This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/operators/bmo_subdivide_edgering.c
Campbell Barton 0ff22044cd Support for bridge tool subdivisions, smoothing and shape along the profile.
also added the underlying subdivision as a standalone operator in the edge menu, named: subdivide edge-ring.
http://www.graphicall.org/ftp/ideasman42/bridge_subd.png
2013-05-23 06:19:04 +00:00

1188 lines
35 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/bmesh/operators/bmo_subdivide_edgering.c
* \ingroup bmesh
*
* This operator is a special edge-ring subdivision tool
* which gives special options for interpolation.
*
* \note Tagging and flags
* Tagging here is quite prone to errors if not done carefully.
*
* - With the exception of EDGE_RIM & EDGE_RIM,
* all flags need to be cleared on function exit.
* - verts use BM_ELEM_TAG, these need to be cleared before functions exit.
*
* \note Order of execution with 2+ rings is undefined,
* so tage care
*/
#include "MEM_guardedalloc.h"
#include "BLI_utildefines.h"
#include "BLI_array.h"
#include "BLI_math.h"
#include "BLI_listbase.h"
#include "BKE_curve.h"
#include "bmesh.h"
#include "tools/bmesh_edgesplit.h"
#include "intern/bmesh_operators_private.h" /* own include */
#define VERT_SHARED (1 << 0)
#define EDGE_RING (1 << 0)
#define EDGE_RIM (1 << 1)
#define EDGE_IN_STACK (1 << 2)
#define FACE_OUT (1 << 0)
#define FACE_SHARED (1 << 1)
#define FACE_IN_STACK (1 << 2)
/* -------------------------------------------------------------------- */
/* Specialized Utility Funcs */
#ifdef DEBUG
static unsigned int bm_verts_tag_count(BMesh *bm)
{
int count = 0;
BMIter iter;
BMVert *v;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_TAG)) {
count++;
}
}
return count;
}
#endif
static float bezier_handle_calc_length_v3(const float co_a[3], const float no_a[3],
const float co_b[3], const float no_b[3])
{
const float dot = dot_v3v3(no_a, no_b);
/* gives closest approx at a circle with 2 parallel handles */
float fac = 1.333333f;
if (dot < 0.0f) {
/* scale down to 0.666 if we point directly at each other rough but ok */
/* TODO, current blend from dot may not be optimal but its also a detail */
const float t = 1.0f + dot;
fac = (fac * t) + (0.75f * (1.0f - t));
}
return (len_v3v3(co_a, co_b) * 0.5f) * fac;
}
static void bm_edgeloop_vert_tag(struct BMEdgeLoopStore *el_store, const bool tag)
{
LinkData *node = BM_edgeloop_verts_get(el_store)->first;
do {
BM_elem_flag_set((BMVert *)node->data, BM_ELEM_TAG, tag);
} while ((node = node->next));
}
static void bmo_edgeloop_vert_tag(BMesh *bm, struct BMEdgeLoopStore *el_store, const short oflag, const bool tag)
{
LinkData *node = BM_edgeloop_verts_get(el_store)->first;
do {
BMO_elem_flag_set(bm, (BMVert *)node->data, oflag, tag);
} while ((node = node->next));
}
static bool bmo_face_is_vert_tag_all(BMesh *bm, BMFace *f, short oflag)
{
BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
if (!BMO_elem_flag_test(bm, l_iter->v, oflag)) {
return false;
}
} while ((l_iter = l_iter->next) != l_first);
return true;
}
static bool bm_vert_is_tag_edge_connect(BMesh *bm, BMVert *v)
{
BMIter eiter;
BMEdge *e;
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (BMO_elem_flag_test(bm, e, EDGE_RING)) {
BMVert *v_other = BM_edge_other_vert(e, v);
if (BM_elem_flag_test(v_other, BM_ELEM_TAG)) {
return true;
}
}
}
return false;
}
/* for now we need full overlap,
* supporting partial overlap could be done but gets complicated
* when trimming endpoints is not enough to ensure consistency.
*/
static bool bm_edgeloop_check_overlap_all(
BMesh *bm,
struct BMEdgeLoopStore *el_store_a,
struct BMEdgeLoopStore *el_store_b)
{
bool has_overlap = true;
LinkData *node;
ListBase *lb_a = BM_edgeloop_verts_get(el_store_a);
ListBase *lb_b = BM_edgeloop_verts_get(el_store_b);
bm_edgeloop_vert_tag(el_store_a, false);
bm_edgeloop_vert_tag(el_store_b, true);
for (node = lb_a->first; node; node = node->next) {
if (bm_vert_is_tag_edge_connect(bm, node->data) == false) {
has_overlap = false;
goto finally;
}
}
bm_edgeloop_vert_tag(el_store_a, true);
bm_edgeloop_vert_tag(el_store_b, false);
for (node = lb_b->first; node; node = node->next) {
if (bm_vert_is_tag_edge_connect(bm, node->data) == false) {
has_overlap = false;
goto finally;
}
}
finally:
bm_edgeloop_vert_tag(el_store_a, false);
bm_edgeloop_vert_tag(el_store_b, false);
return has_overlap;
}
/* -------------------------------------------------------------------- */
/* Edge Loop Pairs */
/* key (ordered loop pointers) */
static GHash *bm_edgering_pair_calc(BMesh *bm, ListBase *eloops_rim)
{
/**
* Method for for finding pairs:
*
* - first create (vert -> eloop) mapping.
* - loop over all eloops.
* - take first vertex of the eloop (any vertex will do)
* - loop over all edges of the vertex.
* - use the edge-verts and (vert -> eloop) map
* to create a pair of eloop pointers, add these to a hash.
*
* \note, each loop pair will be found twice.
* could sort and optimize this but not really so important.
*/
GHash *eloop_pair_gh = BLI_ghash_pair_new(__func__);
GHash *vert_eloop_gh = BLI_ghash_ptr_new(__func__);
struct BMEdgeLoopStore *el_store;
/* create vert -> eloop map */
for (el_store = eloops_rim->first; el_store; el_store = BM_EDGELOOP_NEXT(el_store)) {
LinkData *node = BM_edgeloop_verts_get(el_store)->first;
do {
BLI_ghash_insert(vert_eloop_gh, node->data, el_store);
} while ((node = node->next));
}
/* collect eloop pairs */
for (el_store = eloops_rim->first; el_store; el_store = BM_EDGELOOP_NEXT(el_store)) {
BMIter eiter;
BMEdge *e;
BMVert *v = ((LinkData *)BM_edgeloop_verts_get(el_store)->first)->data;
BM_ITER_ELEM (e, &eiter, (BMVert *)v, BM_EDGES_OF_VERT) {
if (BMO_elem_flag_test(bm, e, EDGE_RING)) {
struct BMEdgeLoopStore *el_store_other;
BMVert *v_other = BM_edge_other_vert(e, v);
GHashPair pair_test;
el_store_other = BLI_ghash_lookup(vert_eloop_gh, v_other);
BLI_assert(el_store != NULL);
BLI_assert(el_store_other != NULL);
pair_test.first = el_store;
pair_test.second = el_store_other;
if (pair_test.first > pair_test.second)
SWAP(const void *, pair_test.first, pair_test.second);
if (!BLI_ghash_haskey(eloop_pair_gh, &pair_test)) {
GHashPair *pair = BLI_ghashutil_pairalloc(pair_test.first, pair_test.second);
BLI_ghash_insert(eloop_pair_gh, pair, NULL);
}
}
}
}
BLI_ghash_free(vert_eloop_gh, NULL, NULL);
return eloop_pair_gh;
}
/* -------------------------------------------------------------------- */
/* Subdivide an edge 'n' times and return an open edgeloop */
static void bm_edge_subdiv_as_loop(BMesh *bm, ListBase *eloops, BMEdge *e, BMVert *v_a, const int cuts)
{
struct BMEdgeLoopStore *eloop;
BMVert **v_arr = BLI_array_alloca(v_arr, cuts + 2);
BMVert *v_b;
BLI_assert(BM_vert_in_edge(e, v_a));
v_b = BM_edge_other_vert(e, v_a);
BM_edge_split_n(bm, e, cuts, &v_arr[1]);
if (v_a == e->v1) {
v_arr[0] = v_a;
v_arr[cuts + 1] = v_b;
}
else {
v_arr[0] = v_b;
v_arr[cuts + 1] = v_a;
}
eloop = BM_edgeloop_from_verts(v_arr, cuts + 2, false);
if (v_a == e->v1) {
BM_edgeloop_flip(bm, eloop);
}
BLI_addtail(eloops, eloop);
}
/* -------------------------------------------------------------------- */
/* LoopPair Cache (struct and util funcs) */
/**
* Use for finding spline handle direction from surrounding faces.
*
* Resulting normal will _always_ point towards 'FACE_SHARED'
*
* This function must be called after all loops have been created,
* but before any mesh modifications.
*
* \return true on success
*/
static void bm_vert_calc_surface_tangent(BMesh *bm, BMVert *v, float r_no[3])
{
BMIter eiter;
BMEdge *e;
/* get outer normal, fallback to inner (if this vertex is on a boundary) */
bool found_outer = false, found_inner = false, found_outer_tag = false;
float no_outer[3] = {0.0f}, no_inner[3] = {0.0f};
/* first find rim edges, typically we will only add 2 normals */
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (UNLIKELY(BM_edge_is_wire(e))) {
/* pass - this may confuse things */
}
else if (BMO_elem_flag_test(bm, e, EDGE_RIM)) {
BMIter liter;
BMLoop *l;
BM_ITER_ELEM (l, &liter, e, BM_LOOPS_OF_EDGE) {
/* use unmarked (surrounding) faces to create surface tangent */
float no[3];
// BM_face_normal_update(l->f);
BM_edge_calc_face_tangent(e, l, no);
if (BMO_elem_flag_test(bm, l->f, FACE_SHARED)) {
add_v3_v3(no_inner, no);
found_inner = true;
}
else {
add_v3_v3(no_outer, no);
found_outer = true;
/* other side is used too, blend midway */
if (BMO_elem_flag_test(bm, l->f, FACE_OUT)) {
found_outer_tag = true;
}
}
}
}
}
/* detect if this vertex is in-between 2 loops (when blending multiple),
* if so - take both inner and outer into account */
if (found_inner && found_outer_tag) {
/* blend between the 2 */
negate_v3(no_outer);
normalize_v3(no_outer);
normalize_v3(no_inner);
add_v3_v3v3(r_no, no_outer, no_inner);
normalize_v3(r_no);
}
else if (found_outer) {
negate_v3(no_outer);
normalize_v3_v3(r_no, no_outer);
}
else {
/* we always have inner geometry */
BLI_assert(found_inner == true);
normalize_v3_v3(r_no, no_inner);
}
}
/**
* Tag faces connected to an edge loop as FACE_SHARED
* if all vertices are VERT_SHARED.
*/
static void bm_faces_share_tag_flush(BMesh *bm, BMEdge **e_arr, const unsigned int e_arr_len)
{
unsigned int i;
for (i = 0; i < e_arr_len; i++) {
BMEdge *e = e_arr[i];
BMLoop *l_iter, *l_first;
l_iter = l_first = e->l;
do {
if (!BMO_elem_flag_test(bm, l_iter->f, FACE_SHARED)) {
if (bmo_face_is_vert_tag_all(bm, l_iter->f, VERT_SHARED)) {
BMO_elem_flag_enable(bm, l_iter->f, FACE_SHARED);
}
}
} while ((l_iter = l_iter->radial_next) != l_first);
}
}
/**
* Un-Tag faces connected to an edge loop, clearing FACE_SHARED
*/
static void bm_faces_share_tag_clear(BMesh *bm, BMEdge **e_arr_iter, const unsigned int e_arr_len_iter)
{
unsigned int i;
for (i = 0; i < e_arr_len_iter; i++) {
BMEdge *e = e_arr_iter[i];
BMLoop *l_iter, *l_first;
l_iter = l_first = e->l;
do {
BMO_elem_flag_disable(bm, l_iter->f, FACE_SHARED);
} while ((l_iter = l_iter->radial_next) != l_first);
}
}
/**
* Store data for each loop pair,
* needed so we don't get feedback loop reading/writing the mesh data.
*
* currently only used to store vert-spline-handles,
* but may be extended for other uses.
*/
typedef struct LoopPairStore {
/* handle array for splines */
float (*nors_a)[3];
float (*nors_b)[3];
/* since we don't have reliable index values into the array,
* store a map (BMVert -> index) */
GHash *nors_gh_a;
GHash *nors_gh_b;
} LoopPairStore;
static LoopPairStore *bm_edgering_pair_store_create(
BMesh *bm,
struct BMEdgeLoopStore *el_store_a,
struct BMEdgeLoopStore *el_store_b,
const int interp_mode)
{
LoopPairStore *lpair = MEM_mallocN(sizeof(*lpair), __func__);
if (interp_mode == SUBD_RING_INTERP_SURF) {
const unsigned int len_a = BM_edgeloop_length_get(el_store_a);
const unsigned int len_b = BM_edgeloop_length_get(el_store_b);
const unsigned int e_arr_a_len = len_a - (BM_edgeloop_is_closed(el_store_a) ? 0 : 1);
const unsigned int e_arr_b_len = len_b - (BM_edgeloop_is_closed(el_store_b) ? 0 : 1);
BMEdge **e_arr_a = BLI_array_alloca(e_arr_a, e_arr_a_len);
BMEdge **e_arr_b = BLI_array_alloca(e_arr_b, e_arr_b_len);
unsigned int i;
struct BMEdgeLoopStore *el_store_pair[2] = {el_store_a, el_store_b};
unsigned int side_index;
float (*nors_pair[2])[3];
GHash *nors_gh_pair[2];
BM_edgeloop_edges_get(el_store_a, e_arr_a);
BM_edgeloop_edges_get(el_store_b, e_arr_b);
lpair->nors_a = MEM_mallocN(sizeof(*lpair->nors_a) * len_a, __func__);
lpair->nors_b = MEM_mallocN(sizeof(*lpair->nors_b) * len_b, __func__);
nors_pair[0] = lpair->nors_a;
nors_pair[1] = lpair->nors_b;
lpair->nors_gh_a = BLI_ghash_ptr_new(__func__);
lpair->nors_gh_b = BLI_ghash_ptr_new(__func__);
nors_gh_pair[0] = lpair->nors_gh_a;
nors_gh_pair[1] = lpair->nors_gh_b;
/* now calculate nor */
/* all other verts must _not_ be tagged */
bmo_edgeloop_vert_tag(bm, el_store_a, VERT_SHARED, true);
bmo_edgeloop_vert_tag(bm, el_store_b, VERT_SHARED, true);
/* tag all faces that are in-between both loops */
bm_faces_share_tag_flush(bm, e_arr_a, e_arr_a_len);
bm_faces_share_tag_flush(bm, e_arr_b, e_arr_b_len);
/* now we have all data we need, calculate vertex spline nor! */
for (side_index = 0; side_index < 2; side_index++) {
/* iter vars */
struct BMEdgeLoopStore *el_store = el_store_pair[side_index];
ListBase *lb = BM_edgeloop_verts_get(el_store);
GHash *nors_gh_iter = nors_gh_pair[side_index];
float (*nor)[3] = nors_pair[side_index];
LinkData *v_iter;
for (v_iter = lb->first, i = 0; v_iter; v_iter = v_iter->next, i++) {
BMVert *v = v_iter->data;
bm_vert_calc_surface_tangent(bm, v, nor[i]);
BLI_ghash_insert(nors_gh_iter, v, SET_UINT_IN_POINTER(i));
}
}
/* cleanup verts share */
bmo_edgeloop_vert_tag(bm, el_store_a, VERT_SHARED, false);
bmo_edgeloop_vert_tag(bm, el_store_b, VERT_SHARED, false);
/* cleanup faces share */
bm_faces_share_tag_clear(bm, e_arr_a, e_arr_a_len);
bm_faces_share_tag_clear(bm, e_arr_b, e_arr_b_len);
}
return lpair;
}
static void bm_edgering_pair_store_free(
LoopPairStore *lpair,
const int interp_mode)
{
if (interp_mode == SUBD_RING_INTERP_SURF) {
MEM_freeN(lpair->nors_a);
MEM_freeN(lpair->nors_b);
BLI_ghash_free(lpair->nors_gh_a, NULL, NULL);
BLI_ghash_free(lpair->nors_gh_b, NULL, NULL);
}
MEM_freeN(lpair);
}
/* -------------------------------------------------------------------- */
/* Interpolation Function */
static void bm_edgering_pair_interpolate(BMesh *bm, LoopPairStore *lpair,
struct BMEdgeLoopStore *el_store_a,
struct BMEdgeLoopStore *el_store_b,
ListBase *eloops_ring,
const int interp_mode, const int cuts, const float smooth,
const float *falloff_cache)
{
const int resolu = cuts + 2;
const int dims = 3;
int i;
float el_store_a_co[3], el_store_b_co[3];
float el_store_a_no[3], el_store_b_no[3];
struct BMEdgeLoopStore *el_store_ring;
float (*coord_array_main)[3] = NULL;
BM_edgeloop_calc_center(bm, el_store_a);
BM_edgeloop_calc_center(bm, el_store_b);
BM_edgeloop_calc_normal(bm, el_store_a);
BM_edgeloop_calc_normal(bm, el_store_b);
copy_v3_v3(el_store_a_co, BM_edgeloop_center_get(el_store_a));
copy_v3_v3(el_store_b_co, BM_edgeloop_center_get(el_store_b));
copy_v3_v3(el_store_a_no, BM_edgeloop_normal_get(el_store_a));
copy_v3_v3(el_store_b_no, BM_edgeloop_normal_get(el_store_b));
/* correct normals need to be flipped to face each other
* we know both normals point in the same direction so one will need flipping */
{
float el_dir[3];
sub_v3_v3v3(el_dir, el_store_a_co, el_store_b_co);
if (dot_v3v3(el_store_a_no, el_dir) > 0.0f) {
negate_v3(el_store_a_no);
}
if (dot_v3v3(el_store_b_no, el_dir) < 0.0f) {
negate_v3(el_store_b_no);
}
}
/* now normals are correct, don't touch! */
/* calculate the center spline, multiple */
if ((interp_mode == SUBD_RING_INTERP_PATH) || falloff_cache) {
float handle_a[3], handle_b[3];
float handle_len;
handle_len = bezier_handle_calc_length_v3(el_store_a_co, el_store_a_no,
el_store_b_co, el_store_b_no) * smooth;
mul_v3_v3fl(handle_a, el_store_a_no, handle_len);
mul_v3_v3fl(handle_b, el_store_b_no, handle_len);
add_v3_v3(handle_a, el_store_a_co);
add_v3_v3(handle_b, el_store_b_co);
coord_array_main = MEM_mallocN(dims * (resolu) * sizeof(float), __func__);
for (i = 0; i < dims; i++) {
BKE_curve_forward_diff_bezier(el_store_a_co[i], handle_a[i], handle_b[i], el_store_b_co[i],
((float *)coord_array_main) + i, resolu - 1, sizeof(float) * dims);
}
}
switch (interp_mode) {
case SUBD_RING_INTERP_LINEAR:
{
if (falloff_cache) {
float (*coord_array)[3] = MEM_mallocN(dims * (resolu) * sizeof(float), __func__);
for (i = 0; i < resolu; i++) {
interp_v3_v3v3(coord_array[i], el_store_a_co, el_store_b_co, (float)i / (float)(resolu - 1));
}
for (el_store_ring = eloops_ring->first;
el_store_ring;
el_store_ring = BM_EDGELOOP_NEXT(el_store_ring))
{
ListBase *lb_ring = BM_edgeloop_verts_get(el_store_ring);
LinkData *v_iter;
for (v_iter = lb_ring->first, i = 0; v_iter; v_iter = v_iter->next, i++) {
if (i > 0 && i < resolu - 1) {
/* shape */
if (falloff_cache) {
interp_v3_v3v3(((BMVert *)v_iter->data)->co,
coord_array[i], ((BMVert *)v_iter->data)->co, falloff_cache[i]);
}
}
}
}
MEM_freeN(coord_array);
}
break;
}
case SUBD_RING_INTERP_PATH:
{
float (*direction_array)[3] = MEM_mallocN(dims * (resolu) * sizeof(float), __func__);
float (*quat_array)[4] = MEM_mallocN(resolu * sizeof(*quat_array), __func__);
float (*tri_array)[3][3] = MEM_mallocN(resolu * sizeof(*tri_array), __func__);
float (*tri_sta)[3], (*tri_end)[3], (*tri_tmp)[3];
/* very similar to make_bevel_list_3D_minimum_twist */
/* calculate normals */
copy_v3_v3(direction_array[0], el_store_a_no);
negate_v3_v3(direction_array[resolu - 1], el_store_b_no);
for (i = 1; i < resolu - 1; i++) {
bisect_v3_v3v3v3(direction_array[i],
coord_array_main[i - 1], coord_array_main[i], coord_array_main[i + 1]);
}
vec_to_quat(quat_array[0], direction_array[0], 5, 1);
normalize_qt(quat_array[0]);
for (i = 1; i < resolu; i++) {
float angle = angle_normalized_v3v3(direction_array[i - 1], direction_array[i]);
// BLI_assert(angle < DEG2RADF(90.0f));
if (angle > 0.0f) { /* otherwise we can keep as is */
float cross_tmp[3];
float q[4];
cross_v3_v3v3(cross_tmp, direction_array[i - 1], direction_array[i]);
axis_angle_to_quat(q, cross_tmp, angle);
mul_qt_qtqt(quat_array[i], q, quat_array[i - 1]);
normalize_qt(quat_array[i]);
}
else {
copy_qt_qt(quat_array[i], quat_array[i - 1]);
}
}
/* init base tri */
for (i = 0; i < resolu; i++) {
int j;
const float shape_size = falloff_cache ? falloff_cache[i] : 1.0f;
tri_tmp = tri_array[i];
/* create the triangle and transform */
for (j = 0; j < 3; j++) {
zero_v3(tri_tmp[j]);
if (j == 1) tri_tmp[j][0] = shape_size;
else if (j == 2) tri_tmp[j][1] = shape_size;
mul_qt_v3(quat_array[i], tri_tmp[j]);
add_v3_v3(tri_tmp[j], coord_array_main[i]);
}
}
tri_sta = tri_array[0];
tri_end = tri_array[resolu - 1];
for (el_store_ring = eloops_ring->first;
el_store_ring;
el_store_ring = BM_EDGELOOP_NEXT(el_store_ring))
{
ListBase *lb_ring = BM_edgeloop_verts_get(el_store_ring);
LinkData *v_iter;
BMVert *v_a = ((LinkData *)lb_ring->first)->data;
BMVert *v_b = ((LinkData *)lb_ring->last)->data;
/* skip first and last */
for (v_iter = ((LinkData *)lb_ring->first)->next, i = 1;
v_iter != lb_ring->last;
v_iter = v_iter->next, i++)
{
float co_a[3], co_b[3];
tri_tmp = tri_array[i];
barycentric_transform(co_a, v_a->co, UNPACK3(tri_tmp), UNPACK3(tri_sta));
barycentric_transform(co_b, v_b->co, UNPACK3(tri_tmp), UNPACK3(tri_end));
interp_v3_v3v3(((BMVert *)v_iter->data)->co, co_a, co_b, (float)i / (float)(resolu - 1));
}
}
MEM_freeN(direction_array);
MEM_freeN(quat_array);
MEM_freeN(tri_array);
break;
}
case SUBD_RING_INTERP_SURF:
{
float (*coord_array)[3] = MEM_mallocN(dims * (resolu) * sizeof(float), __func__);
/* calculate a bezier handle per edge ring */
for (el_store_ring = eloops_ring->first;
el_store_ring;
el_store_ring = BM_EDGELOOP_NEXT(el_store_ring))
{
ListBase *lb_ring = BM_edgeloop_verts_get(el_store_ring);
LinkData *v_iter;
BMVert *v_a = ((LinkData *)lb_ring->first)->data;
BMVert *v_b = ((LinkData *)lb_ring->last)->data;
float co_a[3], no_a[3], handle_a[3], co_b[3], no_b[3], handle_b[3];
float handle_len;
copy_v3_v3(co_a, v_a->co);
copy_v3_v3(co_b, v_b->co);
/* don't calculate normals here else we get into feedback loop
* when subdividing 2+ connected edge rings */
#if 0
bm_vert_calc_surface_tangent(bm, v_a, no_a);
bm_vert_calc_surface_tangent(bm, v_b, no_b);
#else
{
const unsigned int index_a = GET_UINT_FROM_POINTER(BLI_ghash_lookup(lpair->nors_gh_a, v_a));
const unsigned int index_b = GET_UINT_FROM_POINTER(BLI_ghash_lookup(lpair->nors_gh_b, v_b));
BLI_assert(BLI_ghash_haskey(lpair->nors_gh_a, v_a));
BLI_assert(BLI_ghash_haskey(lpair->nors_gh_b, v_b));
copy_v3_v3(no_a, lpair->nors_a[index_a]);
copy_v3_v3(no_b, lpair->nors_b[index_b]);
}
#endif
handle_len = bezier_handle_calc_length_v3(co_a, no_a, co_b, no_b) * smooth;
mul_v3_v3fl(handle_a, no_a, handle_len);
mul_v3_v3fl(handle_b, no_b, handle_len);
add_v3_v3(handle_a, co_a);
add_v3_v3(handle_b, co_b);
for (i = 0; i < dims; i++) {
BKE_curve_forward_diff_bezier(co_a[i], handle_a[i], handle_b[i], co_b[i],
((float *)coord_array) + i, resolu - 1, sizeof(float) * dims);
}
/* skip first and last */
for (v_iter = ((LinkData *)lb_ring->first)->next, i = 1;
v_iter != lb_ring->last;
v_iter = v_iter->next, i++)
{
if (i > 0 && i < resolu - 1) {
copy_v3_v3(((BMVert *)v_iter->data)->co, coord_array[i]);
/* shape */
if (falloff_cache) {
interp_v3_v3v3(((BMVert *)v_iter->data)->co,
coord_array_main[i], ((BMVert *)v_iter->data)->co, falloff_cache[i]);
}
}
}
}
MEM_freeN(coord_array);
break;
}
}
if (coord_array_main) {
MEM_freeN(coord_array_main);
}
}
/**
* Cuts up an ngon into many slices.
*/
static void bm_face_slice(BMesh *bm, BMLoop *l, const int cuts)
{
/* TODO, interpolate edge data */
BMLoop *l_new = l;
int i;
for (i = 0; i < cuts; i++) {
/* no chance of double */
BM_face_split(bm, l_new->f, l_new->prev->v, l_new->next->next->v, &l_new, NULL, false);
if (l_new->f->len < l_new->radial_next->f->len) {
l_new = l_new->radial_next;
}
BMO_elem_flag_enable(bm, l_new->f, FACE_OUT);
BMO_elem_flag_enable(bm, l_new->radial_next->f, FACE_OUT);
}
}
static bool bm_edgering_pair_order_is_flipped(BMesh *UNUSED(bm),
struct BMEdgeLoopStore *el_store_a,
struct BMEdgeLoopStore *el_store_b )
{
ListBase *lb_a = BM_edgeloop_verts_get(el_store_a);
ListBase *lb_b = BM_edgeloop_verts_get(el_store_b);
LinkData *v_iter_a_first = lb_a->first;
LinkData *v_iter_b_first = lb_b->first;
LinkData *v_iter_a_step = v_iter_a_first;
LinkData *v_iter_b_step = v_iter_b_first;
/* we _must_ have same starting edge shared */
BLI_assert(BM_edge_exists(v_iter_a_first->data, v_iter_b_first->data));
/* step around any fan-faces on both sides */
do {
v_iter_a_step = v_iter_a_step->next;
} while (v_iter_a_step &&
((BM_edge_exists(v_iter_a_step->data, v_iter_b_first->data)) ||
(BM_edge_exists(v_iter_a_step->data, v_iter_b_first->next->data))));
do {
v_iter_b_step = v_iter_b_step->next;
} while (v_iter_b_step &&
((BM_edge_exists(v_iter_b_step->data, v_iter_a_first->data)) ||
(BM_edge_exists(v_iter_b_step->data, v_iter_a_first->next->data))));
v_iter_a_step = v_iter_a_step ? v_iter_a_step->prev : lb_a->last;
v_iter_b_step = v_iter_b_step ? v_iter_b_step->prev : lb_b->last;
return !(BM_edge_exists(v_iter_a_step->data, v_iter_b_step->data) ||
BM_edge_exists(v_iter_a_first->next->data, v_iter_b_step->data) ||
BM_edge_exists(v_iter_b_first->next->data, v_iter_a_step->data));
}
/**
* Takes 2 edge loops that share edges,
* sort their verts and rotates the list so the lined up.
*/
static void bm_edgering_pair_order(BMesh *bm,
struct BMEdgeLoopStore *el_store_a,
struct BMEdgeLoopStore *el_store_b)
{
ListBase *lb_a = BM_edgeloop_verts_get(el_store_a);
ListBase *lb_b = BM_edgeloop_verts_get(el_store_b);
LinkData *node;
bm_edgeloop_vert_tag(el_store_a, false);
bm_edgeloop_vert_tag(el_store_b, true);
/* before going much further, get ourselves in order
* - align loops (not strictly necessary but handy)
* - ensure winding is set for both loops */
if (BM_edgeloop_is_closed(el_store_a) && BM_edgeloop_is_closed(el_store_a)) {
BMIter eiter;
BMEdge *e;
BMVert *v_other;
node = lb_a->first;
BM_ITER_ELEM (e, &eiter, (BMVert *)node->data, BM_EDGES_OF_VERT) {
if (BMO_elem_flag_test(bm, e, EDGE_RING)) {
v_other = BM_edge_other_vert(e, (BMVert *)node->data);
if (BM_elem_flag_test(v_other, BM_ELEM_TAG)) {
break;
}
else {
v_other = NULL;
}
}
}
BLI_assert(v_other != NULL);
for (node = lb_b->first; node; node = node->next) {
if (node->data == v_other) {
break;
}
}
BLI_assert(node != NULL);
BLI_rotatelist(lb_b, node);
/* now check we are winding the same way */
if (bm_edgering_pair_order_is_flipped(bm, el_store_a, el_store_b)) {
BM_edgeloop_flip(bm, el_store_b);
/* re-ensure the first node */
BLI_rotatelist(lb_b, node);
}
/* sanity checks that we are aligned & winding now */
BLI_assert(bm_edgering_pair_order_is_flipped(bm, el_store_a, el_store_b) == false);
}
else {
/* if we dont share and edge - flip */
BMEdge *e = BM_edge_exists(((LinkData *)lb_a->first)->data,
((LinkData *)lb_b->first)->data);
if (e == NULL || !BMO_elem_flag_test(bm, e, EDGE_RING)) {
BM_edgeloop_flip(bm, el_store_b);
}
}
/* for cases with multiple loops */
bm_edgeloop_vert_tag(el_store_b, false);
}
/**
* Take 2 edge loops, do a subdivision on connecting edges.
*
* \note loops are _not_ aligned.
*/
static void bm_edgering_pair_subdiv(BMesh *bm,
struct BMEdgeLoopStore *el_store_a,
struct BMEdgeLoopStore *el_store_b,
ListBase *eloops_ring,
const int cuts)
{
ListBase *lb_a = BM_edgeloop_verts_get(el_store_a);
// ListBase *lb_b = BM_edgeloop_verts_get(el_store_b);
const int stack_max = max_ii(BM_edgeloop_length_get(el_store_a),
BM_edgeloop_length_get(el_store_b)) * 2;
BMEdge **edges_ring_arr = BLI_array_alloca(edges_ring_arr, stack_max);
BMFace **faces_ring_arr = BLI_array_alloca(faces_ring_arr, stack_max);
STACK_DECLARE(edges_ring_arr);
STACK_DECLARE(faces_ring_arr);
struct BMEdgeLoopStore *el_store_ring;
LinkData *node;
BMEdge *e;
BMFace *f;
STACK_INIT(edges_ring_arr);
STACK_INIT(faces_ring_arr);
bm_edgeloop_vert_tag(el_store_a, false);
bm_edgeloop_vert_tag(el_store_b, true);
for (node = lb_a->first; node; node = node->next) {
BMIter eiter;
BM_ITER_ELEM (e, &eiter, (BMVert *)node->data, BM_EDGES_OF_VERT) {
if (!BMO_elem_flag_test(bm, e, EDGE_IN_STACK)) {
BMVert *v_other = BM_edge_other_vert(e, (BMVert *)node->data);
if (BM_elem_flag_test(v_other, BM_ELEM_TAG)) {
BMIter fiter;
BMO_elem_flag_enable(bm, e, EDGE_IN_STACK);
STACK_PUSH(edges_ring_arr, e);
/* add faces to the stack */
BM_ITER_ELEM (f, &fiter, e, BM_FACES_OF_EDGE) {
if (BMO_elem_flag_test(bm, f, FACE_OUT)) {
if (!BMO_elem_flag_test(bm, f, FACE_IN_STACK)) {
BMO_elem_flag_enable(bm, f, FACE_IN_STACK);
STACK_PUSH(faces_ring_arr, f);
}
}
}
}
}
}
}
while ((e = STACK_POP(edges_ring_arr))) {
/* found opposite edge */
BMVert *v_other;
BMO_elem_flag_disable(bm, e, EDGE_IN_STACK);
/* unrelated to subdiv, but if we _don't_ clear flag, multiple rings fail */
BMO_elem_flag_disable(bm, e, EDGE_RING);
v_other = BM_elem_flag_test(e->v1, BM_ELEM_TAG) ? e->v1 : e->v2;
bm_edge_subdiv_as_loop(bm, eloops_ring, e, v_other, cuts);
}
while ((f = STACK_POP(faces_ring_arr))) {
BMLoop *l_iter, *l_first;
BMO_elem_flag_disable(bm, f, FACE_IN_STACK);
/* Check each edge of the face */
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
if (BMO_elem_flag_test(bm, l_iter->e, EDGE_RIM)) {
bm_face_slice(bm, l_iter, cuts);
break;
}
} while ((l_iter = l_iter->next) != l_first);
}
/* clear tags so subdiv verts don't get tagged too */
for (el_store_ring = eloops_ring->first;
el_store_ring;
el_store_ring = BM_EDGELOOP_NEXT(el_store_ring))
{
bm_edgeloop_vert_tag(el_store_ring, false);
}
/* cleanup after */
bm_edgeloop_vert_tag(el_store_b, false);
}
static void bm_edgering_pair_ringsubd(BMesh *bm, LoopPairStore *lpair,
struct BMEdgeLoopStore *el_store_a,
struct BMEdgeLoopStore *el_store_b,
const int interp_mode, const int cuts, const float smooth,
const float *falloff_cache)
{
ListBase eloops_ring = {NULL};
bm_edgering_pair_order(bm, el_store_a, el_store_b);
bm_edgering_pair_subdiv(bm, el_store_a, el_store_b, &eloops_ring, cuts);
bm_edgering_pair_interpolate(bm, lpair, el_store_a, el_store_b, &eloops_ring,
interp_mode, cuts, smooth, falloff_cache);
BM_mesh_edgeloops_free(&eloops_ring);
}
static bool bm_edge_rim_test_cb(BMEdge *e, void *bm_v)
{
BMesh *bm = bm_v;
return BMO_elem_flag_test_bool(bm, e, EDGE_RIM);
}
/* keep this operator fast, its used in a modifier */
void bmo_subdivide_edgering_exec(BMesh *bm, BMOperator *op)
{
ListBase eloops_rim = {NULL};
BMOIter siter;
BMEdge *e;
int count;
bool change = false;
const int cuts = BMO_slot_int_get(op->slots_in, "cuts");
const int interp_mode = BMO_slot_int_get(op->slots_in, "interp_mode");
const float smooth = BMO_slot_float_get(op->slots_in, "smooth");
const int resolu = cuts + 2;
/* optional 'shape' */
const int profile_shape = BMO_slot_int_get(op->slots_in, "profile_shape");
const float profile_shape_factor = BMO_slot_float_get(op->slots_in, "profile_shape_factor");
float *falloff_cache = (profile_shape_factor != 0.0f) ? BLI_array_alloca(falloff_cache, cuts + 2) : NULL;
BMO_slot_buffer_flag_enable(bm, op->slots_in, "edges", BM_EDGE, EDGE_RING);
BM_mesh_elem_hflag_disable_all(bm, BM_VERT, BM_ELEM_TAG, false);
/* -------------------------------------------------------------------- */
/* flag outer edges (loops defined as edges on the bounds of the edge ring) */
BMO_ITER (e, &siter, op->slots_in, "edges", BM_EDGE) {
BMIter fiter;
BMFace *f;
BM_ITER_ELEM (f, &fiter, e, BM_FACES_OF_EDGE) {
if (!BMO_elem_flag_test(bm, f, FACE_OUT)) {
BMIter liter;
BMLoop *l;
bool ok = false;
/* check at least 2 edges in the face are rings */
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
if (BMO_elem_flag_test(bm, l->e, EDGE_RING) && e != l->e) {
ok = true;
break;
}
}
if (ok) {
BMO_elem_flag_enable(bm, f, FACE_OUT);
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
if (!BMO_elem_flag_test(bm, l->e, EDGE_RING)) {
BMO_elem_flag_enable(bm, l->e, EDGE_RIM);
}
}
}
}
}
}
/* -------------------------------------------------------------------- */
/* Cache falloff for each step (symmetrical) */
if (falloff_cache) {
int i;
for (i = 0; i < resolu; i++) {
float shape_size = 1.0f;
float fac = (float)i / (float)(resolu - 1);
fac = fabsf(1.0f - 2.0f * fabsf(0.5f - fac));
fac = bmesh_subd_falloff_calc(profile_shape, fac);
shape_size += fac * profile_shape_factor;
falloff_cache[i] = shape_size;
}
}
/* -------------------------------------------------------------------- */
/* Execute subdivision on all ring pairs */
count = BM_mesh_edgeloops_find(bm, &eloops_rim, bm_edge_rim_test_cb, (void *)bm);
if (count < 2) {
BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
"No edge rings found");
goto cleanup;
}
else if (count == 2) {
/* this case could be removed,
* but simple to avoid 'bm_edgering_pair_calc' in this case since theres only one. */
struct BMEdgeLoopStore *el_store_a = eloops_rim.first;
struct BMEdgeLoopStore *el_store_b = eloops_rim.last;
LoopPairStore *lpair;
if (bm_edgeloop_check_overlap_all(bm, el_store_a, el_store_b)) {
lpair = bm_edgering_pair_store_create(bm, el_store_a, el_store_b, interp_mode);
}
else {
lpair = NULL;
}
if (lpair) {
bm_edgering_pair_ringsubd(bm, lpair, el_store_a, el_store_b,
interp_mode, cuts, smooth, falloff_cache);
bm_edgering_pair_store_free(lpair, interp_mode);
}
}
else {
GHashIterator gh_iter;
int i;
GHash *eloop_pairs_gh = bm_edgering_pair_calc(bm, &eloops_rim);
const int eloop_pairs_len = BLI_ghash_size(eloop_pairs_gh);
LoopPairStore **lpair_arr = BLI_array_alloca(lpair_arr, eloop_pairs_len);
/* first cache pairs */
GHASH_ITER_INDEX (gh_iter, eloop_pairs_gh, i) {
GHashPair *eloop_pair = BLI_ghashIterator_getKey(&gh_iter);
struct BMEdgeLoopStore *el_store_a = (void *)eloop_pair->first;
struct BMEdgeLoopStore *el_store_b = (void *)eloop_pair->second;
LoopPairStore *lpair;
if (bm_edgeloop_check_overlap_all(bm, el_store_a, el_store_b)) {
lpair = bm_edgering_pair_store_create(bm, el_store_a, el_store_b, interp_mode);
}
else {
lpair = NULL;
}
lpair_arr[i] = lpair;
BLI_assert(bm_verts_tag_count(bm) == 0);
}
GHASH_ITER_INDEX (gh_iter, eloop_pairs_gh, i) {
GHashPair *eloop_pair = BLI_ghashIterator_getKey(&gh_iter);
struct BMEdgeLoopStore *el_store_a = (void *)eloop_pair->first;
struct BMEdgeLoopStore *el_store_b = (void *)eloop_pair->second;
LoopPairStore *lpair = lpair_arr[i];
if (lpair) {
bm_edgering_pair_ringsubd(bm, lpair, el_store_a, el_store_b,
interp_mode, cuts, smooth, falloff_cache);
bm_edgering_pair_store_free(lpair, interp_mode);
}
BLI_assert(bm_verts_tag_count(bm) == 0);
}
BLI_ghash_free(eloop_pairs_gh, MEM_freeN, NULL);
}
cleanup:
BM_mesh_edgeloops_free(&eloops_rim);
/* flag output */
if (change) {
BMO_slot_buffer_flag_enable(bm, op->slots_out, "faces.out", BM_FACE, FACE_OUT);
}
}