
			vg_size=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_SIZE);
 | 
						|
 | 
						|
		for(p=0, pa=psys->particles; p<totpart; p++,pa++){
 | 
						|
			if(pa->flag & PARS_UNEXIST) continue;
 | 
						|
 | 
						|
			/* set correct ipo timing */
 | 
						|
			if((part->flag&PART_ABS_TIME)==0 && part->ipo){
 | 
						|
				ipotime=100.0f*(cfra-pa->time)/pa->lifetime;
 | 
						|
				calc_ipo(part->ipo, ipotime);
 | 
						|
				execute_ipo((ID *)part, part->ipo);
 | 
						|
			}
 | 
						|
			pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
 | 
						|
 | 
						|
			if(part->type==PART_REACTOR)
 | 
						|
				initialize_particle(pa,p,ob,psys,psmd);
 | 
						|
 | 
						|
			reset_particle(pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot);
 | 
						|
 | 
						|
			if(cfra>pa->time && part->flag & PART_LOOP){
 | 
						|
				pa->loop=(short)((cfra-pa->time)/pa->lifetime);
 | 
						|
				pa->alive=PARS_UNBORN;
 | 
						|
			}
 | 
						|
			else{
 | 
						|
				pa->loop = 0;
 | 
						|
				if(cfra <= pa->time)
 | 
						|
					pa->alive = PARS_UNBORN;
 | 
						|
						/* without dynamics the state is allways known so no need to kill */
 | 
						|
				else if(ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)){
 | 
						|
					if(cfra < pa->dietime)
 | 
						|
						pa->alive = PARS_ALIVE;
 | 
						|
				}
 | 
						|
				else
 | 
						|
					pa->alive = PARS_KILLED;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if(vg_size)
 | 
						|
			MEM_freeN(vg_size);
 | 
						|
 | 
						|
		//if(part->phystype==PART_PHYS_SOLID)
 | 
						|
		//	reset_to_first_fragment(psys);
 | 
						|
	}
 | 
						|
	else{
 | 
						|
		BLI_srandom(31415926 + (int)cfra + psys->seed);
 | 
						|
 | 
						|
		/* outstate is used so that particles are updated in parallel */
 | 
						|
		outstate=MEM_callocN(totpart*sizeof(ParticleKey),"Particle Outstates");
 | 
						|
		
 | 
						|
		/* update effectors */
 | 
						|
		if(psys->effectors.first)
 | 
						|
			psys_end_effectors(psys);
 | 
						|
 | 
						|
		psys_init_effectors(ob,part->eff_group,psys);
 | 
						|
		
 | 
						|
		if(psys->effectors.first)
 | 
						|
			precalc_effectors(ob,psys,psmd);
 | 
						|
 | 
						|
		if(part->phystype==PART_PHYS_BOIDS){
 | 
						|
			/* create particle tree for fast inter-particle comparisons */
 | 
						|
			tree=BLI_kdtree_new(totpart);
 | 
						|
			for(p=0, pa=psys->particles; p<totpart; p++,pa++){
 | 
						|
				if(pa->flag & (PARS_NO_DISP+PARS_UNEXIST) || pa->alive!=PARS_ALIVE)
 | 
						|
					continue;
 | 
						|
 | 
						|
				BLI_kdtree_insert(tree, p, pa->state.co, NULL);
 | 
						|
			}
 | 
						|
			BLI_kdtree_balance(tree);
 | 
						|
			set_boid_vec_func(&bvf,part->flag&PART_BOIDS_2D);
 | 
						|
		}
 | 
						|
 | 
						|
		/* main loop: calculate physics for all particles */
 | 
						|
		for(p=0, pa=psys->particles, key=outstate; p<totpart; p++,pa++,key++){
 | 
						|
			if(pa->flag & PARS_UNEXIST) continue;
 | 
						|
 | 
						|
			copy_particle_key(key,&pa->state,1);
 | 
						|
			
 | 
						|
			/* set correct ipo timing */
 | 
						|
			if((part->flag&PART_ABS_TIME)==0 && part->ipo){
 | 
						|
				ipotime=100.0f*(cfra-pa->time)/pa->lifetime;
 | 
						|
				calc_ipo(part->ipo, ipotime);
 | 
						|
				execute_ipo((ID *)part, part->ipo);
 | 
						|
			}
 | 
						|
			pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
 | 
						|
 | 
						|
			pa_die=0;
 | 
						|
 | 
						|
			birthtime = pa->time + pa->loop * pa->lifetime;
 | 
						|
 | 
						|
			if(pa->alive==PARS_UNBORN
 | 
						|
				|| pa->alive==PARS_KILLED
 | 
						|
				|| ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED)
 | 
						|
				|| birthtime >= cfra){
 | 
						|
				/* allways reset particles to emitter before birth */
 | 
						|
				reset_particle(pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot);
 | 
						|
				copy_particle_key(key,&pa->state,1);
 | 
						|
			}
 | 
						|
 | 
						|
			if(dfra>0.0 || psys->recalc){
 | 
						|
				
 | 
						|
				if(psys->reactevents.first && ELEM(pa->alive,PARS_DEAD,PARS_KILLED)==0)
 | 
						|
					react_to_events(psys,p);
 | 
						|
 | 
						|
				pa_dfra = dfra;
 | 
						|
				pa_dtime = dtime;
 | 
						|
 | 
						|
				dietime = birthtime + pa->lifetime;
 | 
						|
 | 
						|
				if(birthtime < cfra && birthtime >= psys->cfra){
 | 
						|
					/* particle is born some time between this and last step*/
 | 
						|
					pa->alive = PARS_ALIVE;
 | 
						|
					pa_dfra = cfra - birthtime;
 | 
						|
					pa_dtime = pa_dfra*timestep;
 | 
						|
				}
 | 
						|
				else if(dietime <= cfra && psys->cfra < dietime){
 | 
						|
					/* particle dies some time between this and last step */
 | 
						|
					pa_dfra = dietime - psys->cfra;
 | 
						|
					pa_dtime = pa_dfra * timestep;
 | 
						|
					pa_die = 1;
 | 
						|
				}
 | 
						|
				else if(dietime < cfra){
 | 
						|
					/* TODO: figure out if there's something to be done when particle is dead */
 | 
						|
				}
 | 
						|
 | 
						|
				copy_particle_key(key,&pa->state,1);
 | 
						|
 | 
						|
				if(dfra>0.0 && pa->alive==PARS_ALIVE){
 | 
						|
					switch(part->phystype){
 | 
						|
						case PART_PHYS_NEWTON:
 | 
						|
							/* do global forces & effectors */
 | 
						|
							apply_particle_forces(p,pa,ob,psys,part,timestep,pa_dfra,cfra,key);
 | 
						|
 | 
						|
							/* deflection */
 | 
						|
							deflect_particle(ob,psmd,psys,part,pa,p,pa_dfra,cfra,key,&pa_die);
 | 
						|
 | 
						|
							/* rotations */
 | 
						|
							rotate_particle(part,pa,pa_dfra,timestep,key);
 | 
						|
 | 
						|
							break;
 | 
						|
						case PART_PHYS_BOIDS:
 | 
						|
						{
 | 
						|
							float acc[3];
 | 
						|
							boid_brain(&bvf,pa,ob,psys,part,tree,timestep,cfra,acc,&pa_die);
 | 
						|
							if(pa_die==0)
 | 
						|
								boid_body(&bvf,pa,psys,part,timestep,acc,key);
 | 
						|
							break;
 | 
						|
						}
 | 
						|
					}
 | 
						|
 | 
						|
					push_reaction(ob,psys,p,PART_EVENT_NEAR,key);
 | 
						|
 | 
						|
					if(pa_die){
 | 
						|
						push_reaction(ob,psys,p,PART_EVENT_DEATH,key);
 | 
						|
 | 
						|
						if(part->flag & PART_LOOP){
 | 
						|
							pa->loop++;
 | 
						|
							reset_particle(pa,psys,psmd,ob,0.0,cfra,vg_vel,vg_tan,vg_rot);
 | 
						|
							copy_particle_key(key,&pa->state,1);
 | 
						|
							pa->alive=PARS_ALIVE;
 | 
						|
						}
 | 
						|
						else{
 | 
						|
							pa->alive=PARS_DEAD;
 | 
						|
							key->time=pa->dietime;
 | 
						|
 | 
						|
							if(pa->flag&PARS_STICKY)
 | 
						|
								psys_key_to_object(pa->stick_ob,key,0);
 | 
						|
						}
 | 
						|
					}
 | 
						|
					else
 | 
						|
						key->time=cfra;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* apply outstates to particles */
 | 
						|
		for(p=0, pa=psys->particles, key=outstate; p<totpart; p++,pa++,key++)
 | 
						|
			copy_particle_key(&pa->state,key,1);
 | 
						|
 | 
						|
		MEM_freeN(outstate);
 | 
						|
	}
 | 
						|
	if(psys->reactevents.first)
 | 
						|
		BLI_freelistN(&psys->reactevents);
 | 
						|
 | 
						|
	if(tree)
 | 
						|
		BLI_kdtree_free(tree);
 | 
						|
}
 | 
						|
 | 
						|
/* check if path cache or children need updating and do it if needed */
 | 
						|
static void psys_update_path_cache(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra)
 | 
						|
{
 | 
						|
	ParticleSettings *part=psys->part;
 | 
						|
	ParticleEditSettings *pset=&G.scene->toolsettings->particle;
 | 
						|
	int distr=0,alloc=0;
 | 
						|
 | 
						|
	if((psys->part->childtype && psys->totchild != get_psys_tot_child(psys)) || psys->recalc&PSYS_ALLOC)
 | 
						|
		alloc=1;
 | 
						|
 | 
						|
	if(alloc || psys->recalc&PSYS_DISTR || (psys->vgroup[PSYS_VG_DENSITY] && (G.f & G_WEIGHTPAINT)))
 | 
						|
		distr=1;
 | 
						|
 | 
						|
	if(distr){
 | 
						|
		if(alloc)
 | 
						|
			alloc_particles(ob,psys,psys->totpart);
 | 
						|
 | 
						|
		if(get_psys_tot_child(psys)) {
 | 
						|
			/* don't generate children while computing the hair keys */
 | 
						|
			if(!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE)) {
 | 
						|
				distribute_particles(ob,psys,PART_FROM_CHILD);
 | 
						|
 | 
						|
				if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES && part->parents!=0.0)
 | 
						|
					psys_find_parents(ob,psmd,psys);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if((part->type==PART_HAIR || psys->flag&PSYS_KEYED) && (psys_in_edit_mode(psys)
 | 
						|
		|| (part->type==PART_HAIR || part->draw_as==PART_DRAW_PATH) || part->draw&PART_DRAW_KEYS)){
 | 
						|
		psys_cache_paths(ob, psys, cfra, 0);
 | 
						|
 | 
						|
		/* for render, child particle paths are computed on the fly */
 | 
						|
		if(part->childtype) {
 | 
						|
			if(((psys->totchild!=0)) || (psys_in_edit_mode(psys) && (pset->flag&PE_SHOW_CHILD)))
 | 
						|
				if(!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE))
 | 
						|
					psys_cache_child_paths(ob, psys, cfra, 0);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if(psys->pathcache)
 | 
						|
		psys_free_path_cache(psys);
 | 
						|
}
 | 
						|
 | 
						|
static void hair_step(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra)
 | 
						|
{
 | 
						|
	ParticleSettings *part = psys->part;
 | 
						|
	ParticleData *pa;
 | 
						|
	int p;
 | 
						|
	float disp = (float)get_current_display_percentage(psys)/50.0f-1.0f;
 | 
						|
 | 
						|
	for(p=0, pa=psys->particles; p<psys->totpart; p++,pa++){
 | 
						|
		if(pa->r_rot[0] > disp)
 | 
						|
			pa->flag |= PARS_NO_DISP;
 | 
						|
		else
 | 
						|
			pa->flag &= ~PARS_NO_DISP;
 | 
						|
	}
 | 
						|
 | 
						|
	if(psys->recalc & PSYS_DISTR)
 | 
						|
		/* need this for changing subsurf levels */
 | 
						|
		psys_calc_dmfaces(ob, psmd->dm, psys);
 | 
						|
 | 
						|
	if(psys->effectors.first)
 | 
						|
		psys_end_effectors(psys);
 | 
						|
 | 
						|
	psys_init_effectors(ob,part->eff_group,psys);
 | 
						|
	if(psys->effectors.first)
 | 
						|
		precalc_effectors(ob,psys,psmd);
 | 
						|
		
 | 
						|
	if(psys_in_edit_mode(psys))
 | 
						|
		PE_recalc_world_cos(ob, psys);
 | 
						|
 | 
						|
	psys_update_path_cache(ob,psmd,psys,cfra);
 | 
						|
}
 | 
						|
 | 
						|
/* updates cached particles' alive & other flags etc..*/
 | 
						|
static void cached_step(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra, float *vg_size)
 | 
						|
{
 | 
						|
	ParticleSettings *part=psys->part;
 | 
						|
	ParticleData *pa;
 | 
						|
	ParticleKey state;
 | 
						|
	IpoCurve *icu_esize=find_ipocurve(part->ipo,PART_EMIT_SIZE);
 | 
						|
	Material *ma=give_current_material(ob,part->omat);
 | 
						|
	int p;
 | 
						|
	float ipotime=cfra, disp, birthtime, dietime;
 | 
						|
 | 
						|
	if(psys->effectors.first)
 | 
						|
		psys_end_effectors(psys);
 | 
						|
	
 | 
						|
	//if(part->flag & (PART_BAKED_GUIDES+PART_BAKED_DEATHS)){
 | 
						|
		psys_init_effectors(ob,part->eff_group,psys);
 | 
						|
		if(psys->effectors.first)
 | 
						|
			precalc_effectors(ob,psys,psmd);
 | 
						|
	//}
 | 
						|
	
 | 
						|
	disp= (float)get_current_display_percentage(psys)/50.0f-1.0f;
 | 
						|
 | 
						|
	for(p=0, pa=psys->particles; p<psys->totpart; p++,pa++){
 | 
						|
		if((part->flag&PART_ABS_TIME)==0 && part->ipo){
 | 
						|
			ipotime=100.0f*(cfra-pa->time)/pa->lifetime;
 | 
						|
			calc_ipo(part->ipo, ipotime);
 | 
						|
			execute_ipo((ID *)part, part->ipo);
 | 
						|
		}
 | 
						|
		pa->size= psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
 | 
						|
 | 
						|
		psys->lattice=psys_get_lattice(ob,psys);
 | 
						|
 | 
						|
		if(part->flag & PART_LOOP)
 | 
						|
			pa->loop = (short)((cfra - pa->time) / pa->lifetime);
 | 
						|
		else
 | 
						|
			pa->loop = 0;
 | 
						|
 | 
						|
		birthtime = pa->time + pa->loop * pa->lifetime;
 | 
						|
		dietime = birthtime + pa->lifetime;
 | 
						|
 | 
						|
		/* update alive status and push events */
 | 
						|
		if(pa->time > cfra)
 | 
						|
			pa->alive = PARS_UNBORN;
 | 
						|
		else if(dietime <= cfra){
 | 
						|
			if(dietime > psys->cfra){
 | 
						|
				state.time = pa->dietime;
 | 
						|
				psys_get_particle_state(ob,psys,p,&state,1);
 | 
						|
				push_reaction(ob,psys,p,PART_EVENT_DEATH,&state);
 | 
						|
			}
 | 
						|
			pa->alive = PARS_DEAD;
 | 
						|
		}
 | 
						|
		else{
 | 
						|
			pa->alive = PARS_ALIVE;
 | 
						|
			state.time = cfra;
 | 
						|
			psys_get_particle_state(ob,psys,p,&state,1);
 | 
						|
			state.time = cfra;
 | 
						|
			push_reaction(ob,psys,p,PART_EVENT_NEAR,&state);
 | 
						|
		}
 | 
						|
 | 
						|
		if(psys->lattice){
 | 
						|
			end_latt_deform();
 | 
						|
			psys->lattice=0;
 | 
						|
		}
 | 
						|
 | 
						|
		if(pa->r_rot[0] > disp)
 | 
						|
			pa->flag |= PARS_NO_DISP;
 | 
						|
		else
 | 
						|
			pa->flag &= ~PARS_NO_DISP;
 | 
						|
	}
 | 
						|
}
 | 
						|
/* Calculates the next state for all particles of the system */
 | 
						|
/* In particles code most fra-ending are frames, time-ending are fra*timestep (seconds)*/
 | 
						|
static void system_step(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra)
 | 
						|
{
 | 
						|
	ParticleSettings *part;
 | 
						|
	ParticleData *pa;
 | 
						|
	int totpart,oldtotpart=0,p;
 | 
						|
	float disp, *vg_vel=0, *vg_tan=0, *vg_rot=0, *vg_size=0;
 | 
						|
	int init=0,distr=0,alloc=0;
 | 
						|
 | 
						|
	/*----start validity checks----*/
 | 
						|
 | 
						|
	part=psys->part;
 | 
						|
 | 
						|
	if(part->flag&PART_ABS_TIME && part->ipo){
 | 
						|
		calc_ipo(part->ipo, cfra);
 | 
						|
		execute_ipo((ID *)part, part->ipo);
 | 
						|
	}
 | 
						|
 | 
						|
	if(part->from!=PART_FROM_PARTICLE)
 | 
						|
		vg_size=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_SIZE);
 | 
						|
 | 
						|
	if(part->type == PART_HAIR) {
 | 
						|
		if(psys->flag & PSYS_HAIR_DONE) {
 | 
						|
			hair_step(ob, psmd, psys, cfra);
 | 
						|
			psys->cfra = cfra;
 | 
						|
			psys->recalc = 0;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if(ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED))
 | 
						|
		; /* cache shouldn't be used for "none" or "keyed" physics */
 | 
						|
	else {
 | 
						|
		if(psys->recalc && (psys->flag & PSYS_PROTECT_CACHE) == 0)
 | 
						|
			clear_particles_from_cache(ob,psys,(int)cfra);
 | 
						|
		else if(get_particles_from_cache(ob, psys, (int)cfra)) {
 | 
						|
			cached_step(ob,psmd,psys,cfra,vg_size);
 | 
						|
			psys->cfra=cfra;
 | 
						|
			psys->recalc = 0;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* if still here react to events */
 | 
						|
 | 
						|
	if(psys->recalc&PSYS_TYPE) {
 | 
						|
		/* system type has changed so set sensible defaults and clear non applicable flags */
 | 
						|
		if(part->from == PART_FROM_PARTICLE) {
 | 
						|
			if(part->type != PART_REACTOR)
 | 
						|
				part->from = PART_FROM_FACE;
 | 
						|
			if(part->distr == PART_DISTR_GRID)
 | 
						|
				part->distr = PART_DISTR_JIT;
 | 
						|
		}
 | 
						|
 | 
						|
		if(psys->part->phystype != PART_PHYS_KEYED)
 | 
						|
			psys->flag &= ~PSYS_KEYED;
 | 
						|
 | 
						|
		if(part->type == PART_HAIR) {
 | 
						|
			part->draw_as = PART_DRAW_PATH;
 | 
						|
			part->rotfrom = PART_ROT_IINCR;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			free_hair(psys);
 | 
						|
 | 
						|
		psys->recalc &= ~PSYS_TYPE;
 | 
						|
		alloc = 1;
 | 
						|
 | 
						|
		/* this is a bad level call, but currently type change
 | 
						|
		 * can happen after redraw, so force redraw from here */
 | 
						|
		allqueue(REDRAWBUTSOBJECT, 0);
 | 
						|
	}
 | 
						|
	else
 | 
						|
		oldtotpart = psys->totpart;
 | 
						|
 | 
						|
	if(part->distr == PART_DISTR_GRID)
 | 
						|
		totpart = part->grid_res * part->grid_res * part->grid_res;
 | 
						|
	else
 | 
						|
		totpart = psys->part->totpart;
 | 
						|
 | 
						|
	if(oldtotpart != totpart || psys->recalc&PSYS_ALLOC || (psys->part->childtype && psys->totchild != get_psys_tot_child(psys)))
 | 
						|
		alloc = 1;
 | 
						|
 | 
						|
	if(alloc || psys->recalc&PSYS_DISTR || (psys->vgroup[PSYS_VG_DENSITY] && (G.f & G_WEIGHTPAINT) && ob==OBACT))
 | 
						|
		distr = 1;
 | 
						|
 | 
						|
	if(distr || psys->recalc&PSYS_INIT)
 | 
						|
		init = 1;
 | 
						|
 | 
						|
	if(init) {
 | 
						|
		if(distr) {
 | 
						|
			if(alloc)
 | 
						|
				alloc_particles(ob, psys, totpart);
 | 
						|
 | 
						|
			distribute_particles(ob, psys, part->from);
 | 
						|
 | 
						|
			if((psys->part->type == PART_HAIR) && !(psys->flag & PSYS_HAIR_DONE))
 | 
						|
				/* don't generate children while growing hair - waste of time */
 | 
						|
				psys_free_children(psys);
 | 
						|
			else if(get_psys_tot_child(psys))
 | 
						|
				distribute_particles(ob, psys, PART_FROM_CHILD);
 | 
						|
		}
 | 
						|
		initialize_all_particles(ob, psys, psmd);
 | 
						|
 | 
						|
		if(alloc)
 | 
						|
			reset_all_particles(ob, psys, psmd, 0.0, cfra, oldtotpart);
 | 
						|
 | 
						|
		/* flag for possible explode modifiers after this system */
 | 
						|
		psmd->flag |= eParticleSystemFlag_Pars;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED)
 | 
						|
		psys_count_keyed_targets(ob,psys);
 | 
						|
 | 
						|
	if(part->from!=PART_FROM_PARTICLE){
 | 
						|
		vg_vel=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_VEL);
 | 
						|
		vg_tan=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_TAN);
 | 
						|
		vg_rot=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_ROT);
 | 
						|
	}
 | 
						|
 | 
						|
	/* set particles to be not calculated */
 | 
						|
	disp= (float)get_current_display_percentage(psys)/50.0f-1.0f;
 | 
						|
 | 
						|
	for(p=0, pa=psys->particles; p<totpart; p++,pa++){
 | 
						|
		if(pa->r_rot[0] > disp)
 | 
						|
			pa->flag |= PARS_NO_DISP;
 | 
						|
		else
 | 
						|
			pa->flag &= ~PARS_NO_DISP;
 | 
						|
	}
 | 
						|
 | 
						|
	/* ok now we're all set so let's go */
 | 
						|
	if(psys->totpart)
 | 
						|
		dynamics_step(ob,psys,psmd,cfra,vg_vel,vg_tan,vg_rot,vg_size);
 | 
						|
 | 
						|
	psys->recalc = 0;
 | 
						|
	psys->cfra = cfra;
 | 
						|
 | 
						|
	if(part->type == PART_HAIR || part->phystype == PART_PHYS_NO
 | 
						|
		|| (part->phystype == PART_PHYS_KEYED && psys->flag & PSYS_FIRST_KEYED))
 | 
						|
		; /* cache shouldn't be used for hair or "none" or "first keyed" physics */
 | 
						|
	else
 | 
						|
		write_particles_to_cache(ob, psys, cfra);
 | 
						|
 | 
						|
	/* for keyed particles the path is allways known so it can be drawn */
 | 
						|
	if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED){
 | 
						|
		set_keyed_keys(ob, psys);
 | 
						|
		psys_update_path_cache(ob,psmd,psys,(int)cfra);
 | 
						|
	}
 | 
						|
	else if(psys->pathcache)
 | 
						|
		psys_free_path_cache(psys);
 | 
						|
 | 
						|
	if(vg_vel)
 | 
						|
		MEM_freeN(vg_vel);
 | 
						|
 | 
						|
	if(psys->lattice){
 | 
						|
		end_latt_deform();
 | 
						|
		psys->lattice=0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void psys_to_softbody(Object *ob, ParticleSystem *psys, int force_recalc)
 | 
						|
{
 | 
						|
	SoftBody *sb;
 | 
						|
	short softflag; 
 | 
						|
 | 
						|
	if((psys->softflag&OB_SB_ENABLE)==0) return;
 | 
						|
 | 
						|
	if(psys->recalc || force_recalc)
 | 
						|
		psys->softflag|=OB_SB_REDO;
 | 
						|
 | 
						|
	/* let's replace the object's own softbody with the particle softbody */
 | 
						|
	/* a temporary solution before cloth simulation is implemented, jahka */
 | 
						|
 | 
						|
	/* save these */
 | 
						|
	sb=ob->soft;
 | 
						|
	softflag=ob->softflag;
 | 
						|
 | 
						|
	/* swich to new ones */
 | 
						|
	ob->soft=psys->soft;
 | 
						|
	ob->softflag=psys->softflag;
 | 
						|
 | 
						|
	/* do softbody */
 | 
						|
	sbObjectStep(ob, (float)G.scene->r.cfra, NULL, psys_count_keys(psys));
 | 
						|
 | 
						|
	/* return things back to normal */
 | 
						|
	psys->soft=ob->soft;
 | 
						|
	psys->softflag=ob->softflag;
 | 
						|
	
 | 
						|
	ob->soft=sb;
 | 
						|
	ob->softflag=softflag;
 | 
						|
}
 | 
						|
static int hair_needs_recalc(ParticleSystem *psys)
 | 
						|
{
 | 
						|
	if((psys->flag & PSYS_EDITED)==0 && (
 | 
						|
		(psys->flag & PSYS_HAIR_DONE)==0
 | 
						|
		|| psys->recalc & PSYS_RECALC_HAIR)
 | 
						|
		) {
 | 
						|
		psys->recalc &= ~PSYS_RECALC_HAIR;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
/* main particle update call, checks that things are ok on the large scale before actual particle calculations */
 | 
						|
void particle_system_update(Object *ob, ParticleSystem *psys){
 | 
						|
 | 
						|
	ParticleSystemModifierData *psmd=0;
 | 
						|
	float cfra;
 | 
						|
 | 
						|
	if(!psys_check_enabled(ob, psys))
 | 
						|
		return;
 | 
						|
 | 
						|
	cfra=bsystem_time(ob,(float)CFRA,0.0);
 | 
						|
	psmd= psys_get_modifier(ob, psys);
 | 
						|
 | 
						|
	/* system was already updated from modifier stack */
 | 
						|
	if(psmd->flag&eParticleSystemFlag_psys_updated) {
 | 
						|
		psmd->flag &= ~eParticleSystemFlag_psys_updated;
 | 
						|
		/* make sure it really was updated to cfra */
 | 
						|
		if(psys->cfra==cfra)
 | 
						|
			return;
 | 
						|
	}
 | 
						|
 | 
						|
	if(!psmd->dm)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* baked path softbody */
 | 
						|
	if(psys->part->type==PART_HAIR && psys->soft)
 | 
						|
		psys_to_softbody(ob, psys, 0);
 | 
						|
 | 
						|
	/* not needed, this is all handled in hair_step */
 | 
						|
	///* is the mesh changing under the edited particles? */
 | 
						|
	//if((psys->flag & PSYS_EDITED) &&  psys->part->type==PART_HAIR && psys->recalc & PSYS_RECALC_HAIR) {
 | 
						|
	//	/* Just update the particles on the mesh */
 | 
						|
	//	psys_update_edithair_dmfaces(ob, psmd->dm, psys);
 | 
						|
	//}
 | 
						|
	
 | 
						|
	if(psys->part->type==PART_HAIR && hair_needs_recalc(psys)){
 | 
						|
		float hcfra=0.0f;
 | 
						|
		int i;
 | 
						|
		free_hair(psys);
 | 
						|
 | 
						|
		/* first step is negative so particles get killed and reset */
 | 
						|
		psys->cfra=1.0f;
 | 
						|
 | 
						|
		for(i=0; i<=psys->part->hair_step; i++){
 | 
						|
			hcfra=100.0f*(float)i/(float)psys->part->hair_step;
 | 
						|
			system_step(ob,psys,psmd,hcfra);
 | 
						|
			save_hair(ob,psys,psmd,hcfra);
 | 
						|
		}
 | 
						|
 | 
						|
		psys->flag |= PSYS_HAIR_DONE;
 | 
						|
 | 
						|
		if(psys->softflag&OB_SB_ENABLE)
 | 
						|
			psys_to_softbody(ob,psys,1);
 | 
						|
	}
 | 
						|
 | 
						|
	system_step(ob,psys,psmd,cfra);
 | 
						|
 | 
						|
	Mat4Invert(psys->imat, ob->obmat);	/* used for duplicators */
 | 
						|
}
 | 
						|
 |