This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/Object.c
Michel Selten 0ff572954e * Added functionality to the Object module for getting and setting the name of
the object.
* Added the GetSelected function. (Same as getSelected).
* Added a start for the Object.py API documentation.
* Some minor bug-fixes to the Object module.
* Added the functionality to get the IPO of the Object.
2003-06-28 15:10:23 +00:00

1570 lines
54 KiB
C

/*
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Michel Selten
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Object.h"
/*****************************************************************************/
/* Python API function prototypes for the Blender module. */
/*****************************************************************************/
static PyObject *M_Object_New(PyObject *self, PyObject *args);
PyObject *M_Object_Get(PyObject *self, PyObject *args);
static PyObject *M_Object_GetSelected (PyObject *self, PyObject *args);
/*****************************************************************************/
/* The following string definitions are used for documentation strings. */
/* In Python these will be written to the console when doing a */
/* Blender.Object.__doc__ */
/*****************************************************************************/
char M_Object_doc[] =
"The Blender Object module\n\n\
This module provides access to **Object Data** in Blender.\n";
char M_Object_New_doc[] =
"(type) - Add a new object of type 'type' in the current scene";
char M_Object_Get_doc[] =
"(name) - return the object with the name 'name', returns None if not\
found.\n\
If 'name' is not specified, it returns a list of all objects in the\n\
current scene.";
char M_Object_GetSelected_doc[] =
"() - Returns a list of selected Objects in the active layer(s)\n\
The active object is the first in the list, if visible";
/*****************************************************************************/
/* Python method structure definition for Blender.Object module: */
/*****************************************************************************/
struct PyMethodDef M_Object_methods[] = {
{"New", (PyCFunction)M_Object_New, METH_VARARGS,
M_Object_New_doc},
{"Get", (PyCFunction)M_Object_Get, METH_VARARGS,
M_Object_Get_doc},
{"get", (PyCFunction)M_Object_Get, METH_VARARGS,
M_Object_Get_doc},
{"GetSelected", (PyCFunction)M_Object_GetSelected, METH_VARARGS,
M_Object_GetSelected_doc},
{"getSelected", (PyCFunction)M_Object_GetSelected, METH_VARARGS,
M_Object_GetSelected_doc},
{NULL, NULL, 0, NULL}
};
/*****************************************************************************/
/* Python BPy_Object methods declarations: */
/*****************************************************************************/
static PyObject *Object_clrParent (BPy_Object *self, PyObject *args);
static PyObject *Object_getData (BPy_Object *self);
static PyObject *Object_getDeformData (BPy_Object *self);
static PyObject *Object_getDeltaLocation (BPy_Object *self);
static PyObject *Object_getDrawMode (BPy_Object *self);
static PyObject *Object_getDrawType (BPy_Object *self);
static PyObject *Object_getEuler (BPy_Object *self);
static PyObject *Object_getInverseMatrix (BPy_Object *self);
static PyObject *Object_getLocation (BPy_Object *self, PyObject *args);
static PyObject *Object_getMaterials (BPy_Object *self);
static PyObject *Object_getMatrix (BPy_Object *self);
static PyObject *Object_getName (BPy_Object *self);
static PyObject *Object_getParent (BPy_Object *self);
static PyObject *Object_getTracked (BPy_Object *self);
static PyObject *Object_getType (BPy_Object *self);
static PyObject *Object_link (BPy_Object *self, PyObject *args);
static PyObject *Object_makeParent (BPy_Object *self, PyObject *args);
static PyObject *Object_materialUsage (BPy_Object *self, PyObject *args);
static PyObject *Object_setDeltaLocation (BPy_Object *self, PyObject *args);
static PyObject *Object_setDrawMode (BPy_Object *self, PyObject *args);
static PyObject *Object_setDrawType (BPy_Object *self, PyObject *args);
static PyObject *Object_setEuler (BPy_Object *self, PyObject *args);
static PyObject *Object_setLocation (BPy_Object *self, PyObject *args);
static PyObject *Object_setMaterials (BPy_Object *self, PyObject *args);
static PyObject *Object_setName (BPy_Object *self, PyObject *args);
static PyObject *Object_shareFrom (BPy_Object *self, PyObject *args);
/*****************************************************************************/
/* Python BPy_Object methods table: */
/*****************************************************************************/
static PyMethodDef BPy_Object_methods[] = {
/* name, method, flags, doc */
{"clrParent", (PyCFunction)Object_clrParent, METH_VARARGS,
"Clears parent object. Optionally specify:\n\
mode\n\t2: Keep object transform\nfast\n\t>0: Don't update scene \
hierarchy (faster)"},
{"getData", (PyCFunction)Object_getData, METH_NOARGS,
"Returns the datablock object containing the object's data, \
e.g. Mesh"},
{"getDeformData", (PyCFunction)Object_getDeformData, METH_NOARGS,
"Returns the datablock object containing the object's deformed \
data.\nCurrently, this is only supported for a Mesh"},
{"getDeltaLocation", (PyCFunction)Object_getDeltaLocation, METH_NOARGS,
"Returns the object's delta location (x, y, z)"},
{"getDrawMode", (PyCFunction)Object_getDrawMode, METH_NOARGS,
"Returns the object draw modes"},
{"getDrawType", (PyCFunction)Object_getDrawType, METH_NOARGS,
"Returns the object draw type"},
{"getEuler", (PyCFunction)Object_getEuler, METH_NOARGS,
"Returns the object's rotation as Euler rotation vector\n\
(rotX, rotY, rotZ)"},
{"getInverseMatrix", (PyCFunction)Object_getInverseMatrix, METH_NOARGS,
"Returns the object's inverse matrix"},
{"getLocation", (PyCFunction)Object_getLocation, METH_VARARGS,
"Returns the object's location (x, y, z)"},
{"getMaterials", (PyCFunction)Object_getMaterials, METH_NOARGS,
"Returns list of materials assigned to the object"},
{"getMatrix", (PyCFunction)Object_getMatrix, METH_NOARGS,
"Returns the object matrix"},
{"getName", (PyCFunction)Object_getName, METH_NOARGS,
"Returns the name of the object"},
{"getParent", (PyCFunction)Object_getParent, METH_NOARGS,
"Returns the object's parent object"},
{"getTracked", (PyCFunction)Object_getTracked, METH_NOARGS,
"Returns the object's tracked object"},
{"getType", (PyCFunction)Object_getType, METH_NOARGS,
"Returns type of string of Object"},
{"link", (PyCFunction)Object_link, METH_VARARGS,
"Links Object with data provided in the argument. The data must \n\
match the Object's type, so you cannot link a Lamp to a Mesh type object."},
{"makeParent", (PyCFunction)Object_makeParent, METH_VARARGS,
"Makes the object the parent of the objects provided in the \n\
argument which must be a list of valid Objects. Optional extra arguments:\n\
mode:\n\t0: make parent with inverse\n\t1: without inverse\n\
fase:\n\t0: update scene hierarchy automatically\n\t\
don't update scene hierarchy (faster). In this case, you must\n\t\
explicitely update the Scene hierarchy."},
{"materialUsage", (PyCFunction)Object_materialUsage, METH_VARARGS,
"Determines the way the material is used and returs status.\n\
Possible arguments (provide as strings):\n\
\tData: Materials assigned to the object's data are shown. (default)\n\
\tObject: Materials assigned to the object are shown."},
{"setDeltaLocation", (PyCFunction)Object_setDeltaLocation, METH_VARARGS,
"Sets the object's delta location which must be a vector triple."},
{"setDrawMode", (PyCFunction)Object_setDrawMode, METH_VARARGS,
"Sets the object's drawing mode. The argument can be a sum of:\n\
2: axis\n4: texspace\n8: drawname\n16: drawimage\n32: drawwire"},
{"setDrawType", (PyCFunction)Object_setDrawType, METH_VARARGS,
"Sets the object's drawing type. The argument must be one of:\n\
1: Bounding box\n2: Wire\n3: Solid\n4: Shaded\n5: Textured"},
{"setEuler", (PyCFunction)Object_setEuler, METH_VARARGS,
"Set the object's rotation according to the specified Euler\n\
angles. The argument must be a vector triple"},
{"setLocation", (PyCFunction)Object_setLocation, METH_VARARGS,
"Set the object's location. The first argument must be a vector\n\
triple."},
{"setMaterials", (PyCFunction)Object_setMaterials, METH_VARARGS,
"Sets materials. The argument must be a list of valid material\n\
objects."},
{"setName", (PyCFunction)Object_setName, METH_VARARGS,
"Sets the name of the object"},
{"shareFrom", (PyCFunction)Object_shareFrom, METH_VARARGS,
"Link data of self with object specified in the argument. This\n\
works only if self and the object specified are of the same type."},
{0}
};
/*****************************************************************************/
/* PythonTypeObject callback function prototypes */
/*****************************************************************************/
static void Object_dealloc (BPy_Object *obj);
static int Object_print (BPy_Object *obj, FILE *fp, int flags);
static PyObject* Object_getAttr (BPy_Object *obj, char *name);
static int Object_setAttr (BPy_Object *obj, char *name, PyObject *v);
static PyObject* Object_repr (BPy_Object *obj);
static int Object_compare (BPy_Object *a, BPy_Object *b);
/*****************************************************************************/
/* Python TypeObject structure definition. */
/*****************************************************************************/
PyTypeObject Object_Type =
{
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
"Blender Object", /* tp_name */
sizeof (BPy_Object), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)Object_dealloc, /* tp_dealloc */
(printfunc)Object_print, /* tp_print */
(getattrfunc)Object_getAttr, /* tp_getattr */
(setattrfunc)Object_setAttr, /* tp_setattr */
(cmpfunc)Object_compare, /* tp_compare */
(reprfunc)Object_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_as_hash */
0,0,0,0,0,0,
0, /* tp_doc */
0,0,0,0,0,0,
BPy_Object_methods, /* tp_methods */
0, /* tp_members */
};
/*****************************************************************************/
/* Function: M_Object_New */
/* Python equivalent: Blender.Object.New */
/*****************************************************************************/
PyObject *M_Object_New(PyObject *self, PyObject *args)
{
struct Object * object;
BPy_Object * blen_object;
int type;
char * str_type;
char * name = NULL;
if (!PyArg_ParseTuple(args, "s|s", &str_type, &name))
{
PythonReturnErrorObject (PyExc_TypeError,
"string expected as argument");
return (NULL);
}
if (strcmp (str_type, "Armature") == 0) type = OB_ARMATURE;
else if (strcmp (str_type, "Camera") == 0) type = OB_CAMERA;
else if (strcmp (str_type, "Curve") == 0) type = OB_CURVE;
/* else if (strcmp (str_type, "Text") == 0) type = OB_FONT; */
/* else if (strcmp (str_type, "Ika") == 0) type = OB_IKA; */
else if (strcmp (str_type, "Lamp") == 0) type = OB_LAMP;
/* else if (strcmp (str_type, "Lattice") == 0) type = OB_LATTICE; */
/* else if (strcmp (str_type, "Mball") == 0) type = OB_MBALL; */
else if (strcmp (str_type, "Mesh") == 0) type = OB_MESH;
/* else if (strcmp (str_type, "Surf") == 0) type = OB_SURF; */
/* else if (strcmp (str_type, "Wave") == 0) type = OB_WAVE; */
else if (strcmp (str_type, "Empty") == 0) type = OB_EMPTY;
else
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"Unknown type specified"));
}
/* Create a new object. */
if (name == NULL)
{
/* No name is specified, set the name to the type of the object. */
name = str_type;
}
object = alloc_libblock (&(G.main->object), ID_OB, name);
object->flag = 0;
object->type = type;
/* transforms */
QuatOne(object->quat);
QuatOne(object->dquat);
object->col[3]= 1.0; // alpha
object->size[0] = object->size[1] = object->size[2] = 1.0;
object->loc[0] = object->loc[1] = object->loc[2] = 0.0;
Mat4One(object->parentinv);
Mat4One(object->obmat);
object->dt = OB_SHADED; // drawtype
if (U.flag & MAT_ON_OB)
{
object->colbits = -1;
}
switch (object->type)
{
case OB_CAMERA: /* fall through. */
case OB_LAMP:
object->trackflag = OB_NEGZ;
object->upflag = OB_POSY;
break;
default:
object->trackflag = OB_POSY;
object->upflag = OB_POSZ;
}
object->ipoflag = OB_OFFS_OB + OB_OFFS_PARENT;
/* duplivert settings */
object->dupon = 1;
object->dupoff = 0;
object->dupsta = 1;
object->dupend = 100;
/* Gameengine defaults*/
object->mass = 1.0;
object->inertia = 1.0;
object->formfactor = 0.4;
object->damping = 0.04;
object->rdamping = 0.1;
object->anisotropicFriction[0] = 1.0;
object->anisotropicFriction[1] = 1.0;
object->anisotropicFriction[2] = 1.0;
object->gameflag = OB_PROP;
object->lay = 1; // Layer, by default visible
switch(type)
{
case OB_ARMATURE:
/* TODO: Do we need to add something to G? (see the OB_LAMP case) */
object->data = add_armature();
break;
case OB_CAMERA:
/* TODO: Do we need to add something to G? (see the OB_LAMP case) */
object->data = add_camera();
break;
case OB_CURVE:
object->data = add_curve(OB_CURVE);
G.totcurve++;
break;
case OB_LAMP:
object->data = add_lamp();
G.totlamp++;
break;
case OB_MESH:
object->data = add_mesh();
G.totmesh++;
break;
/* TODO the following types will be supported later
case OB_SURF:
object->data = add_curve(OB_SURF);
G.totcurve++;
break;
case OB_FONT:
object->data = add_curve(OB_FONT);
break;
case OB_MBALL:
object->data = add_mball();
break;
case OB_IKA:
object->data = add_ika();
object->dt = OB_WIRE;
break;
case OB_LATTICE:
object->data = (void *)add_lattice();
object->dt = OB_WIRE;
break;
case OB_WAVE:
object->data = add_wave();
break;
*/
}
G.totobj++;
/* Create a Python object from it. */
blen_object = (BPy_Object*)PyObject_NEW (BPy_Object, &Object_Type);
blen_object->object = object;
blen_object->data = NULL;
blen_object->parent = NULL;
blen_object->track = NULL;
blen_object->ipo = NULL;
return ((PyObject*)blen_object);
}
/*****************************************************************************/
/* Function: M_Object_Get */
/* Python equivalent: Blender.Object.Get */
/*****************************************************************************/
PyObject *M_Object_Get(PyObject *self, PyObject *args)
{
struct Object * object;
char * name = NULL;
PyArg_ParseTuple(args, "|s", &name);
if (name != NULL)
{
BPy_Object * blen_object;
object = GetObjectByName (name);
if (object == NULL)
{
/* No object exists with the name specified in the argument name. */
return (PythonReturnErrorObject (PyExc_AttributeError,
"Unknown object specified."));
}
blen_object = (BPy_Object*)PyObject_NEW (BPy_Object, &Object_Type);
blen_object->object = object;
blen_object->parent = NULL;
blen_object->data = NULL;
blen_object->track = NULL;
blen_object->ipo = NULL;
return ((PyObject*)blen_object);
}
else
{
/* No argument has been given. Return a list of all objects by name. */
PyObject * obj_list;
ID * id_iter;
int index = 0;
obj_list = PyList_New (BLI_countlist (&(G.main->object)));
if (obj_list == NULL)
{
return (PythonReturnErrorObject (PyExc_SystemError,
"List creation failed."));
}
object = G.main->object.first;
id_iter = &(object->id);
while (id_iter)
{
PyObject * object;
object = PyString_FromString (GetIdName (id_iter));
if (object == NULL)
{
return (PythonReturnErrorObject (PyExc_SystemError,
"Python string creation failed."));
}
PyList_SetItem (obj_list, index, object);
id_iter = id_iter->next;
index++;
}
return (obj_list);
}
}
/*****************************************************************************/
/* Function: M_Object_GetSelected */
/* Python equivalent: Blender.Object.getSelected */
/*****************************************************************************/
static PyObject *M_Object_GetSelected (PyObject *self, PyObject *args)
{
BPy_Object * blen_object;
PyObject * list;
Base * base_iter;
printf ("In Object_GetSelected()\n");
list = PyList_New (0);
if ((G.scene->basact) &&
((G.scene->basact->flag & SELECT) &&
(G.scene->basact->lay & G.vd->lay)))
{
/* Active object is first in the list. */
blen_object = (BPy_Object*)PyObject_NEW (BPy_Object, &Object_Type);
if (blen_object == NULL)
{
Py_DECREF (list);
Py_INCREF (Py_None);
return (Py_None);
}
blen_object->object = G.scene->basact->object;
blen_object->data = NULL;
PyList_Append (list, (PyObject*)blen_object);
}
base_iter = G.scene->base.first;
while (base_iter)
{
if (((base_iter->flag & SELECT) &&
(base_iter->lay & G.vd->lay)) &&
(base_iter != G.scene->basact))
{
blen_object = (BPy_Object*)PyObject_NEW (BPy_Object, &Object_Type);
if (blen_object == NULL)
{
Py_DECREF (list);
Py_INCREF (Py_None);
return (Py_None);
}
blen_object->object = base_iter->object;
blen_object->data = NULL;
blen_object->parent = NULL;
blen_object->track = NULL;
blen_object->ipo = NULL;
PyList_Append (list, (PyObject*)blen_object);
}
base_iter = base_iter->next;
}
return (list);
}
/*****************************************************************************/
/* Function: initObject */
/*****************************************************************************/
PyObject *Object_Init (void)
{
PyObject * module;
Object_Type.ob_type = &PyType_Type;
module = Py_InitModule3("Blender.Object", M_Object_methods, M_Object_doc);
return (module);
}
/*****************************************************************************/
/* Python BPy_Object methods: */
/*****************************************************************************/
static PyObject *Object_clrParent (BPy_Object *self, PyObject *args)
{
int mode=0;
int fast=0;
if (!PyArg_ParseTuple (args, "|ii", &mode, &fast))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected one or two integers as arguments"));
}
/* Remove the link only, the object is still in the scene. */
self->object->parent = NULL;
self->parent = NULL;
if (mode == 2)
{
/* Keep transform */
apply_obmat (self->object);
}
if (!fast)
{
sort_baselist (G.scene);
}
Py_INCREF (Py_None);
return (Py_None);
}
static PyObject *Object_getData (BPy_Object *self)
{
PyObject * data_object;
//# int obj_id;
//# ID * id;
/* If there's a valid PyObject already, then just return that one. */
if (self->data != NULL)
{
Py_INCREF (self->data);
return (self->data);
}
/* If there's no data associated to the Object, then there's nothing to */
/* return. */
if (self->object->data == NULL)
{
Py_INCREF (Py_None);
return (Py_None);
}
data_object = NULL;
//#id = (ID*)self->object;
//#obj_id = MAKE_ID2 (id->name[0], id->name[1]);
switch (self->object->type)//#obj_id)
{
case OB_ARMATURE://#ID_AR:
data_object = Armature_CreatePyObject (self->object->data);
break;
case OB_CAMERA://#ID_CA:
data_object = Camera_CreatePyObject (self->object->data);
break;
case OB_CURVE://#ID_CU:
data_object = CurveCreatePyObject (self->object->data);
break;
case ID_IM:
data_object = Image_CreatePyObject (self->object->data);
break;
case ID_IP:
break;
case OB_LAMP://#ID_LA:
data_object = Lamp_CreatePyObject (self->object->data);
break;
case ID_MA:
break;
case OB_MESH://#ID_ME:
data_object = NMesh_CreatePyObject (self->object->data);
break;
case ID_OB:
data_object = Object_CreatePyObject (self->object->data);
break;
case ID_SCE:
break;
case ID_TXT:
break;
case ID_WO:
break;
default:
break;
}
if (data_object == NULL)
{
Py_INCREF (Py_None);
return (Py_None);
}
else
{
self->data = data_object;
Py_INCREF (data_object);
return (data_object);
}
}
static PyObject *Object_getDeformData (BPy_Object *self)
{
return (PythonReturnErrorObject (PyExc_NotImplementedError,
"getDeformData: not yet implemented"));
}
static PyObject *Object_getDeltaLocation (BPy_Object *self)
{
PyObject *attr = Py_BuildValue ("fff",
self->object->dloc[0],
self->object->dloc[1],
self->object->dloc[2]);
if (attr) return (attr);
return (PythonReturnErrorObject (PyExc_RuntimeError,
"couldn't get Object.dloc attributes"));
}
static PyObject *Object_getDrawMode (BPy_Object *self)
{
PyObject *attr = Py_BuildValue ("b", self->object->dtx);
if (attr) return (attr);
return (PythonReturnErrorObject (PyExc_RuntimeError,
"couldn't get Object.drawMode attribute"));
}
static PyObject *Object_getDrawType (BPy_Object *self)
{
PyObject *attr = Py_BuildValue ("b", self->object->dt);
if (attr) return (attr);
return (PythonReturnErrorObject (PyExc_RuntimeError,
"couldn't get Object.drawType attribute"));
}
static PyObject *Object_getEuler (BPy_Object *self)
{
PyObject *attr = Py_BuildValue ("fff",
self->object->drot[0],
self->object->drot[1],
self->object->drot[2]);
if (attr) return (attr);
return (PythonReturnErrorObject (PyExc_RuntimeError,
"couldn't get Object.drot attributes"));
}
static PyObject *Object_getInverseMatrix (BPy_Object *self)
{
Object * ob;
float inverse[4][4];
ob = self->object->data;
Mat4Invert (inverse, ob->obmat);
return (newMatrixObject (inverse));
}
static PyObject *Object_getLocation (BPy_Object *self, PyObject *args)
{
PyObject *attr = Py_BuildValue ("fff",
self->object->loc[0],
self->object->loc[1],
self->object->loc[2]);
if (attr) return (attr);
return (PythonReturnErrorObject (PyExc_RuntimeError,
"couldn't get Object.loc attributes"));
}
static PyObject *Object_getMaterials (BPy_Object *self)
{
/* TODO: Implement when the Material module is implemented. */
return (PythonReturnErrorObject (PyExc_NotImplementedError,
"getMaterials: not yet implemented"));
}
static PyObject *Object_getMatrix (BPy_Object *self)
{
Object * ob;
ob = self->object->data;
return (newMatrixObject (ob->obmat));
}
static PyObject *Object_getName (BPy_Object *self)
{
PyObject *attr = Py_BuildValue ("s", self->object->id.name);
if (attr) return (attr);
return (PythonReturnErrorObject (PyExc_RuntimeError,
"couldn't get the name of the Object"));
}
static PyObject *Object_getParent (BPy_Object *self)
{
PyObject *attr;
if (self->parent)
{
Py_INCREF ((PyObject*)self->parent);
return ((PyObject*)self->parent);
}
if (self->object->parent == NULL)
{
return (EXPP_incr_ret (Py_None));
}
attr = Object_CreatePyObject (self->object->parent);
if (attr)
{
self->parent = (struct BPy_Object*)attr;
return (attr);
}
return (PythonReturnErrorObject (PyExc_RuntimeError,
"couldn't get Object.parent attribute"));
}
static PyObject *Object_getTracked (BPy_Object *self)
{
PyObject *attr;
if (self->track)
{
Py_INCREF ((PyObject*)self->track);
return ((PyObject*)self->track);
}
/* TODO: what if self->object->track==NULL? Should we return Py_None? */
attr = Object_CreatePyObject (self->object->track);
if (attr)
{
self->track = (struct BPy_Object*)attr;
return (attr);
}
return (PythonReturnErrorObject (PyExc_RuntimeError,
"couldn't get Object.track attribute"));
}
static PyObject *Object_getType (BPy_Object *self)
{
switch (self->object->type)
{
case OB_ARMATURE: return (Py_BuildValue ("s", "Armature"));
case OB_CAMERA: return (Py_BuildValue ("s", "Camera"));
case OB_CURVE: return (Py_BuildValue ("s", "Curve"));
case OB_EMPTY: return (Py_BuildValue ("s", "Empty"));
case OB_FONT: return (Py_BuildValue ("s", "Text"));
case OB_IKA: return (Py_BuildValue ("s", "Ika"));
case OB_LAMP: return (Py_BuildValue ("s", "Lamp"));
case OB_LATTICE: return (Py_BuildValue ("s", "Lattice"));
case OB_MBALL: return (Py_BuildValue ("s", "MBall"));
case OB_MESH: return (Py_BuildValue ("s", "Mesh"));
case OB_SURF: return (Py_BuildValue ("s", "Surf"));
case OB_WAVE: return (Py_BuildValue ("s", "Wave"));
default: return (Py_BuildValue ("s", "unknown"));
}
}
static PyObject *Object_link (BPy_Object *self, PyObject *args)
{
PyObject * py_data;
ID * id;
ID * oldid;
int obj_id;
void * data = NULL;
if (!PyArg_ParseTuple (args, "O", &py_data))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected an object as argument"));
}
if (Camera_CheckPyObject (py_data))
data = (void *)Camera_FromPyObject (py_data);
if (Lamp_CheckPyObject (py_data))
data = (void *)Lamp_FromPyObject (py_data);
/* TODO: add the (N)Mesh check and from functions here when finished. */
oldid = (ID*) self->object->data;
id = (ID*) data;
obj_id = MAKE_ID2 (id->name[0], id->name[1]);
switch (obj_id)
{
case ID_CA:
if (self->object->type != OB_CAMERA)
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"The 'link' object is incompatible with the base object"));
}
break;
case ID_LA:
if (self->object->type != OB_LAMP)
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"The 'link' object is incompatible with the base object"));
}
break;
case ID_ME:
if (self->object->type != OB_MESH)
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"The 'link' object is incompatible with the base object"));
}
break;
default:
return (PythonReturnErrorObject (PyExc_AttributeError,
"Linking this object type is not supported"));
}
self->object->data = data;
self->data = py_data;
id_us_plus (id);
if (oldid)
{
if (oldid->us > 0)
{
oldid->us--;
}
else
{
return (PythonReturnErrorObject (PyExc_RuntimeError,
"old object reference count below 0"));
}
}
return (Py_None);
}
static PyObject *Object_makeParent (BPy_Object *self, PyObject *args)
{
PyObject * list;
PyObject * py_child;
BPy_Object * py_obj_child;
Object * child;
Object * parent;
int noninverse = 0;
int fast = 0;
int i;
/* Check if the arguments passed to makeParent are valid. */
if (!PyArg_ParseTuple (args, "O|ii", &list, &noninverse, &fast))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected a list of objects and one or two integers as arguments"));
}
if (!PySequence_Check (list))
{
return (PythonReturnErrorObject (PyExc_TypeError,
"expected a list of objects"));
}
/* Check if the PyObject passed in list is a Blender object. */
for (i=0 ; i<PySequence_Length (list) ; i++)
{
child = NULL;
py_child = PySequence_GetItem (list, i);
if (Object_CheckPyObject (py_child))
child = (Object*) Object_FromPyObject (py_child);
if (child == NULL)
{
return (PythonReturnErrorObject (PyExc_TypeError,
"Object Type expected"));
}
parent = (Object*)self->object;
if (test_parent_loop (parent, child))
{
return (PythonReturnErrorObject (PyExc_RuntimeError,
"parenting loop detected - parenting failed"));
}
child->partype = PAROBJECT;
child->parent = parent;
py_obj_child = (BPy_Object *) py_child;
py_obj_child->parent = (struct BPy_Object *)self;
if (noninverse == 1)
{
/* Parent inverse = unity */
child->loc[0] = 0.0;
child->loc[1] = 0.0;
child->loc[2] = 0.0;
}
else
{
what_does_parent (child);
Mat4Invert (child->parentinv, parent->obmat);
}
if (!fast)
{
sort_baselist (G.scene);
}
/* We don't need the child object anymore. */
Py_DECREF ((PyObject *) child);
}
return (Py_None);
}
static PyObject *Object_materialUsage (BPy_Object *self, PyObject *args)
{
return (PythonReturnErrorObject (PyExc_NotImplementedError,
"materialUsage: not yet implemented"));
}
static PyObject *Object_setDeltaLocation (BPy_Object *self, PyObject *args)
{
float dloc1;
float dloc2;
float dloc3;
if (!PyArg_Parse (args, "fff", &dloc1, &dloc2, &dloc3))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected three float arguments"));
}
self->object->dloc[1] = dloc1;
self->object->dloc[2] = dloc2;
self->object->dloc[3] = dloc3;
Py_INCREF (Py_None);
return (Py_None);
}
static PyObject *Object_setDrawMode (BPy_Object *self, PyObject *args)
{
char dt;
if (!PyArg_Parse (args, "b", &dt))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected an integer as argument"));
}
self->object->dt = dt;
Py_INCREF (Py_None);
return (Py_None);
}
static PyObject *Object_setDrawType (BPy_Object *self, PyObject *args)
{
char dtx;
if (!PyArg_Parse (args, "b", &dtx))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected an integer as argument"));
}
self->object->dtx = dtx;
Py_INCREF (Py_None);
return (Py_None);
}
static PyObject *Object_setEuler (BPy_Object *self, PyObject *args)
{
float drot1;
float drot2;
float drot3;
if (!PyArg_Parse (args, "fff", &drot1, &drot2, &drot3))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected three float arguments"));
}
self->object->drot[1] = drot1;
self->object->drot[2] = drot2;
self->object->drot[3] = drot3;
Py_INCREF (Py_None);
return (Py_None);
}
static PyObject *Object_setLocation (BPy_Object *self, PyObject *args)
{
float loc1;
float loc2;
float loc3;
if (!PyArg_Parse (args, "fff", &loc1, &loc2, &loc3))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected three float arguments"));
}
self->object->loc[1] = loc1;
self->object->loc[2] = loc2;
self->object->loc[3] = loc3;
Py_INCREF (Py_None);
return (Py_None);
}
static PyObject *Object_setMaterials (BPy_Object *self, PyObject *args)
{
#if 0
PyObject * list;
int len;
int i;
Material ** matlist;
if (!PyArg_Parse (args, "O", &list))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected a list of materials as argument"));
}
len = PySequence_Length (list);
if (len > 0)
{
matlist = EXPP_newMaterialList_fromPyList (list);
if (!matlist)
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"material list must be a list of valid materials!"));
}
if ((len < 0) || (len > MAXMAT))
{
return (PythonReturnErrorObject (PyExc_RuntimeError,
"illegal material index!"));
}
if (self->object->mat)
{
/* TODO: create replacement function */
releaseMaterialList (self->object->mat, len);
}
/* Increase the user count on all materials */
for (i=0 ; i<len ; i++)
{
id_us_plus ((ID *) matlist[i]);
}
self->object->mat = matlist;
self->object->totcol = len;
self->object->actcol = -1;
switch (self->object->type)
{
case OB_CURVE: /* fall through */
case OB_FONT: /* fall through */
case OB_MESH: /* fall through */
case OB_MBALL: /* fall through */
case OB_SURF
/* TODO: create replacement function */:
synchronizeMaterialLists (self->object, self->object->data);
break;
default:
break;
}
}
return (Py_None);
#endif
return (PythonReturnErrorObject (PyExc_NotImplementedError,
"setMaterials: not yet implemented"));
}
static PyObject *Object_setName (BPy_Object *self, PyObject *args)
{
char * name;
int length;
if (!PyArg_Parse (args, "s#", &name, &length))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected a String as argument"));
}
if (length > 23)
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"name argument may not exceed 23 characters"));
}
free (self->object->id.name);
strncpy (self->object->id.name, name, length);
Py_INCREF (Py_None);
return (Py_None);
}
static PyObject *Object_shareFrom (BPy_Object *self, PyObject *args)
{
BPy_Object * object;
ID * id;
ID * oldid;
if (!PyArg_Parse (args, "O", &object))
{
PythonReturnErrorObject (PyExc_AttributeError,
"expected an object argument");
return (NULL);
}
if (!Object_CheckPyObject ((PyObject*)object))
{
PythonReturnErrorObject (PyExc_TypeError,
"argument 1 is not of type 'Object'");
return (NULL);
}
if (self->object->type != object->object->type)
{
PythonReturnErrorObject (PyExc_TypeError,
"objects are not of same data type");
return (NULL);
}
switch (self->object->type)
{
case OB_MESH:
oldid = (ID*) self->object->data;
id = (ID*) object->data;
self->object->data = object->data;
if (self->data != NULL)
{
Py_DECREF (self->data);
self->data = NULL;
}
id_us_plus (id);
if (oldid)
{
if (oldid->us > 0)
{
oldid->us--;
}
else
{
return (PythonReturnErrorObject (PyExc_RuntimeError,
"old object reference count below 0"));
}
}
Py_INCREF (Py_None);
return (Py_None);
default:
PythonReturnErrorObject (PyExc_TypeError,
"type not supported");
return (NULL);
}
Py_INCREF (Py_None);
return (Py_None);
}
/*****************************************************************************/
/* Function: Object_CreatePyObject */
/* Description: This function will create a new BlenObject from an existing */
/* Object structure. */
/*****************************************************************************/
PyObject* Object_CreatePyObject (struct Object *obj)
{
BPy_Object * blen_object;
blen_object = (BPy_Object*)PyObject_NEW (BPy_Object, &Object_Type);
if (blen_object == NULL)
{
return (NULL);
}
blen_object->object = obj;
return ((PyObject*)blen_object);
}
/*****************************************************************************/
/* Function: Object_CheckPyObject */
/* Description: This function returns true when the given PyObject is of the */
/* type Object. Otherwise it will return false. */
/*****************************************************************************/
int Object_CheckPyObject (PyObject *py_obj)
{
return (py_obj->ob_type == &Object_Type);
}
/*****************************************************************************/
/* Function: Object_FromPyObject */
/* Description: This function returns the Blender object from the given */
/* PyObject. */
/*****************************************************************************/
struct Object* Object_FromPyObject (PyObject *py_obj)
{
BPy_Object * blen_obj;
blen_obj = (BPy_Object*)py_obj;
return (blen_obj->object);
}
/*****************************************************************************/
/* Function: Object_dealloc */
/* Description: This is a callback function for the BlenObject type. It is */
/* the destructor function. */
/*****************************************************************************/
static void Object_dealloc (BPy_Object *obj)
{
PyObject_DEL (obj);
}
/*****************************************************************************/
/* Function: Object_getAttr */
/* Description: This is a callback function for the BlenObject type. It is */
/* the function that retrieves any value from Blender and */
/* passes it to Python. */
/*****************************************************************************/
static PyObject* Object_getAttr (BPy_Object *obj, char *name)
{
struct Object * object;
struct Ika * ika;
object = obj->object;
if (StringEqual (name, "LocX"))
return (PyFloat_FromDouble(object->loc[0]));
if (StringEqual (name, "LocY"))
return (PyFloat_FromDouble(object->loc[1]));
if (StringEqual (name, "LocZ"))
return (PyFloat_FromDouble(object->loc[2]));
if (StringEqual (name, "loc"))
return (Py_BuildValue ("fff", object->loc[0], object->loc[1],
object->loc[2]));
if (StringEqual (name, "dLocX"))
return (PyFloat_FromDouble(object->dloc[0]));
if (StringEqual (name, "dLocY"))
return (PyFloat_FromDouble(object->dloc[1]));
if (StringEqual (name, "dLocZ"))
return (PyFloat_FromDouble(object->dloc[2]));
if (StringEqual (name, "dloc"))
return (Py_BuildValue ("fff", object->dloc[0], object->dloc[1],
object->dloc[2]));
if (StringEqual (name, "RotX"))
return (PyFloat_FromDouble(object->rot[0]));
if (StringEqual (name, "RotY"))
return (PyFloat_FromDouble(object->rot[1]));
if (StringEqual (name, "RotZ"))
return (PyFloat_FromDouble(object->rot[2]));
if (StringEqual (name, "rot"))
return (Py_BuildValue ("fff", object->rot[0], object->rot[1],
object->rot[2]));
if (StringEqual (name, "dRotX"))
return (PyFloat_FromDouble(object->drot[0]));
if (StringEqual (name, "dRotY"))
return (PyFloat_FromDouble(object->drot[1]));
if (StringEqual (name, "dRotZ"))
return (PyFloat_FromDouble(object->drot[2]));
if (StringEqual (name, "drot"))
return (Py_BuildValue ("fff", object->drot[0], object->drot[1],
object->drot[2]));
if (StringEqual (name, "SizeX"))
return (PyFloat_FromDouble(object->size[0]));
if (StringEqual (name, "SizeY"))
return (PyFloat_FromDouble(object->size[1]));
if (StringEqual (name, "SizeZ"))
return (PyFloat_FromDouble(object->size[2]));
if (StringEqual (name, "size"))
return (Py_BuildValue ("fff", object->size[0], object->size[1],
object->size[2]));
if (StringEqual (name, "dSizeX"))
return (PyFloat_FromDouble(object->dsize[0]));
if (StringEqual (name, "dSizeY"))
return (PyFloat_FromDouble(object->dsize[1]));
if (StringEqual (name, "dSizeZ"))
return (PyFloat_FromDouble(object->dsize[2]));
if (StringEqual (name, "dsize"))
return (Py_BuildValue ("fff", object->dsize[0], object->dsize[1],
object->dsize[2]));
if (strncmp (name,"Eff", 3) == 0)
{
if ( (object->type == OB_IKA) && (object->data != NULL) )
{
ika = object->data;
switch (name[3])
{
case 'X':
return (PyFloat_FromDouble (ika->effg[0]));
case 'Y':
return (PyFloat_FromDouble (ika->effg[1]));
case 'Z':
return (PyFloat_FromDouble (ika->effg[2]));
default:
/* Do we need to display a sensible error message here? */
return (NULL);
}
}
return (NULL);
}
if (StringEqual (name, "Layer"))
return (PyInt_FromLong(object->lay));
if (StringEqual (name, "parent"))
return (Object_CreatePyObject (object->parent));
if (StringEqual (name, "track"))
return (Object_CreatePyObject (object->track));
if (StringEqual (name, "data"))
return (Object_getData (obj));
if (StringEqual (name, "ipo"))
{
if (obj->ipo == NULL)
{
obj->ipo = Ipo_CreatePyObject (object->ipo);
}
else
{
if (Ipo_FromPyObject (obj->ipo) != object->ipo)
{
/* The ipo object has changed, so decref the original */
/* py_ipo object, and create a new one. */
Py_DECREF (obj->ipo);
obj->ipo = Ipo_CreatePyObject (object->ipo);
}
}
Py_INCREF (obj->ipo);
return (obj->ipo);
}
if (StringEqual (name, "mat"))
return (Object_getMatrix (obj));
if (StringEqual (name, "matrix"))
return (Object_getMatrix (obj));
if (StringEqual (name, "colbits"))
return (Py_BuildValue ("h", object->colbits));
if (StringEqual (name, "drawType"))
return (Py_BuildValue ("b", object->dt));
if (StringEqual (name, "drawMode"))
return (Py_BuildValue ("b", object->dtx));
if (StringEqual (name, "name"))
return (Py_BuildValue ("s", object->id.name));
/* not an attribute, search the methods table */
return Py_FindMethod(BPy_Object_methods, (PyObject *)obj, name);
}
/*****************************************************************************/
/* Function: Object_setAttr */
/* Description: This is a callback function for the BlenObject type. It is */
/* the function that retrieves any value from Python and sets */
/* it accordingly in Blender. */
/*****************************************************************************/
static int Object_setAttr (BPy_Object *obj, char *name, PyObject *value)
{
struct Object * object;
struct Ika * ika;
object = obj->object;
if (StringEqual (name, "LocX"))
return (!PyArg_Parse (value, "f", &(object->loc[0])));
if (StringEqual (name, "LocY"))
return (!PyArg_Parse (value, "f", &(object->loc[1])));
if (StringEqual (name, "LocZ"))
return (!PyArg_Parse (value, "f", &(object->loc[2])));
if (StringEqual (name, "loc"))
{
if (Object_setLocation (obj, value) != Py_None)
return (-1);
else
return (0);
}
if (StringEqual (name, "dLocX"))
return (!PyArg_Parse (value, "f", &(object->dloc[0])));
if (StringEqual (name, "dLocY"))
return (!PyArg_Parse (value, "f", &(object->dloc[1])));
if (StringEqual (name, "dLocZ"))
return (!PyArg_Parse (value, "f", &(object->dloc[2])));
if (StringEqual (name, "dloc"))
{
if (Object_setDeltaLocation (obj, value) != Py_None)
return (-1);
else
return (0);
}
if (StringEqual (name, "RotX"))
return (!PyArg_Parse (value, "f", &(object->rot[0])));
if (StringEqual (name, "RotY"))
return (!PyArg_Parse (value, "f", &(object->rot[1])));
if (StringEqual (name, "RotZ"))
return (!PyArg_Parse (value, "f", &(object->rot[2])));
if (StringEqual (name, "rot"))
{
if (Object_setEuler (obj, value) != Py_None)
return (-1);
else
return (0);
}
if (StringEqual (name, "dRotX"))
return (!PyArg_Parse (value, "f", &(object->drot[0])));
if (StringEqual (name, "dRotY"))
return (!PyArg_Parse (value, "f", &(object->drot[1])));
if (StringEqual (name, "dRotZ"))
return (!PyArg_Parse (value, "f", &(object->drot[2])));
if (StringEqual (name, "drot"))
return (!PyArg_Parse (value, "fff", &(object->drot[0]),
&(object->drot[1]), &(object->drot[2])));
if (StringEqual (name, "SizeX"))
return (!PyArg_Parse (value, "f", &(object->size[0])));
if (StringEqual (name, "SizeY"))
return (!PyArg_Parse (value, "f", &(object->size[1])));
if (StringEqual (name, "SizeZ"))
return (!PyArg_Parse (value, "f", &(object->size[2])));
if (StringEqual (name, "size"))
return (!PyArg_Parse (value, "fff", &(object->size[0]),
&(object->size[1]), &(object->size[2])));
if (StringEqual (name, "dSizeX"))
return (!PyArg_Parse (value, "f", &(object->dsize[0])));
if (StringEqual (name, "dSizeY"))
return (!PyArg_Parse (value, "f", &(object->dsize[1])));
if (StringEqual (name, "dSizeZ"))
return (!PyArg_Parse (value, "f", &(object->dsize[2])));
if (StringEqual (name, "dsize"))
return (!PyArg_Parse (value, "fff", &(object->dsize[0]),
&(object->dsize[1]), &(object->dsize[2])));
if (strncmp (name,"Eff", 3) == 0)
{
if ( (object->type == OB_IKA) && (object->data != NULL) )
{
ika = object->data;
switch (name[3])
{
case 'X':
return (!PyArg_Parse (value, "f", &(ika->effg[0])));
case 'Y':
return (!PyArg_Parse (value, "f", &(ika->effg[1])));
case 'Z':
return (!PyArg_Parse (value, "f", &(ika->effg[2])));
default:
/* Do we need to display a sensible error message here? */
return (0);
}
}
return (0);
}
if (StringEqual (name, "Layer"))
return (!PyArg_Parse (value, "i", &(object->lay)));
if (StringEqual (name, "parent"))
{
/* This is not allowed. */
PythonReturnErrorObject (PyExc_AttributeError,
"Setting the parent is not allowed.");
return (0);
}
if (StringEqual (name, "track"))
{
/* This is not allowed. */
PythonReturnErrorObject (PyExc_AttributeError,
"Setting the track is not allowed.");
return (0);
}
if (StringEqual (name, "data"))
{
/* This is not allowed. */
PythonReturnErrorObject (PyExc_AttributeError,
"Setting the data is not allowed.");
return (0);
}
if (StringEqual (name, "ipo"))
{
/* This is not allowed. */
PythonReturnErrorObject (PyExc_AttributeError,
"Setting the ipo is not allowed.");
return (0);
}
if (StringEqual (name, "mat"))
{
/* This is not allowed. */
PythonReturnErrorObject (PyExc_AttributeError,
"Setting the matrix is not allowed.");
return (0);
}
if (StringEqual (name, "matrix"))
{
/* This is not allowed. */
PythonReturnErrorObject (PyExc_AttributeError,
"Setting the matrix is not allowed.");
return (0);
}
if (StringEqual (name, "colbits"))
return (!PyArg_Parse (value, "h", &(object->colbits)));
if (StringEqual (name, "drawType"))
{
if (Object_setDrawType (obj, value) != Py_None)
return (-1);
else
return (0);
}
if (StringEqual (name, "drawMode"))
{
if (Object_setDrawMode (obj, value) != Py_None)
return (-1);
else
return (0);
}
if (StringEqual (name, "name"))
{
if (Object_setName (obj, value) != Py_None)
return (-1);
else
return (0);
}
printf ("Unknown variable.\n");
return (0);
}
/*****************************************************************************/
/* Function: Object_compare */
/* Description: This is a callback function for the BPy_Object type. It */
/* compares two Object_Type objects. Only the "==" and "!=" */
/* comparisons are meaninful. Returns 0 for equality and -1 if */
/* they don't point to the same Blender Object struct. */
/* In Python it becomes 1 if they are equal, 0 otherwise. */
/*****************************************************************************/
static int Object_compare (BPy_Object *a, BPy_Object *b)
{
Object *pa = a->object, *pb = b->object;
return (pa == pb) ? 0:-1;
}
/*****************************************************************************/
/* Function: Object_print */
/* Description: This is a callback function for the BPy_Object type. It */
/* builds a meaninful string to 'print' object objects. */
/*****************************************************************************/
static int Object_print(BPy_Object *self, FILE *fp, int flags)
{
fprintf(fp, "[Object \"%s\"]", self->object->id.name+2);
return 0;
}
/*****************************************************************************/
/* Function: Object_repr */
/* Description: This is a callback function for the BPy_Object type. It */
/* builds a meaninful string to represent object objects. */
/*****************************************************************************/
static PyObject *Object_repr (BPy_Object *self)
{
return PyString_FromString(self->object->id.name+2);
}