also added the underlying subdivision as a standalone operator in the edge menu, named: subdivide edge-ring. http://www.graphicall.org/ftp/ideasman42/bridge_subd.png
1188 lines
35 KiB
C
1188 lines
35 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Contributor(s): Campbell Barton
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/bmesh/operators/bmo_subdivide_edgering.c
|
|
* \ingroup bmesh
|
|
*
|
|
* This operator is a special edge-ring subdivision tool
|
|
* which gives special options for interpolation.
|
|
*
|
|
* \note Tagging and flags
|
|
* Tagging here is quite prone to errors if not done carefully.
|
|
*
|
|
* - With the exception of EDGE_RIM & EDGE_RIM,
|
|
* all flags need to be cleared on function exit.
|
|
* - verts use BM_ELEM_TAG, these need to be cleared before functions exit.
|
|
*
|
|
* \note Order of execution with 2+ rings is undefined,
|
|
* so tage care
|
|
*/
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_utildefines.h"
|
|
#include "BLI_array.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_listbase.h"
|
|
|
|
#include "BKE_curve.h"
|
|
|
|
#include "bmesh.h"
|
|
#include "tools/bmesh_edgesplit.h"
|
|
|
|
#include "intern/bmesh_operators_private.h" /* own include */
|
|
|
|
#define VERT_SHARED (1 << 0)
|
|
|
|
#define EDGE_RING (1 << 0)
|
|
#define EDGE_RIM (1 << 1)
|
|
#define EDGE_IN_STACK (1 << 2)
|
|
|
|
#define FACE_OUT (1 << 0)
|
|
#define FACE_SHARED (1 << 1)
|
|
#define FACE_IN_STACK (1 << 2)
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Specialized Utility Funcs */
|
|
|
|
#ifdef DEBUG
|
|
static unsigned int bm_verts_tag_count(BMesh *bm)
|
|
{
|
|
int count = 0;
|
|
BMIter iter;
|
|
BMVert *v;
|
|
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
|
|
if (BM_elem_flag_test(v, BM_ELEM_TAG)) {
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
static float bezier_handle_calc_length_v3(const float co_a[3], const float no_a[3],
|
|
const float co_b[3], const float no_b[3])
|
|
{
|
|
const float dot = dot_v3v3(no_a, no_b);
|
|
/* gives closest approx at a circle with 2 parallel handles */
|
|
float fac = 1.333333f;
|
|
if (dot < 0.0f) {
|
|
/* scale down to 0.666 if we point directly at each other rough but ok */
|
|
/* TODO, current blend from dot may not be optimal but its also a detail */
|
|
const float t = 1.0f + dot;
|
|
fac = (fac * t) + (0.75f * (1.0f - t));
|
|
}
|
|
|
|
return (len_v3v3(co_a, co_b) * 0.5f) * fac;
|
|
}
|
|
|
|
static void bm_edgeloop_vert_tag(struct BMEdgeLoopStore *el_store, const bool tag)
|
|
{
|
|
LinkData *node = BM_edgeloop_verts_get(el_store)->first;
|
|
do {
|
|
BM_elem_flag_set((BMVert *)node->data, BM_ELEM_TAG, tag);
|
|
} while ((node = node->next));
|
|
}
|
|
|
|
static void bmo_edgeloop_vert_tag(BMesh *bm, struct BMEdgeLoopStore *el_store, const short oflag, const bool tag)
|
|
{
|
|
LinkData *node = BM_edgeloop_verts_get(el_store)->first;
|
|
do {
|
|
BMO_elem_flag_set(bm, (BMVert *)node->data, oflag, tag);
|
|
} while ((node = node->next));
|
|
}
|
|
|
|
static bool bmo_face_is_vert_tag_all(BMesh *bm, BMFace *f, short oflag)
|
|
{
|
|
BMLoop *l_iter, *l_first;
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
if (!BMO_elem_flag_test(bm, l_iter->v, oflag)) {
|
|
return false;
|
|
}
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
return true;
|
|
}
|
|
|
|
static bool bm_vert_is_tag_edge_connect(BMesh *bm, BMVert *v)
|
|
{
|
|
BMIter eiter;
|
|
BMEdge *e;
|
|
|
|
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
|
|
if (BMO_elem_flag_test(bm, e, EDGE_RING)) {
|
|
BMVert *v_other = BM_edge_other_vert(e, v);
|
|
if (BM_elem_flag_test(v_other, BM_ELEM_TAG)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* for now we need full overlap,
|
|
* supporting partial overlap could be done but gets complicated
|
|
* when trimming endpoints is not enough to ensure consistency.
|
|
*/
|
|
static bool bm_edgeloop_check_overlap_all(
|
|
BMesh *bm,
|
|
struct BMEdgeLoopStore *el_store_a,
|
|
struct BMEdgeLoopStore *el_store_b)
|
|
{
|
|
bool has_overlap = true;
|
|
LinkData *node;
|
|
|
|
ListBase *lb_a = BM_edgeloop_verts_get(el_store_a);
|
|
ListBase *lb_b = BM_edgeloop_verts_get(el_store_b);
|
|
|
|
bm_edgeloop_vert_tag(el_store_a, false);
|
|
bm_edgeloop_vert_tag(el_store_b, true);
|
|
|
|
for (node = lb_a->first; node; node = node->next) {
|
|
if (bm_vert_is_tag_edge_connect(bm, node->data) == false) {
|
|
has_overlap = false;
|
|
goto finally;
|
|
}
|
|
}
|
|
|
|
bm_edgeloop_vert_tag(el_store_a, true);
|
|
bm_edgeloop_vert_tag(el_store_b, false);
|
|
|
|
for (node = lb_b->first; node; node = node->next) {
|
|
if (bm_vert_is_tag_edge_connect(bm, node->data) == false) {
|
|
has_overlap = false;
|
|
goto finally;
|
|
}
|
|
}
|
|
|
|
finally:
|
|
bm_edgeloop_vert_tag(el_store_a, false);
|
|
bm_edgeloop_vert_tag(el_store_b, false);
|
|
return has_overlap;
|
|
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Edge Loop Pairs */
|
|
/* key (ordered loop pointers) */
|
|
static GHash *bm_edgering_pair_calc(BMesh *bm, ListBase *eloops_rim)
|
|
{
|
|
/**
|
|
* Method for for finding pairs:
|
|
*
|
|
* - first create (vert -> eloop) mapping.
|
|
* - loop over all eloops.
|
|
* - take first vertex of the eloop (any vertex will do)
|
|
* - loop over all edges of the vertex.
|
|
* - use the edge-verts and (vert -> eloop) map
|
|
* to create a pair of eloop pointers, add these to a hash.
|
|
*
|
|
* \note, each loop pair will be found twice.
|
|
* could sort and optimize this but not really so important.
|
|
*/
|
|
|
|
GHash *eloop_pair_gh = BLI_ghash_pair_new(__func__);
|
|
GHash *vert_eloop_gh = BLI_ghash_ptr_new(__func__);
|
|
|
|
struct BMEdgeLoopStore *el_store;
|
|
|
|
/* create vert -> eloop map */
|
|
for (el_store = eloops_rim->first; el_store; el_store = BM_EDGELOOP_NEXT(el_store)) {
|
|
LinkData *node = BM_edgeloop_verts_get(el_store)->first;
|
|
do {
|
|
BLI_ghash_insert(vert_eloop_gh, node->data, el_store);
|
|
} while ((node = node->next));
|
|
}
|
|
|
|
|
|
/* collect eloop pairs */
|
|
for (el_store = eloops_rim->first; el_store; el_store = BM_EDGELOOP_NEXT(el_store)) {
|
|
BMIter eiter;
|
|
BMEdge *e;
|
|
|
|
BMVert *v = ((LinkData *)BM_edgeloop_verts_get(el_store)->first)->data;
|
|
|
|
BM_ITER_ELEM (e, &eiter, (BMVert *)v, BM_EDGES_OF_VERT) {
|
|
if (BMO_elem_flag_test(bm, e, EDGE_RING)) {
|
|
struct BMEdgeLoopStore *el_store_other;
|
|
BMVert *v_other = BM_edge_other_vert(e, v);
|
|
GHashPair pair_test;
|
|
|
|
el_store_other = BLI_ghash_lookup(vert_eloop_gh, v_other);
|
|
|
|
BLI_assert(el_store != NULL);
|
|
BLI_assert(el_store_other != NULL);
|
|
|
|
pair_test.first = el_store;
|
|
pair_test.second = el_store_other;
|
|
|
|
if (pair_test.first > pair_test.second)
|
|
SWAP(const void *, pair_test.first, pair_test.second);
|
|
|
|
if (!BLI_ghash_haskey(eloop_pair_gh, &pair_test)) {
|
|
GHashPair *pair = BLI_ghashutil_pairalloc(pair_test.first, pair_test.second);
|
|
BLI_ghash_insert(eloop_pair_gh, pair, NULL);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_ghash_free(vert_eloop_gh, NULL, NULL);
|
|
|
|
return eloop_pair_gh;
|
|
}
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Subdivide an edge 'n' times and return an open edgeloop */
|
|
|
|
static void bm_edge_subdiv_as_loop(BMesh *bm, ListBase *eloops, BMEdge *e, BMVert *v_a, const int cuts)
|
|
{
|
|
struct BMEdgeLoopStore *eloop;
|
|
BMVert **v_arr = BLI_array_alloca(v_arr, cuts + 2);
|
|
BMVert *v_b;
|
|
BLI_assert(BM_vert_in_edge(e, v_a));
|
|
|
|
v_b = BM_edge_other_vert(e, v_a);
|
|
|
|
BM_edge_split_n(bm, e, cuts, &v_arr[1]);
|
|
if (v_a == e->v1) {
|
|
v_arr[0] = v_a;
|
|
v_arr[cuts + 1] = v_b;
|
|
}
|
|
else {
|
|
v_arr[0] = v_b;
|
|
v_arr[cuts + 1] = v_a;
|
|
}
|
|
|
|
eloop = BM_edgeloop_from_verts(v_arr, cuts + 2, false);
|
|
|
|
if (v_a == e->v1) {
|
|
BM_edgeloop_flip(bm, eloop);
|
|
}
|
|
|
|
BLI_addtail(eloops, eloop);
|
|
}
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* LoopPair Cache (struct and util funcs) */
|
|
|
|
|
|
/**
|
|
* Use for finding spline handle direction from surrounding faces.
|
|
*
|
|
* Resulting normal will _always_ point towards 'FACE_SHARED'
|
|
*
|
|
* This function must be called after all loops have been created,
|
|
* but before any mesh modifications.
|
|
*
|
|
* \return true on success
|
|
*/
|
|
static void bm_vert_calc_surface_tangent(BMesh *bm, BMVert *v, float r_no[3])
|
|
{
|
|
BMIter eiter;
|
|
BMEdge *e;
|
|
|
|
/* get outer normal, fallback to inner (if this vertex is on a boundary) */
|
|
bool found_outer = false, found_inner = false, found_outer_tag = false;
|
|
|
|
float no_outer[3] = {0.0f}, no_inner[3] = {0.0f};
|
|
|
|
/* first find rim edges, typically we will only add 2 normals */
|
|
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
|
|
if (UNLIKELY(BM_edge_is_wire(e))) {
|
|
/* pass - this may confuse things */
|
|
}
|
|
else if (BMO_elem_flag_test(bm, e, EDGE_RIM)) {
|
|
BMIter liter;
|
|
BMLoop *l;
|
|
BM_ITER_ELEM (l, &liter, e, BM_LOOPS_OF_EDGE) {
|
|
/* use unmarked (surrounding) faces to create surface tangent */
|
|
float no[3];
|
|
// BM_face_normal_update(l->f);
|
|
BM_edge_calc_face_tangent(e, l, no);
|
|
if (BMO_elem_flag_test(bm, l->f, FACE_SHARED)) {
|
|
add_v3_v3(no_inner, no);
|
|
found_inner = true;
|
|
}
|
|
else {
|
|
add_v3_v3(no_outer, no);
|
|
found_outer = true;
|
|
|
|
/* other side is used too, blend midway */
|
|
if (BMO_elem_flag_test(bm, l->f, FACE_OUT)) {
|
|
found_outer_tag = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* detect if this vertex is in-between 2 loops (when blending multiple),
|
|
* if so - take both inner and outer into account */
|
|
|
|
if (found_inner && found_outer_tag) {
|
|
/* blend between the 2 */
|
|
negate_v3(no_outer);
|
|
normalize_v3(no_outer);
|
|
normalize_v3(no_inner);
|
|
add_v3_v3v3(r_no, no_outer, no_inner);
|
|
normalize_v3(r_no);
|
|
}
|
|
else if (found_outer) {
|
|
negate_v3(no_outer);
|
|
normalize_v3_v3(r_no, no_outer);
|
|
}
|
|
else {
|
|
/* we always have inner geometry */
|
|
BLI_assert(found_inner == true);
|
|
normalize_v3_v3(r_no, no_inner);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Tag faces connected to an edge loop as FACE_SHARED
|
|
* if all vertices are VERT_SHARED.
|
|
*/
|
|
static void bm_faces_share_tag_flush(BMesh *bm, BMEdge **e_arr, const unsigned int e_arr_len)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < e_arr_len; i++) {
|
|
BMEdge *e = e_arr[i];
|
|
BMLoop *l_iter, *l_first;
|
|
|
|
l_iter = l_first = e->l;
|
|
do {
|
|
if (!BMO_elem_flag_test(bm, l_iter->f, FACE_SHARED)) {
|
|
if (bmo_face_is_vert_tag_all(bm, l_iter->f, VERT_SHARED)) {
|
|
BMO_elem_flag_enable(bm, l_iter->f, FACE_SHARED);
|
|
}
|
|
}
|
|
} while ((l_iter = l_iter->radial_next) != l_first);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Un-Tag faces connected to an edge loop, clearing FACE_SHARED
|
|
*/
|
|
static void bm_faces_share_tag_clear(BMesh *bm, BMEdge **e_arr_iter, const unsigned int e_arr_len_iter)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < e_arr_len_iter; i++) {
|
|
BMEdge *e = e_arr_iter[i];
|
|
BMLoop *l_iter, *l_first;
|
|
|
|
l_iter = l_first = e->l;
|
|
do {
|
|
BMO_elem_flag_disable(bm, l_iter->f, FACE_SHARED);
|
|
} while ((l_iter = l_iter->radial_next) != l_first);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Store data for each loop pair,
|
|
* needed so we don't get feedback loop reading/writing the mesh data.
|
|
*
|
|
* currently only used to store vert-spline-handles,
|
|
* but may be extended for other uses.
|
|
*/
|
|
typedef struct LoopPairStore {
|
|
/* handle array for splines */
|
|
float (*nors_a)[3];
|
|
float (*nors_b)[3];
|
|
|
|
/* since we don't have reliable index values into the array,
|
|
* store a map (BMVert -> index) */
|
|
GHash *nors_gh_a;
|
|
GHash *nors_gh_b;
|
|
} LoopPairStore;
|
|
|
|
static LoopPairStore *bm_edgering_pair_store_create(
|
|
BMesh *bm,
|
|
struct BMEdgeLoopStore *el_store_a,
|
|
struct BMEdgeLoopStore *el_store_b,
|
|
const int interp_mode)
|
|
{
|
|
LoopPairStore *lpair = MEM_mallocN(sizeof(*lpair), __func__);
|
|
|
|
if (interp_mode == SUBD_RING_INTERP_SURF) {
|
|
const unsigned int len_a = BM_edgeloop_length_get(el_store_a);
|
|
const unsigned int len_b = BM_edgeloop_length_get(el_store_b);
|
|
const unsigned int e_arr_a_len = len_a - (BM_edgeloop_is_closed(el_store_a) ? 0 : 1);
|
|
const unsigned int e_arr_b_len = len_b - (BM_edgeloop_is_closed(el_store_b) ? 0 : 1);
|
|
BMEdge **e_arr_a = BLI_array_alloca(e_arr_a, e_arr_a_len);
|
|
BMEdge **e_arr_b = BLI_array_alloca(e_arr_b, e_arr_b_len);
|
|
unsigned int i;
|
|
|
|
struct BMEdgeLoopStore *el_store_pair[2] = {el_store_a, el_store_b};
|
|
unsigned int side_index;
|
|
float (*nors_pair[2])[3];
|
|
GHash *nors_gh_pair[2];
|
|
|
|
BM_edgeloop_edges_get(el_store_a, e_arr_a);
|
|
BM_edgeloop_edges_get(el_store_b, e_arr_b);
|
|
|
|
lpair->nors_a = MEM_mallocN(sizeof(*lpair->nors_a) * len_a, __func__);
|
|
lpair->nors_b = MEM_mallocN(sizeof(*lpair->nors_b) * len_b, __func__);
|
|
|
|
nors_pair[0] = lpair->nors_a;
|
|
nors_pair[1] = lpair->nors_b;
|
|
|
|
lpair->nors_gh_a = BLI_ghash_ptr_new(__func__);
|
|
lpair->nors_gh_b = BLI_ghash_ptr_new(__func__);
|
|
|
|
nors_gh_pair[0] = lpair->nors_gh_a;
|
|
nors_gh_pair[1] = lpair->nors_gh_b;
|
|
|
|
/* now calculate nor */
|
|
|
|
/* all other verts must _not_ be tagged */
|
|
bmo_edgeloop_vert_tag(bm, el_store_a, VERT_SHARED, true);
|
|
bmo_edgeloop_vert_tag(bm, el_store_b, VERT_SHARED, true);
|
|
|
|
/* tag all faces that are in-between both loops */
|
|
bm_faces_share_tag_flush(bm, e_arr_a, e_arr_a_len);
|
|
bm_faces_share_tag_flush(bm, e_arr_b, e_arr_b_len);
|
|
|
|
/* now we have all data we need, calculate vertex spline nor! */
|
|
for (side_index = 0; side_index < 2; side_index++) {
|
|
/* iter vars */
|
|
struct BMEdgeLoopStore *el_store = el_store_pair[side_index];
|
|
ListBase *lb = BM_edgeloop_verts_get(el_store);
|
|
GHash *nors_gh_iter = nors_gh_pair[side_index];
|
|
float (*nor)[3] = nors_pair[side_index];
|
|
|
|
LinkData *v_iter;
|
|
|
|
for (v_iter = lb->first, i = 0; v_iter; v_iter = v_iter->next, i++) {
|
|
BMVert *v = v_iter->data;
|
|
bm_vert_calc_surface_tangent(bm, v, nor[i]);
|
|
BLI_ghash_insert(nors_gh_iter, v, SET_UINT_IN_POINTER(i));
|
|
}
|
|
}
|
|
|
|
/* cleanup verts share */
|
|
bmo_edgeloop_vert_tag(bm, el_store_a, VERT_SHARED, false);
|
|
bmo_edgeloop_vert_tag(bm, el_store_b, VERT_SHARED, false);
|
|
|
|
/* cleanup faces share */
|
|
bm_faces_share_tag_clear(bm, e_arr_a, e_arr_a_len);
|
|
bm_faces_share_tag_clear(bm, e_arr_b, e_arr_b_len);
|
|
}
|
|
return lpair;
|
|
}
|
|
|
|
static void bm_edgering_pair_store_free(
|
|
LoopPairStore *lpair,
|
|
const int interp_mode)
|
|
{
|
|
if (interp_mode == SUBD_RING_INTERP_SURF) {
|
|
MEM_freeN(lpair->nors_a);
|
|
MEM_freeN(lpair->nors_b);
|
|
|
|
BLI_ghash_free(lpair->nors_gh_a, NULL, NULL);
|
|
BLI_ghash_free(lpair->nors_gh_b, NULL, NULL);
|
|
}
|
|
MEM_freeN(lpair);
|
|
}
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Interpolation Function */
|
|
|
|
static void bm_edgering_pair_interpolate(BMesh *bm, LoopPairStore *lpair,
|
|
struct BMEdgeLoopStore *el_store_a,
|
|
struct BMEdgeLoopStore *el_store_b,
|
|
ListBase *eloops_ring,
|
|
const int interp_mode, const int cuts, const float smooth,
|
|
const float *falloff_cache)
|
|
{
|
|
const int resolu = cuts + 2;
|
|
const int dims = 3;
|
|
int i;
|
|
|
|
float el_store_a_co[3], el_store_b_co[3];
|
|
float el_store_a_no[3], el_store_b_no[3];
|
|
|
|
struct BMEdgeLoopStore *el_store_ring;
|
|
|
|
float (*coord_array_main)[3] = NULL;
|
|
|
|
BM_edgeloop_calc_center(bm, el_store_a);
|
|
BM_edgeloop_calc_center(bm, el_store_b);
|
|
|
|
BM_edgeloop_calc_normal(bm, el_store_a);
|
|
BM_edgeloop_calc_normal(bm, el_store_b);
|
|
|
|
copy_v3_v3(el_store_a_co, BM_edgeloop_center_get(el_store_a));
|
|
copy_v3_v3(el_store_b_co, BM_edgeloop_center_get(el_store_b));
|
|
|
|
copy_v3_v3(el_store_a_no, BM_edgeloop_normal_get(el_store_a));
|
|
copy_v3_v3(el_store_b_no, BM_edgeloop_normal_get(el_store_b));
|
|
|
|
/* correct normals need to be flipped to face each other
|
|
* we know both normals point in the same direction so one will need flipping */
|
|
{
|
|
float el_dir[3];
|
|
sub_v3_v3v3(el_dir, el_store_a_co, el_store_b_co);
|
|
|
|
if (dot_v3v3(el_store_a_no, el_dir) > 0.0f) {
|
|
negate_v3(el_store_a_no);
|
|
}
|
|
if (dot_v3v3(el_store_b_no, el_dir) < 0.0f) {
|
|
negate_v3(el_store_b_no);
|
|
}
|
|
|
|
}
|
|
/* now normals are correct, don't touch! */
|
|
|
|
|
|
/* calculate the center spline, multiple */
|
|
if ((interp_mode == SUBD_RING_INTERP_PATH) || falloff_cache) {
|
|
float handle_a[3], handle_b[3];
|
|
float handle_len;
|
|
|
|
handle_len = bezier_handle_calc_length_v3(el_store_a_co, el_store_a_no,
|
|
el_store_b_co, el_store_b_no) * smooth;
|
|
|
|
mul_v3_v3fl(handle_a, el_store_a_no, handle_len);
|
|
mul_v3_v3fl(handle_b, el_store_b_no, handle_len);
|
|
|
|
add_v3_v3(handle_a, el_store_a_co);
|
|
add_v3_v3(handle_b, el_store_b_co);
|
|
|
|
coord_array_main = MEM_mallocN(dims * (resolu) * sizeof(float), __func__);
|
|
|
|
for (i = 0; i < dims; i++) {
|
|
BKE_curve_forward_diff_bezier(el_store_a_co[i], handle_a[i], handle_b[i], el_store_b_co[i],
|
|
((float *)coord_array_main) + i, resolu - 1, sizeof(float) * dims);
|
|
}
|
|
}
|
|
|
|
switch (interp_mode) {
|
|
case SUBD_RING_INTERP_LINEAR:
|
|
{
|
|
if (falloff_cache) {
|
|
float (*coord_array)[3] = MEM_mallocN(dims * (resolu) * sizeof(float), __func__);
|
|
for (i = 0; i < resolu; i++) {
|
|
interp_v3_v3v3(coord_array[i], el_store_a_co, el_store_b_co, (float)i / (float)(resolu - 1));
|
|
}
|
|
|
|
for (el_store_ring = eloops_ring->first;
|
|
el_store_ring;
|
|
el_store_ring = BM_EDGELOOP_NEXT(el_store_ring))
|
|
{
|
|
ListBase *lb_ring = BM_edgeloop_verts_get(el_store_ring);
|
|
LinkData *v_iter;
|
|
|
|
for (v_iter = lb_ring->first, i = 0; v_iter; v_iter = v_iter->next, i++) {
|
|
if (i > 0 && i < resolu - 1) {
|
|
/* shape */
|
|
if (falloff_cache) {
|
|
interp_v3_v3v3(((BMVert *)v_iter->data)->co,
|
|
coord_array[i], ((BMVert *)v_iter->data)->co, falloff_cache[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MEM_freeN(coord_array);
|
|
|
|
}
|
|
|
|
break;
|
|
}
|
|
case SUBD_RING_INTERP_PATH:
|
|
{
|
|
float (*direction_array)[3] = MEM_mallocN(dims * (resolu) * sizeof(float), __func__);
|
|
float (*quat_array)[4] = MEM_mallocN(resolu * sizeof(*quat_array), __func__);
|
|
float (*tri_array)[3][3] = MEM_mallocN(resolu * sizeof(*tri_array), __func__);
|
|
float (*tri_sta)[3], (*tri_end)[3], (*tri_tmp)[3];
|
|
|
|
/* very similar to make_bevel_list_3D_minimum_twist */
|
|
|
|
/* calculate normals */
|
|
copy_v3_v3(direction_array[0], el_store_a_no);
|
|
negate_v3_v3(direction_array[resolu - 1], el_store_b_no);
|
|
for (i = 1; i < resolu - 1; i++) {
|
|
bisect_v3_v3v3v3(direction_array[i],
|
|
coord_array_main[i - 1], coord_array_main[i], coord_array_main[i + 1]);
|
|
}
|
|
|
|
vec_to_quat(quat_array[0], direction_array[0], 5, 1);
|
|
normalize_qt(quat_array[0]);
|
|
|
|
for (i = 1; i < resolu; i++) {
|
|
float angle = angle_normalized_v3v3(direction_array[i - 1], direction_array[i]);
|
|
// BLI_assert(angle < DEG2RADF(90.0f));
|
|
if (angle > 0.0f) { /* otherwise we can keep as is */
|
|
float cross_tmp[3];
|
|
float q[4];
|
|
cross_v3_v3v3(cross_tmp, direction_array[i - 1], direction_array[i]);
|
|
axis_angle_to_quat(q, cross_tmp, angle);
|
|
mul_qt_qtqt(quat_array[i], q, quat_array[i - 1]);
|
|
normalize_qt(quat_array[i]);
|
|
}
|
|
else {
|
|
copy_qt_qt(quat_array[i], quat_array[i - 1]);
|
|
}
|
|
}
|
|
|
|
/* init base tri */
|
|
for (i = 0; i < resolu; i++) {
|
|
int j;
|
|
|
|
const float shape_size = falloff_cache ? falloff_cache[i] : 1.0f;
|
|
|
|
tri_tmp = tri_array[i];
|
|
|
|
/* create the triangle and transform */
|
|
for (j = 0; j < 3; j++) {
|
|
zero_v3(tri_tmp[j]);
|
|
if (j == 1) tri_tmp[j][0] = shape_size;
|
|
else if (j == 2) tri_tmp[j][1] = shape_size;
|
|
mul_qt_v3(quat_array[i], tri_tmp[j]);
|
|
add_v3_v3(tri_tmp[j], coord_array_main[i]);
|
|
}
|
|
}
|
|
|
|
tri_sta = tri_array[0];
|
|
tri_end = tri_array[resolu - 1];
|
|
|
|
for (el_store_ring = eloops_ring->first;
|
|
el_store_ring;
|
|
el_store_ring = BM_EDGELOOP_NEXT(el_store_ring))
|
|
{
|
|
ListBase *lb_ring = BM_edgeloop_verts_get(el_store_ring);
|
|
LinkData *v_iter;
|
|
|
|
BMVert *v_a = ((LinkData *)lb_ring->first)->data;
|
|
BMVert *v_b = ((LinkData *)lb_ring->last)->data;
|
|
|
|
/* skip first and last */
|
|
for (v_iter = ((LinkData *)lb_ring->first)->next, i = 1;
|
|
v_iter != lb_ring->last;
|
|
v_iter = v_iter->next, i++)
|
|
{
|
|
float co_a[3], co_b[3];
|
|
|
|
tri_tmp = tri_array[i];
|
|
|
|
barycentric_transform(co_a, v_a->co, UNPACK3(tri_tmp), UNPACK3(tri_sta));
|
|
barycentric_transform(co_b, v_b->co, UNPACK3(tri_tmp), UNPACK3(tri_end));
|
|
|
|
interp_v3_v3v3(((BMVert *)v_iter->data)->co, co_a, co_b, (float)i / (float)(resolu - 1));
|
|
}
|
|
}
|
|
|
|
MEM_freeN(direction_array);
|
|
MEM_freeN(quat_array);
|
|
MEM_freeN(tri_array);
|
|
break;
|
|
}
|
|
case SUBD_RING_INTERP_SURF:
|
|
{
|
|
float (*coord_array)[3] = MEM_mallocN(dims * (resolu) * sizeof(float), __func__);
|
|
|
|
/* calculate a bezier handle per edge ring */
|
|
for (el_store_ring = eloops_ring->first;
|
|
el_store_ring;
|
|
el_store_ring = BM_EDGELOOP_NEXT(el_store_ring))
|
|
{
|
|
ListBase *lb_ring = BM_edgeloop_verts_get(el_store_ring);
|
|
LinkData *v_iter;
|
|
|
|
BMVert *v_a = ((LinkData *)lb_ring->first)->data;
|
|
BMVert *v_b = ((LinkData *)lb_ring->last)->data;
|
|
|
|
float co_a[3], no_a[3], handle_a[3], co_b[3], no_b[3], handle_b[3];
|
|
float handle_len;
|
|
|
|
copy_v3_v3(co_a, v_a->co);
|
|
copy_v3_v3(co_b, v_b->co);
|
|
|
|
/* don't calculate normals here else we get into feedback loop
|
|
* when subdividing 2+ connected edge rings */
|
|
#if 0
|
|
bm_vert_calc_surface_tangent(bm, v_a, no_a);
|
|
bm_vert_calc_surface_tangent(bm, v_b, no_b);
|
|
#else
|
|
{
|
|
const unsigned int index_a = GET_UINT_FROM_POINTER(BLI_ghash_lookup(lpair->nors_gh_a, v_a));
|
|
const unsigned int index_b = GET_UINT_FROM_POINTER(BLI_ghash_lookup(lpair->nors_gh_b, v_b));
|
|
|
|
BLI_assert(BLI_ghash_haskey(lpair->nors_gh_a, v_a));
|
|
BLI_assert(BLI_ghash_haskey(lpair->nors_gh_b, v_b));
|
|
|
|
copy_v3_v3(no_a, lpair->nors_a[index_a]);
|
|
copy_v3_v3(no_b, lpair->nors_b[index_b]);
|
|
}
|
|
#endif
|
|
handle_len = bezier_handle_calc_length_v3(co_a, no_a, co_b, no_b) * smooth;
|
|
|
|
mul_v3_v3fl(handle_a, no_a, handle_len);
|
|
mul_v3_v3fl(handle_b, no_b, handle_len);
|
|
|
|
add_v3_v3(handle_a, co_a);
|
|
add_v3_v3(handle_b, co_b);
|
|
|
|
for (i = 0; i < dims; i++) {
|
|
BKE_curve_forward_diff_bezier(co_a[i], handle_a[i], handle_b[i], co_b[i],
|
|
((float *)coord_array) + i, resolu - 1, sizeof(float) * dims);
|
|
}
|
|
|
|
/* skip first and last */
|
|
for (v_iter = ((LinkData *)lb_ring->first)->next, i = 1;
|
|
v_iter != lb_ring->last;
|
|
v_iter = v_iter->next, i++)
|
|
{
|
|
if (i > 0 && i < resolu - 1) {
|
|
copy_v3_v3(((BMVert *)v_iter->data)->co, coord_array[i]);
|
|
|
|
/* shape */
|
|
if (falloff_cache) {
|
|
interp_v3_v3v3(((BMVert *)v_iter->data)->co,
|
|
coord_array_main[i], ((BMVert *)v_iter->data)->co, falloff_cache[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MEM_freeN(coord_array);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (coord_array_main) {
|
|
MEM_freeN(coord_array_main);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Cuts up an ngon into many slices.
|
|
*/
|
|
static void bm_face_slice(BMesh *bm, BMLoop *l, const int cuts)
|
|
{
|
|
/* TODO, interpolate edge data */
|
|
BMLoop *l_new = l;
|
|
int i;
|
|
|
|
for (i = 0; i < cuts; i++) {
|
|
/* no chance of double */
|
|
BM_face_split(bm, l_new->f, l_new->prev->v, l_new->next->next->v, &l_new, NULL, false);
|
|
if (l_new->f->len < l_new->radial_next->f->len) {
|
|
l_new = l_new->radial_next;
|
|
}
|
|
BMO_elem_flag_enable(bm, l_new->f, FACE_OUT);
|
|
BMO_elem_flag_enable(bm, l_new->radial_next->f, FACE_OUT);
|
|
}
|
|
}
|
|
|
|
static bool bm_edgering_pair_order_is_flipped(BMesh *UNUSED(bm),
|
|
struct BMEdgeLoopStore *el_store_a,
|
|
struct BMEdgeLoopStore *el_store_b )
|
|
{
|
|
ListBase *lb_a = BM_edgeloop_verts_get(el_store_a);
|
|
ListBase *lb_b = BM_edgeloop_verts_get(el_store_b);
|
|
|
|
LinkData *v_iter_a_first = lb_a->first;
|
|
LinkData *v_iter_b_first = lb_b->first;
|
|
|
|
LinkData *v_iter_a_step = v_iter_a_first;
|
|
LinkData *v_iter_b_step = v_iter_b_first;
|
|
|
|
/* we _must_ have same starting edge shared */
|
|
BLI_assert(BM_edge_exists(v_iter_a_first->data, v_iter_b_first->data));
|
|
|
|
/* step around any fan-faces on both sides */
|
|
do {
|
|
v_iter_a_step = v_iter_a_step->next;
|
|
} while (v_iter_a_step &&
|
|
((BM_edge_exists(v_iter_a_step->data, v_iter_b_first->data)) ||
|
|
(BM_edge_exists(v_iter_a_step->data, v_iter_b_first->next->data))));
|
|
do {
|
|
v_iter_b_step = v_iter_b_step->next;
|
|
} while (v_iter_b_step &&
|
|
((BM_edge_exists(v_iter_b_step->data, v_iter_a_first->data)) ||
|
|
(BM_edge_exists(v_iter_b_step->data, v_iter_a_first->next->data))));
|
|
|
|
v_iter_a_step = v_iter_a_step ? v_iter_a_step->prev : lb_a->last;
|
|
v_iter_b_step = v_iter_b_step ? v_iter_b_step->prev : lb_b->last;
|
|
|
|
return !(BM_edge_exists(v_iter_a_step->data, v_iter_b_step->data) ||
|
|
BM_edge_exists(v_iter_a_first->next->data, v_iter_b_step->data) ||
|
|
BM_edge_exists(v_iter_b_first->next->data, v_iter_a_step->data));
|
|
}
|
|
|
|
/**
|
|
* Takes 2 edge loops that share edges,
|
|
* sort their verts and rotates the list so the lined up.
|
|
*/
|
|
static void bm_edgering_pair_order(BMesh *bm,
|
|
struct BMEdgeLoopStore *el_store_a,
|
|
struct BMEdgeLoopStore *el_store_b)
|
|
{
|
|
ListBase *lb_a = BM_edgeloop_verts_get(el_store_a);
|
|
ListBase *lb_b = BM_edgeloop_verts_get(el_store_b);
|
|
|
|
LinkData *node;
|
|
|
|
bm_edgeloop_vert_tag(el_store_a, false);
|
|
bm_edgeloop_vert_tag(el_store_b, true);
|
|
|
|
/* before going much further, get ourselves in order
|
|
* - align loops (not strictly necessary but handy)
|
|
* - ensure winding is set for both loops */
|
|
if (BM_edgeloop_is_closed(el_store_a) && BM_edgeloop_is_closed(el_store_a)) {
|
|
BMIter eiter;
|
|
BMEdge *e;
|
|
BMVert *v_other;
|
|
|
|
node = lb_a->first;
|
|
|
|
BM_ITER_ELEM (e, &eiter, (BMVert *)node->data, BM_EDGES_OF_VERT) {
|
|
if (BMO_elem_flag_test(bm, e, EDGE_RING)) {
|
|
v_other = BM_edge_other_vert(e, (BMVert *)node->data);
|
|
if (BM_elem_flag_test(v_other, BM_ELEM_TAG)) {
|
|
break;
|
|
}
|
|
else {
|
|
v_other = NULL;
|
|
}
|
|
}
|
|
}
|
|
BLI_assert(v_other != NULL);
|
|
|
|
for (node = lb_b->first; node; node = node->next) {
|
|
if (node->data == v_other) {
|
|
break;
|
|
}
|
|
}
|
|
BLI_assert(node != NULL);
|
|
|
|
BLI_rotatelist(lb_b, node);
|
|
|
|
/* now check we are winding the same way */
|
|
if (bm_edgering_pair_order_is_flipped(bm, el_store_a, el_store_b)) {
|
|
BM_edgeloop_flip(bm, el_store_b);
|
|
/* re-ensure the first node */
|
|
BLI_rotatelist(lb_b, node);
|
|
}
|
|
|
|
/* sanity checks that we are aligned & winding now */
|
|
BLI_assert(bm_edgering_pair_order_is_flipped(bm, el_store_a, el_store_b) == false);
|
|
}
|
|
else {
|
|
/* if we dont share and edge - flip */
|
|
BMEdge *e = BM_edge_exists(((LinkData *)lb_a->first)->data,
|
|
((LinkData *)lb_b->first)->data);
|
|
if (e == NULL || !BMO_elem_flag_test(bm, e, EDGE_RING)) {
|
|
BM_edgeloop_flip(bm, el_store_b);
|
|
}
|
|
}
|
|
|
|
/* for cases with multiple loops */
|
|
bm_edgeloop_vert_tag(el_store_b, false);
|
|
}
|
|
|
|
|
|
/**
|
|
* Take 2 edge loops, do a subdivision on connecting edges.
|
|
*
|
|
* \note loops are _not_ aligned.
|
|
*/
|
|
static void bm_edgering_pair_subdiv(BMesh *bm,
|
|
struct BMEdgeLoopStore *el_store_a,
|
|
struct BMEdgeLoopStore *el_store_b,
|
|
ListBase *eloops_ring,
|
|
const int cuts)
|
|
{
|
|
ListBase *lb_a = BM_edgeloop_verts_get(el_store_a);
|
|
// ListBase *lb_b = BM_edgeloop_verts_get(el_store_b);
|
|
const int stack_max = max_ii(BM_edgeloop_length_get(el_store_a),
|
|
BM_edgeloop_length_get(el_store_b)) * 2;
|
|
BMEdge **edges_ring_arr = BLI_array_alloca(edges_ring_arr, stack_max);
|
|
BMFace **faces_ring_arr = BLI_array_alloca(faces_ring_arr, stack_max);
|
|
STACK_DECLARE(edges_ring_arr);
|
|
STACK_DECLARE(faces_ring_arr);
|
|
struct BMEdgeLoopStore *el_store_ring;
|
|
LinkData *node;
|
|
BMEdge *e;
|
|
BMFace *f;
|
|
|
|
STACK_INIT(edges_ring_arr);
|
|
STACK_INIT(faces_ring_arr);
|
|
|
|
bm_edgeloop_vert_tag(el_store_a, false);
|
|
bm_edgeloop_vert_tag(el_store_b, true);
|
|
|
|
for (node = lb_a->first; node; node = node->next) {
|
|
BMIter eiter;
|
|
|
|
BM_ITER_ELEM (e, &eiter, (BMVert *)node->data, BM_EDGES_OF_VERT) {
|
|
if (!BMO_elem_flag_test(bm, e, EDGE_IN_STACK)) {
|
|
BMVert *v_other = BM_edge_other_vert(e, (BMVert *)node->data);
|
|
if (BM_elem_flag_test(v_other, BM_ELEM_TAG)) {
|
|
BMIter fiter;
|
|
|
|
BMO_elem_flag_enable(bm, e, EDGE_IN_STACK);
|
|
STACK_PUSH(edges_ring_arr, e);
|
|
|
|
/* add faces to the stack */
|
|
BM_ITER_ELEM (f, &fiter, e, BM_FACES_OF_EDGE) {
|
|
if (BMO_elem_flag_test(bm, f, FACE_OUT)) {
|
|
if (!BMO_elem_flag_test(bm, f, FACE_IN_STACK)) {
|
|
BMO_elem_flag_enable(bm, f, FACE_IN_STACK);
|
|
STACK_PUSH(faces_ring_arr, f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
while ((e = STACK_POP(edges_ring_arr))) {
|
|
/* found opposite edge */
|
|
BMVert *v_other;
|
|
|
|
BMO_elem_flag_disable(bm, e, EDGE_IN_STACK);
|
|
|
|
/* unrelated to subdiv, but if we _don't_ clear flag, multiple rings fail */
|
|
BMO_elem_flag_disable(bm, e, EDGE_RING);
|
|
|
|
v_other = BM_elem_flag_test(e->v1, BM_ELEM_TAG) ? e->v1 : e->v2;
|
|
bm_edge_subdiv_as_loop(bm, eloops_ring, e, v_other, cuts);
|
|
}
|
|
|
|
while ((f = STACK_POP(faces_ring_arr))) {
|
|
BMLoop *l_iter, *l_first;
|
|
|
|
BMO_elem_flag_disable(bm, f, FACE_IN_STACK);
|
|
|
|
/* Check each edge of the face */
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
if (BMO_elem_flag_test(bm, l_iter->e, EDGE_RIM)) {
|
|
bm_face_slice(bm, l_iter, cuts);
|
|
break;
|
|
}
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
}
|
|
|
|
|
|
/* clear tags so subdiv verts don't get tagged too */
|
|
for (el_store_ring = eloops_ring->first;
|
|
el_store_ring;
|
|
el_store_ring = BM_EDGELOOP_NEXT(el_store_ring))
|
|
{
|
|
bm_edgeloop_vert_tag(el_store_ring, false);
|
|
}
|
|
|
|
/* cleanup after */
|
|
bm_edgeloop_vert_tag(el_store_b, false);
|
|
}
|
|
|
|
static void bm_edgering_pair_ringsubd(BMesh *bm, LoopPairStore *lpair,
|
|
struct BMEdgeLoopStore *el_store_a,
|
|
struct BMEdgeLoopStore *el_store_b,
|
|
const int interp_mode, const int cuts, const float smooth,
|
|
const float *falloff_cache)
|
|
{
|
|
ListBase eloops_ring = {NULL};
|
|
bm_edgering_pair_order(bm, el_store_a, el_store_b);
|
|
bm_edgering_pair_subdiv(bm, el_store_a, el_store_b, &eloops_ring, cuts);
|
|
bm_edgering_pair_interpolate(bm, lpair, el_store_a, el_store_b, &eloops_ring,
|
|
interp_mode, cuts, smooth, falloff_cache);
|
|
BM_mesh_edgeloops_free(&eloops_ring);
|
|
}
|
|
|
|
static bool bm_edge_rim_test_cb(BMEdge *e, void *bm_v)
|
|
{
|
|
BMesh *bm = bm_v;
|
|
return BMO_elem_flag_test_bool(bm, e, EDGE_RIM);
|
|
}
|
|
|
|
|
|
/* keep this operator fast, its used in a modifier */
|
|
void bmo_subdivide_edgering_exec(BMesh *bm, BMOperator *op)
|
|
{
|
|
ListBase eloops_rim = {NULL};
|
|
BMOIter siter;
|
|
BMEdge *e;
|
|
int count;
|
|
bool change = false;
|
|
|
|
const int cuts = BMO_slot_int_get(op->slots_in, "cuts");
|
|
const int interp_mode = BMO_slot_int_get(op->slots_in, "interp_mode");
|
|
const float smooth = BMO_slot_float_get(op->slots_in, "smooth");
|
|
const int resolu = cuts + 2;
|
|
|
|
/* optional 'shape' */
|
|
const int profile_shape = BMO_slot_int_get(op->slots_in, "profile_shape");
|
|
const float profile_shape_factor = BMO_slot_float_get(op->slots_in, "profile_shape_factor");
|
|
float *falloff_cache = (profile_shape_factor != 0.0f) ? BLI_array_alloca(falloff_cache, cuts + 2) : NULL;
|
|
|
|
BMO_slot_buffer_flag_enable(bm, op->slots_in, "edges", BM_EDGE, EDGE_RING);
|
|
|
|
BM_mesh_elem_hflag_disable_all(bm, BM_VERT, BM_ELEM_TAG, false);
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* flag outer edges (loops defined as edges on the bounds of the edge ring) */
|
|
|
|
BMO_ITER (e, &siter, op->slots_in, "edges", BM_EDGE) {
|
|
BMIter fiter;
|
|
BMFace *f;
|
|
|
|
BM_ITER_ELEM (f, &fiter, e, BM_FACES_OF_EDGE) {
|
|
if (!BMO_elem_flag_test(bm, f, FACE_OUT)) {
|
|
BMIter liter;
|
|
BMLoop *l;
|
|
bool ok = false;
|
|
|
|
/* check at least 2 edges in the face are rings */
|
|
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
|
|
if (BMO_elem_flag_test(bm, l->e, EDGE_RING) && e != l->e) {
|
|
ok = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ok) {
|
|
BMO_elem_flag_enable(bm, f, FACE_OUT);
|
|
|
|
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
|
|
if (!BMO_elem_flag_test(bm, l->e, EDGE_RING)) {
|
|
BMO_elem_flag_enable(bm, l->e, EDGE_RIM);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Cache falloff for each step (symmetrical) */
|
|
|
|
if (falloff_cache) {
|
|
int i;
|
|
for (i = 0; i < resolu; i++) {
|
|
float shape_size = 1.0f;
|
|
float fac = (float)i / (float)(resolu - 1);
|
|
fac = fabsf(1.0f - 2.0f * fabsf(0.5f - fac));
|
|
fac = bmesh_subd_falloff_calc(profile_shape, fac);
|
|
shape_size += fac * profile_shape_factor;
|
|
|
|
falloff_cache[i] = shape_size;
|
|
}
|
|
}
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Execute subdivision on all ring pairs */
|
|
|
|
count = BM_mesh_edgeloops_find(bm, &eloops_rim, bm_edge_rim_test_cb, (void *)bm);
|
|
|
|
if (count < 2) {
|
|
BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
|
|
"No edge rings found");
|
|
goto cleanup;
|
|
}
|
|
else if (count == 2) {
|
|
/* this case could be removed,
|
|
* but simple to avoid 'bm_edgering_pair_calc' in this case since theres only one. */
|
|
struct BMEdgeLoopStore *el_store_a = eloops_rim.first;
|
|
struct BMEdgeLoopStore *el_store_b = eloops_rim.last;
|
|
LoopPairStore *lpair;
|
|
|
|
if (bm_edgeloop_check_overlap_all(bm, el_store_a, el_store_b)) {
|
|
lpair = bm_edgering_pair_store_create(bm, el_store_a, el_store_b, interp_mode);
|
|
}
|
|
else {
|
|
lpair = NULL;
|
|
}
|
|
|
|
if (lpair) {
|
|
bm_edgering_pair_ringsubd(bm, lpair, el_store_a, el_store_b,
|
|
interp_mode, cuts, smooth, falloff_cache);
|
|
bm_edgering_pair_store_free(lpair, interp_mode);
|
|
}
|
|
}
|
|
else {
|
|
GHashIterator gh_iter;
|
|
int i;
|
|
|
|
GHash *eloop_pairs_gh = bm_edgering_pair_calc(bm, &eloops_rim);
|
|
|
|
const int eloop_pairs_len = BLI_ghash_size(eloop_pairs_gh);
|
|
LoopPairStore **lpair_arr = BLI_array_alloca(lpair_arr, eloop_pairs_len);
|
|
|
|
/* first cache pairs */
|
|
GHASH_ITER_INDEX (gh_iter, eloop_pairs_gh, i) {
|
|
GHashPair *eloop_pair = BLI_ghashIterator_getKey(&gh_iter);
|
|
struct BMEdgeLoopStore *el_store_a = (void *)eloop_pair->first;
|
|
struct BMEdgeLoopStore *el_store_b = (void *)eloop_pair->second;
|
|
LoopPairStore *lpair;
|
|
|
|
if (bm_edgeloop_check_overlap_all(bm, el_store_a, el_store_b)) {
|
|
lpair = bm_edgering_pair_store_create(bm, el_store_a, el_store_b, interp_mode);
|
|
}
|
|
else {
|
|
lpair = NULL;
|
|
}
|
|
lpair_arr[i] = lpair;
|
|
|
|
BLI_assert(bm_verts_tag_count(bm) == 0);
|
|
}
|
|
|
|
GHASH_ITER_INDEX (gh_iter, eloop_pairs_gh, i) {
|
|
GHashPair *eloop_pair = BLI_ghashIterator_getKey(&gh_iter);
|
|
struct BMEdgeLoopStore *el_store_a = (void *)eloop_pair->first;
|
|
struct BMEdgeLoopStore *el_store_b = (void *)eloop_pair->second;
|
|
LoopPairStore *lpair = lpair_arr[i];
|
|
|
|
if (lpair) {
|
|
bm_edgering_pair_ringsubd(bm, lpair, el_store_a, el_store_b,
|
|
interp_mode, cuts, smooth, falloff_cache);
|
|
bm_edgering_pair_store_free(lpair, interp_mode);
|
|
}
|
|
|
|
BLI_assert(bm_verts_tag_count(bm) == 0);
|
|
}
|
|
BLI_ghash_free(eloop_pairs_gh, MEM_freeN, NULL);
|
|
}
|
|
|
|
cleanup:
|
|
BM_mesh_edgeloops_free(&eloops_rim);
|
|
|
|
/* flag output */
|
|
if (change) {
|
|
BMO_slot_buffer_flag_enable(bm, op->slots_out, "faces.out", BM_FACE, FACE_OUT);
|
|
}
|
|
}
|