2288 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2288 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 | 
						|
 * The Original Code is: some of this file.
 | 
						|
 *
 | 
						|
 * */
 | 
						|
 | 
						|
/** \file blender/blenlib/intern/math_rotation.c
 | 
						|
 *  \ingroup bli
 | 
						|
 */
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
#include "BLI_math.h"
 | 
						|
 | 
						|
#include "BLI_strict_flags.h"
 | 
						|
 | 
						|
/******************************** Quaternions ********************************/
 | 
						|
 | 
						|
/* used to test is a quat is not normalized (only used for debug prints) */
 | 
						|
#ifdef DEBUG
 | 
						|
#  define QUAT_EPSILON 0.0001
 | 
						|
#endif
 | 
						|
 | 
						|
/* convenience, avoids setting Y axis everywhere */
 | 
						|
void unit_axis_angle(float axis[3], float *angle)
 | 
						|
{
 | 
						|
	axis[0] = 0.0f;
 | 
						|
	axis[1] = 1.0f;
 | 
						|
	axis[2] = 0.0f;
 | 
						|
	*angle = 0.0f;
 | 
						|
}
 | 
						|
 | 
						|
void unit_qt(float q[4])
 | 
						|
{
 | 
						|
	q[0] = 1.0f;
 | 
						|
	q[1] = q[2] = q[3] = 0.0f;
 | 
						|
}
 | 
						|
 | 
						|
void copy_qt_qt(float q1[4], const float q2[4])
 | 
						|
{
 | 
						|
	q1[0] = q2[0];
 | 
						|
	q1[1] = q2[1];
 | 
						|
	q1[2] = q2[2];
 | 
						|
	q1[3] = q2[3];
 | 
						|
}
 | 
						|
 | 
						|
bool is_zero_qt(const float q[4])
 | 
						|
{
 | 
						|
	return (q[0] == 0 && q[1] == 0 && q[2] == 0 && q[3] == 0);
 | 
						|
}
 | 
						|
 | 
						|
void mul_qt_qtqt(float q[4], const float q1[4], const float q2[4])
 | 
						|
{
 | 
						|
	float t0, t1, t2;
 | 
						|
 | 
						|
	t0 = q1[0] * q2[0] - q1[1] * q2[1] - q1[2] * q2[2] - q1[3] * q2[3];
 | 
						|
	t1 = q1[0] * q2[1] + q1[1] * q2[0] + q1[2] * q2[3] - q1[3] * q2[2];
 | 
						|
	t2 = q1[0] * q2[2] + q1[2] * q2[0] + q1[3] * q2[1] - q1[1] * q2[3];
 | 
						|
	q[3] = q1[0] * q2[3] + q1[3] * q2[0] + q1[1] * q2[2] - q1[2] * q2[1];
 | 
						|
	q[0] = t0;
 | 
						|
	q[1] = t1;
 | 
						|
	q[2] = t2;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * \note:
 | 
						|
 * Assumes a unit quaternion?
 | 
						|
 *
 | 
						|
 * in fact not, but you may want to use a unit quat, read on...
 | 
						|
 *
 | 
						|
 * Shortcut for 'q v q*' when \a v is actually a quaternion.
 | 
						|
 * This removes the need for converting a vector to a quaternion,
 | 
						|
 * calculating q's conjugate and converting back to a vector.
 | 
						|
 * It also happens to be faster (17+,24* vs * 24+,32*).
 | 
						|
 * If \a q is not a unit quaternion, then \a v will be both rotated by
 | 
						|
 * the same amount as if q was a unit quaternion, and scaled by the square of
 | 
						|
 * the length of q.
 | 
						|
 *
 | 
						|
 * For people used to python mathutils, its like:
 | 
						|
 * def mul_qt_v3(q, v): (q * Quaternion((0.0, v[0], v[1], v[2])) * q.conjugated())[1:]
 | 
						|
 *
 | 
						|
 * \note: multiplying by 3x3 matrix is ~25% faster.
 | 
						|
 */
 | 
						|
void mul_qt_v3(const float q[4], float v[3])
 | 
						|
{
 | 
						|
	float t0, t1, t2;
 | 
						|
 | 
						|
	t0 = -q[1] * v[0] - q[2] * v[1] - q[3] * v[2];
 | 
						|
	t1 = q[0] * v[0] + q[2] * v[2] - q[3] * v[1];
 | 
						|
	t2 = q[0] * v[1] + q[3] * v[0] - q[1] * v[2];
 | 
						|
	v[2] = q[0] * v[2] + q[1] * v[1] - q[2] * v[0];
 | 
						|
	v[0] = t1;
 | 
						|
	v[1] = t2;
 | 
						|
 | 
						|
	t1 = t0 * -q[1] + v[0] * q[0] - v[1] * q[3] + v[2] * q[2];
 | 
						|
	t2 = t0 * -q[2] + v[1] * q[0] - v[2] * q[1] + v[0] * q[3];
 | 
						|
	v[2] = t0 * -q[3] + v[2] * q[0] - v[0] * q[2] + v[1] * q[1];
 | 
						|
	v[0] = t1;
 | 
						|
	v[1] = t2;
 | 
						|
}
 | 
						|
 | 
						|
void conjugate_qt_qt(float q1[4], const float q2[4])
 | 
						|
{
 | 
						|
	q1[0] =  q2[0];
 | 
						|
	q1[1] = -q2[1];
 | 
						|
	q1[2] = -q2[2];
 | 
						|
	q1[3] = -q2[3];
 | 
						|
}
 | 
						|
 | 
						|
void conjugate_qt(float q[4])
 | 
						|
{
 | 
						|
	q[1] = -q[1];
 | 
						|
	q[2] = -q[2];
 | 
						|
	q[3] = -q[3];
 | 
						|
}
 | 
						|
 | 
						|
float dot_qtqt(const float q1[4], const float q2[4])
 | 
						|
{
 | 
						|
	return q1[0] * q2[0] + q1[1] * q2[1] + q1[2] * q2[2] + q1[3] * q2[3];
 | 
						|
}
 | 
						|
 | 
						|
void invert_qt(float q[4])
 | 
						|
{
 | 
						|
	const float f = dot_qtqt(q, q);
 | 
						|
 | 
						|
	if (f == 0.0f)
 | 
						|
		return;
 | 
						|
 | 
						|
	conjugate_qt(q);
 | 
						|
	mul_qt_fl(q, 1.0f / f);
 | 
						|
}
 | 
						|
 | 
						|
void invert_qt_qt(float q1[4], const float q2[4])
 | 
						|
{
 | 
						|
	copy_qt_qt(q1, q2);
 | 
						|
	invert_qt(q1);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * This is just conjugate_qt for cases we know \a q is unit-length.
 | 
						|
 * we could use #conjugate_qt directly, but use this function to show intent,
 | 
						|
 * and assert if its ever becomes non-unit-length.
 | 
						|
 */
 | 
						|
void invert_qt_normalized(float q[4])
 | 
						|
{
 | 
						|
	BLI_ASSERT_UNIT_QUAT(q);
 | 
						|
	conjugate_qt(q);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void invert_qt_qt_normalized(float q1[4], const float q2[4])
 | 
						|
{
 | 
						|
	copy_qt_qt(q1, q2);
 | 
						|
	invert_qt_normalized(q1);
 | 
						|
}
 | 
						|
 | 
						|
/* simple mult */
 | 
						|
void mul_qt_fl(float q[4], const float f)
 | 
						|
{
 | 
						|
	q[0] *= f;
 | 
						|
	q[1] *= f;
 | 
						|
	q[2] *= f;
 | 
						|
	q[3] *= f;
 | 
						|
}
 | 
						|
 | 
						|
void sub_qt_qtqt(float q[4], const float q1[4], const float q2[4])
 | 
						|
{
 | 
						|
	float nq2[4];
 | 
						|
 | 
						|
	nq2[0] = -q2[0];
 | 
						|
	nq2[1] = q2[1];
 | 
						|
	nq2[2] = q2[2];
 | 
						|
	nq2[3] = q2[3];
 | 
						|
 | 
						|
	mul_qt_qtqt(q, q1, nq2);
 | 
						|
}
 | 
						|
 | 
						|
/* raise a unit quaternion to the specified power */
 | 
						|
void pow_qt_fl_normalized(float q[4], const float fac)
 | 
						|
{
 | 
						|
	BLI_ASSERT_UNIT_QUAT(q);
 | 
						|
	const float angle = fac * saacos(q[0]); /* quat[0] = cos(0.5 * angle),
 | 
						|
	                                         * but now the 0.5 and 2.0 rule out */
 | 
						|
	const float co = cosf(angle);
 | 
						|
	const float si = sinf(angle);
 | 
						|
	q[0] = co;
 | 
						|
	normalize_v3_length(q + 1, si);
 | 
						|
}
 | 
						|
 | 
						|
/* skip error check, currently only needed by mat3_to_quat_is_ok */
 | 
						|
static void quat_to_mat3_no_error(float m[3][3], const float q[4])
 | 
						|
{
 | 
						|
	double q0, q1, q2, q3, qda, qdb, qdc, qaa, qab, qac, qbb, qbc, qcc;
 | 
						|
 | 
						|
	q0 = M_SQRT2 * (double)q[0];
 | 
						|
	q1 = M_SQRT2 * (double)q[1];
 | 
						|
	q2 = M_SQRT2 * (double)q[2];
 | 
						|
	q3 = M_SQRT2 * (double)q[3];
 | 
						|
 | 
						|
	qda = q0 * q1;
 | 
						|
	qdb = q0 * q2;
 | 
						|
	qdc = q0 * q3;
 | 
						|
	qaa = q1 * q1;
 | 
						|
	qab = q1 * q2;
 | 
						|
	qac = q1 * q3;
 | 
						|
	qbb = q2 * q2;
 | 
						|
	qbc = q2 * q3;
 | 
						|
	qcc = q3 * q3;
 | 
						|
 | 
						|
	m[0][0] = (float)(1.0 - qbb - qcc);
 | 
						|
	m[0][1] = (float)(qdc + qab);
 | 
						|
	m[0][2] = (float)(-qdb + qac);
 | 
						|
 | 
						|
	m[1][0] = (float)(-qdc + qab);
 | 
						|
	m[1][1] = (float)(1.0 - qaa - qcc);
 | 
						|
	m[1][2] = (float)(qda + qbc);
 | 
						|
 | 
						|
	m[2][0] = (float)(qdb + qac);
 | 
						|
	m[2][1] = (float)(-qda + qbc);
 | 
						|
	m[2][2] = (float)(1.0 - qaa - qbb);
 | 
						|
}
 | 
						|
 | 
						|
void quat_to_mat3(float m[3][3], const float q[4])
 | 
						|
{
 | 
						|
#ifdef DEBUG
 | 
						|
	float f;
 | 
						|
	if (!((f = dot_qtqt(q, q)) == 0.0f || (fabsf(f - 1.0f) < (float)QUAT_EPSILON))) {
 | 
						|
		fprintf(stderr, "Warning! quat_to_mat3() called with non-normalized: size %.8f *** report a bug ***\n", f);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	quat_to_mat3_no_error(m, q);
 | 
						|
}
 | 
						|
 | 
						|
void quat_to_mat4(float m[4][4], const float q[4])
 | 
						|
{
 | 
						|
	double q0, q1, q2, q3, qda, qdb, qdc, qaa, qab, qac, qbb, qbc, qcc;
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
	if (!((q0 = dot_qtqt(q, q)) == 0.0 || (fabs(q0 - 1.0) < QUAT_EPSILON))) {
 | 
						|
		fprintf(stderr, "Warning! quat_to_mat4() called with non-normalized: size %.8f *** report a bug ***\n", (float)q0);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	q0 = M_SQRT2 * (double)q[0];
 | 
						|
	q1 = M_SQRT2 * (double)q[1];
 | 
						|
	q2 = M_SQRT2 * (double)q[2];
 | 
						|
	q3 = M_SQRT2 * (double)q[3];
 | 
						|
 | 
						|
	qda = q0 * q1;
 | 
						|
	qdb = q0 * q2;
 | 
						|
	qdc = q0 * q3;
 | 
						|
	qaa = q1 * q1;
 | 
						|
	qab = q1 * q2;
 | 
						|
	qac = q1 * q3;
 | 
						|
	qbb = q2 * q2;
 | 
						|
	qbc = q2 * q3;
 | 
						|
	qcc = q3 * q3;
 | 
						|
 | 
						|
	m[0][0] = (float)(1.0 - qbb - qcc);
 | 
						|
	m[0][1] = (float)(qdc + qab);
 | 
						|
	m[0][2] = (float)(-qdb + qac);
 | 
						|
	m[0][3] = 0.0f;
 | 
						|
 | 
						|
	m[1][0] = (float)(-qdc + qab);
 | 
						|
	m[1][1] = (float)(1.0 - qaa - qcc);
 | 
						|
	m[1][2] = (float)(qda + qbc);
 | 
						|
	m[1][3] = 0.0f;
 | 
						|
 | 
						|
	m[2][0] = (float)(qdb + qac);
 | 
						|
	m[2][1] = (float)(-qda + qbc);
 | 
						|
	m[2][2] = (float)(1.0 - qaa - qbb);
 | 
						|
	m[2][3] = 0.0f;
 | 
						|
 | 
						|
	m[3][0] = m[3][1] = m[3][2] = 0.0f;
 | 
						|
	m[3][3] = 1.0f;
 | 
						|
}
 | 
						|
 | 
						|
void mat3_normalized_to_quat(float q[4], float mat[3][3])
 | 
						|
{
 | 
						|
	double tr, s;
 | 
						|
 | 
						|
	BLI_ASSERT_UNIT_M3(mat);
 | 
						|
 | 
						|
	tr = 0.25 * (double)(1.0f + mat[0][0] + mat[1][1] + mat[2][2]);
 | 
						|
 | 
						|
	if (tr > (double)1e-4f) {
 | 
						|
		s = sqrt(tr);
 | 
						|
		q[0] = (float)s;
 | 
						|
		s = 1.0 / (4.0 * s);
 | 
						|
		q[1] = (float)((double)(mat[1][2] - mat[2][1]) * s);
 | 
						|
		q[2] = (float)((double)(mat[2][0] - mat[0][2]) * s);
 | 
						|
		q[3] = (float)((double)(mat[0][1] - mat[1][0]) * s);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (mat[0][0] > mat[1][1] && mat[0][0] > mat[2][2]) {
 | 
						|
			s = 2.0f * sqrtf(1.0f + mat[0][0] - mat[1][1] - mat[2][2]);
 | 
						|
			q[1] = (float)(0.25 * s);
 | 
						|
 | 
						|
			s = 1.0 / s;
 | 
						|
			q[0] = (float)((double)(mat[1][2] - mat[2][1]) * s);
 | 
						|
			q[2] = (float)((double)(mat[1][0] + mat[0][1]) * s);
 | 
						|
			q[3] = (float)((double)(mat[2][0] + mat[0][2]) * s);
 | 
						|
		}
 | 
						|
		else if (mat[1][1] > mat[2][2]) {
 | 
						|
			s = 2.0f * sqrtf(1.0f + mat[1][1] - mat[0][0] - mat[2][2]);
 | 
						|
			q[2] = (float)(0.25 * s);
 | 
						|
 | 
						|
			s = 1.0 / s;
 | 
						|
			q[0] = (float)((double)(mat[2][0] - mat[0][2]) * s);
 | 
						|
			q[1] = (float)((double)(mat[1][0] + mat[0][1]) * s);
 | 
						|
			q[3] = (float)((double)(mat[2][1] + mat[1][2]) * s);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			s = 2.0f * sqrtf(1.0f + mat[2][2] - mat[0][0] - mat[1][1]);
 | 
						|
			q[3] = (float)(0.25 * s);
 | 
						|
 | 
						|
			s = 1.0 / s;
 | 
						|
			q[0] = (float)((double)(mat[0][1] - mat[1][0]) * s);
 | 
						|
			q[1] = (float)((double)(mat[2][0] + mat[0][2]) * s);
 | 
						|
			q[2] = (float)((double)(mat[2][1] + mat[1][2]) * s);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	normalize_qt(q);
 | 
						|
}
 | 
						|
void mat3_to_quat(float q[4], float m[3][3])
 | 
						|
{
 | 
						|
	float unit_mat[3][3];
 | 
						|
 | 
						|
	/* work on a copy */
 | 
						|
	/* this is needed AND a 'normalize_qt' in the end */
 | 
						|
	normalize_m3_m3(unit_mat, m);
 | 
						|
	mat3_normalized_to_quat(q, unit_mat);
 | 
						|
}
 | 
						|
 | 
						|
void mat4_normalized_to_quat(float q[4], float m[4][4])
 | 
						|
{
 | 
						|
	float mat3[3][3];
 | 
						|
 | 
						|
	copy_m3_m4(mat3, m);
 | 
						|
	mat3_normalized_to_quat(q, mat3);
 | 
						|
}
 | 
						|
 | 
						|
void mat4_to_quat(float q[4], float m[4][4])
 | 
						|
{
 | 
						|
	float mat3[3][3];
 | 
						|
 | 
						|
	copy_m3_m4(mat3, m);
 | 
						|
	mat3_to_quat(q, mat3);
 | 
						|
}
 | 
						|
 | 
						|
void mat3_to_quat_is_ok(float q[4], float wmat[3][3])
 | 
						|
{
 | 
						|
	float mat[3][3], matr[3][3], matn[3][3], q1[4], q2[4], angle, si, co, nor[3];
 | 
						|
 | 
						|
	/* work on a copy */
 | 
						|
	copy_m3_m3(mat, wmat);
 | 
						|
	normalize_m3(mat);
 | 
						|
 | 
						|
	/* rotate z-axis of matrix to z-axis */
 | 
						|
 | 
						|
	nor[0] = mat[2][1]; /* cross product with (0,0,1) */
 | 
						|
	nor[1] = -mat[2][0];
 | 
						|
	nor[2] = 0.0;
 | 
						|
	normalize_v3(nor);
 | 
						|
 | 
						|
	co = mat[2][2];
 | 
						|
	angle = 0.5f * saacos(co);
 | 
						|
 | 
						|
	co = cosf(angle);
 | 
						|
	si = sinf(angle);
 | 
						|
	q1[0] = co;
 | 
						|
	q1[1] = -nor[0] * si; /* negative here, but why? */
 | 
						|
	q1[2] = -nor[1] * si;
 | 
						|
	q1[3] = -nor[2] * si;
 | 
						|
 | 
						|
	/* rotate back x-axis from mat, using inverse q1 */
 | 
						|
	quat_to_mat3_no_error(matr, q1);
 | 
						|
	invert_m3_m3(matn, matr);
 | 
						|
	mul_m3_v3(matn, mat[0]);
 | 
						|
 | 
						|
	/* and align x-axes */
 | 
						|
	angle = 0.5f * atan2f(mat[0][1], mat[0][0]);
 | 
						|
 | 
						|
	co = cosf(angle);
 | 
						|
	si = sinf(angle);
 | 
						|
	q2[0] = co;
 | 
						|
	q2[1] = 0.0f;
 | 
						|
	q2[2] = 0.0f;
 | 
						|
	q2[3] = si;
 | 
						|
 | 
						|
	mul_qt_qtqt(q, q1, q2);
 | 
						|
}
 | 
						|
 | 
						|
float normalize_qt(float q[4])
 | 
						|
{
 | 
						|
	const float len = sqrtf(dot_qtqt(q, q));
 | 
						|
 | 
						|
	if (len != 0.0f) {
 | 
						|
		mul_qt_fl(q, 1.0f / len);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		q[1] = 1.0f;
 | 
						|
		q[0] = q[2] = q[3] = 0.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
float normalize_qt_qt(float r[4], const float q[4])
 | 
						|
{
 | 
						|
	copy_qt_qt(r, q);
 | 
						|
	return normalize_qt(r);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate a rotation matrix from 2 normalized vectors.
 | 
						|
 */
 | 
						|
void rotation_between_vecs_to_mat3(float m[3][3], const float v1[3], const float v2[3])
 | 
						|
{
 | 
						|
	float axis[3];
 | 
						|
	/* avoid calculating the angle */
 | 
						|
	float angle_sin;
 | 
						|
	float angle_cos;
 | 
						|
 | 
						|
	BLI_ASSERT_UNIT_V3(v1);
 | 
						|
	BLI_ASSERT_UNIT_V3(v2);
 | 
						|
 | 
						|
	cross_v3_v3v3(axis, v1, v2);
 | 
						|
 | 
						|
	angle_sin = normalize_v3(axis);
 | 
						|
	angle_cos = dot_v3v3(v1, v2);
 | 
						|
 | 
						|
	if (angle_sin > FLT_EPSILON) {
 | 
						|
axis_calc:
 | 
						|
		BLI_ASSERT_UNIT_V3(axis);
 | 
						|
		axis_angle_normalized_to_mat3_ex(m, axis, angle_sin, angle_cos);
 | 
						|
		BLI_ASSERT_UNIT_M3(m);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (angle_cos > 0.0f) {
 | 
						|
			/* Same vectors, zero rotation... */
 | 
						|
			unit_m3(m);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* Colinear but opposed vectors, 180 rotation... */
 | 
						|
			ortho_v3_v3(axis, v1);
 | 
						|
			normalize_v3(axis);
 | 
						|
			angle_sin =  0.0f;  /* sin(M_PI) */
 | 
						|
			angle_cos = -1.0f;  /* cos(M_PI) */
 | 
						|
			goto axis_calc;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* note: expects vectors to be normalized */
 | 
						|
void rotation_between_vecs_to_quat(float q[4], const float v1[3], const float v2[3])
 | 
						|
{
 | 
						|
	float axis[3];
 | 
						|
 | 
						|
	cross_v3_v3v3(axis, v1, v2);
 | 
						|
 | 
						|
	if (normalize_v3(axis) > FLT_EPSILON) {
 | 
						|
		float angle;
 | 
						|
 | 
						|
		angle = angle_normalized_v3v3(v1, v2);
 | 
						|
 | 
						|
		axis_angle_normalized_to_quat(q, axis, angle);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* degenerate case */
 | 
						|
 | 
						|
		if (dot_v3v3(v1, v2) > 0.0f) {
 | 
						|
			/* Same vectors, zero rotation... */
 | 
						|
			unit_qt(q);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* Colinear but opposed vectors, 180 rotation... */
 | 
						|
			ortho_v3_v3(axis, v1);
 | 
						|
			axis_angle_to_quat(q, axis, (float)M_PI);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void rotation_between_quats_to_quat(float q[4], const float q1[4], const float q2[4])
 | 
						|
{
 | 
						|
	float tquat[4];
 | 
						|
 | 
						|
	conjugate_qt_qt(tquat, q1);
 | 
						|
 | 
						|
	mul_qt_fl(tquat, 1.0f / dot_qtqt(tquat, tquat));
 | 
						|
 | 
						|
	mul_qt_qtqt(q, tquat, q2);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* -------------------------------------------------------------------- */
 | 
						|
/** \name Quaternion Angle
 | 
						|
 *
 | 
						|
 * Unlike the angle between vectors, this does NOT return the shortest angle.
 | 
						|
 * See signed functions below for this.
 | 
						|
 *
 | 
						|
 * \{ */
 | 
						|
 | 
						|
float angle_normalized_qt(const float q[4])
 | 
						|
{
 | 
						|
	BLI_ASSERT_UNIT_QUAT(q);
 | 
						|
	return 2.0f * saacos(q[0]);
 | 
						|
}
 | 
						|
 | 
						|
float angle_qt(const float q[4])
 | 
						|
{
 | 
						|
	float tquat[4];
 | 
						|
 | 
						|
	normalize_qt_qt(tquat, q);
 | 
						|
 | 
						|
	return angle_normalized_qt(tquat);
 | 
						|
}
 | 
						|
 | 
						|
float angle_normalized_qtqt(const float q1[4], const float q2[4])
 | 
						|
{
 | 
						|
	float qdelta[4];
 | 
						|
 | 
						|
	BLI_ASSERT_UNIT_QUAT(q1);
 | 
						|
	BLI_ASSERT_UNIT_QUAT(q2);
 | 
						|
 | 
						|
	rotation_between_quats_to_quat(qdelta, q1, q2);
 | 
						|
 | 
						|
	return angle_normalized_qt(qdelta);
 | 
						|
}
 | 
						|
 | 
						|
float angle_qtqt(const float q1[4], const float q2[4])
 | 
						|
{
 | 
						|
	float quat1[4], quat2[4];
 | 
						|
 | 
						|
	normalize_qt_qt(quat1, q1);
 | 
						|
	normalize_qt_qt(quat2, q2);
 | 
						|
 | 
						|
	return angle_normalized_qtqt(quat1, quat2);
 | 
						|
}
 | 
						|
 | 
						|
/** \} */
 | 
						|
 | 
						|
/* -------------------------------------------------------------------- */
 | 
						|
/** \name Quaternion Angle (Signed)
 | 
						|
 *
 | 
						|
 * Angles with quaternion calculation can exceed 180d,
 | 
						|
 * Having signed versions of these functions allows 'fabsf(angle_signed_qtqt(...))'
 | 
						|
 * to give us the shortest angle between quaternions.
 | 
						|
 * With higher precision than subtracting pi afterwards.
 | 
						|
 *
 | 
						|
 * \{ */
 | 
						|
 | 
						|
float angle_signed_normalized_qt(const float q[4])
 | 
						|
{
 | 
						|
	BLI_ASSERT_UNIT_QUAT(q);
 | 
						|
	if (q[0] >= 0.0f) {
 | 
						|
		return 2.0f * saacos(q[0]);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return -2.0f * saacos(-q[0]);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
float angle_signed_normalized_qtqt(const float q1[4], const float q2[4])
 | 
						|
{
 | 
						|
	if (dot_qtqt(q1, q2) >= 0.0f) {
 | 
						|
		return angle_normalized_qtqt(q1, q2);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		float q2_copy[4];
 | 
						|
		negate_v4_v4(q2_copy, q2);
 | 
						|
		return -angle_normalized_qtqt(q1, q2_copy);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
float angle_signed_qt(const float q[4])
 | 
						|
{
 | 
						|
	float tquat[4];
 | 
						|
 | 
						|
	normalize_qt_qt(tquat, q);
 | 
						|
 | 
						|
	return angle_signed_normalized_qt(tquat);
 | 
						|
}
 | 
						|
 | 
						|
float angle_signed_qtqt(const float q1[4], const float q2[4])
 | 
						|
{
 | 
						|
	if (dot_qtqt(q1, q2) >= 0.0f) {
 | 
						|
		return angle_qtqt(q1, q2);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		float q2_copy[4];
 | 
						|
		negate_v4_v4(q2_copy, q2);
 | 
						|
		return -angle_qtqt(q1, q2_copy);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/** \} */
 | 
						|
 | 
						|
void vec_to_quat(float q[4], const float vec[3], short axis, const short upflag)
 | 
						|
{
 | 
						|
	const float eps = 1e-4f;
 | 
						|
	float nor[3], tvec[3];
 | 
						|
	float angle, si, co, len;
 | 
						|
 | 
						|
	assert(axis >= 0 && axis <= 5);
 | 
						|
	assert(upflag >= 0 && upflag <= 2);
 | 
						|
 | 
						|
	/* first set the quat to unit */
 | 
						|
	unit_qt(q);
 | 
						|
 | 
						|
	len = len_v3(vec);
 | 
						|
 | 
						|
	if (UNLIKELY(len == 0.0f)) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* rotate to axis */
 | 
						|
	if (axis > 2) {
 | 
						|
		copy_v3_v3(tvec, vec);
 | 
						|
		axis = (short)(axis - 3);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		negate_v3_v3(tvec, vec);
 | 
						|
	}
 | 
						|
 | 
						|
	/* nasty! I need a good routine for this...
 | 
						|
	 * problem is a rotation of an Y axis to the negative Y-axis for example.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (axis == 0) { /* x-axis */
 | 
						|
		nor[0] =  0.0;
 | 
						|
		nor[1] = -tvec[2];
 | 
						|
		nor[2] =  tvec[1];
 | 
						|
 | 
						|
		if (fabsf(tvec[1]) + fabsf(tvec[2]) < eps)
 | 
						|
			nor[1] = 1.0f;
 | 
						|
 | 
						|
		co = tvec[0];
 | 
						|
	}
 | 
						|
	else if (axis == 1) { /* y-axis */
 | 
						|
		nor[0] =  tvec[2];
 | 
						|
		nor[1] =  0.0;
 | 
						|
		nor[2] = -tvec[0];
 | 
						|
 | 
						|
		if (fabsf(tvec[0]) + fabsf(tvec[2]) < eps)
 | 
						|
			nor[2] = 1.0f;
 | 
						|
 | 
						|
		co = tvec[1];
 | 
						|
	}
 | 
						|
	else { /* z-axis */
 | 
						|
		nor[0] = -tvec[1];
 | 
						|
		nor[1] =  tvec[0];
 | 
						|
		nor[2] =  0.0;
 | 
						|
 | 
						|
		if (fabsf(tvec[0]) + fabsf(tvec[1]) < eps)
 | 
						|
			nor[0] = 1.0f;
 | 
						|
 | 
						|
		co = tvec[2];
 | 
						|
	}
 | 
						|
	co /= len;
 | 
						|
 | 
						|
	normalize_v3(nor);
 | 
						|
 | 
						|
	axis_angle_normalized_to_quat(q, nor, saacos(co));
 | 
						|
 | 
						|
	if (axis != upflag) {
 | 
						|
		float mat[3][3];
 | 
						|
		float q2[4];
 | 
						|
		const float *fp = mat[2];
 | 
						|
		quat_to_mat3(mat, q);
 | 
						|
 | 
						|
		if (axis == 0) {
 | 
						|
			if (upflag == 1) angle =  0.5f * atan2f(fp[2], fp[1]);
 | 
						|
			else             angle = -0.5f * atan2f(fp[1], fp[2]);
 | 
						|
		}
 | 
						|
		else if (axis == 1) {
 | 
						|
			if (upflag == 0) angle = -0.5f * atan2f(fp[2], fp[0]);
 | 
						|
			else             angle =  0.5f * atan2f(fp[0], fp[2]);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			if (upflag == 0) angle =  0.5f * atan2f(-fp[1], -fp[0]);
 | 
						|
			else             angle = -0.5f * atan2f(-fp[0], -fp[1]);
 | 
						|
		}
 | 
						|
 | 
						|
		co = cosf(angle);
 | 
						|
		si = sinf(angle) / len;
 | 
						|
		q2[0] = co;
 | 
						|
		q2[1] = tvec[0] * si;
 | 
						|
		q2[2] = tvec[1] * si;
 | 
						|
		q2[3] = tvec[2] * si;
 | 
						|
 | 
						|
		mul_qt_qtqt(q, q2, q);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
 | 
						|
/* A & M Watt, Advanced animation and rendering techniques, 1992 ACM press */
 | 
						|
void QuatInterpolW(float *result, float quat1[4], float quat2[4], float t)
 | 
						|
{
 | 
						|
	float omega, cosom, sinom, sc1, sc2;
 | 
						|
 | 
						|
	cosom = quat1[0] * quat2[0] + quat1[1] * quat2[1] + quat1[2] * quat2[2] + quat1[3] * quat2[3];
 | 
						|
 | 
						|
	/* rotate around shortest angle */
 | 
						|
	if ((1.0f + cosom) > 0.0001f) {
 | 
						|
 | 
						|
		if ((1.0f - cosom) > 0.0001f) {
 | 
						|
			omega = (float)acos(cosom);
 | 
						|
			sinom = sinf(omega);
 | 
						|
			sc1 = sinf((1.0 - t) * omega) / sinom;
 | 
						|
			sc2 = sinf(t * omega) / sinom;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			sc1 = 1.0f - t;
 | 
						|
			sc2 = t;
 | 
						|
		}
 | 
						|
		result[0] = sc1 * quat1[0] + sc2 * quat2[0];
 | 
						|
		result[1] = sc1 * quat1[1] + sc2 * quat2[1];
 | 
						|
		result[2] = sc1 * quat1[2] + sc2 * quat2[2];
 | 
						|
		result[3] = sc1 * quat1[3] + sc2 * quat2[3];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		result[0] = quat2[3];
 | 
						|
		result[1] = -quat2[2];
 | 
						|
		result[2] = quat2[1];
 | 
						|
		result[3] = -quat2[0];
 | 
						|
 | 
						|
		sc1 = sinf((1.0 - t) * M_PI_2);
 | 
						|
		sc2 = sinf(t * M_PI_2);
 | 
						|
 | 
						|
		result[0] = sc1 * quat1[0] + sc2 * result[0];
 | 
						|
		result[1] = sc1 * quat1[1] + sc2 * result[1];
 | 
						|
		result[2] = sc1 * quat1[2] + sc2 * result[2];
 | 
						|
		result[3] = sc1 * quat1[3] + sc2 * result[3];
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * Generic function for implementing slerp
 | 
						|
 * (quaternions and spherical vector coords).
 | 
						|
 *
 | 
						|
 * \param t: factor in [0..1]
 | 
						|
 * \param cosom: dot product from normalized vectors/quats.
 | 
						|
 * \param r_w: calculated weights.
 | 
						|
 */
 | 
						|
void interp_dot_slerp(const float t, const float cosom, float r_w[2])
 | 
						|
{
 | 
						|
	const float eps = 1e-4f;
 | 
						|
 | 
						|
	BLI_assert(IN_RANGE_INCL(cosom, -1.0001f, 1.0001f));
 | 
						|
 | 
						|
	/* within [-1..1] range, avoid aligned axis */
 | 
						|
	if (LIKELY(fabsf(cosom) < (1.0f - eps))) {
 | 
						|
		float omega, sinom;
 | 
						|
 | 
						|
		omega = acosf(cosom);
 | 
						|
		sinom = sinf(omega);
 | 
						|
		r_w[0] = sinf((1.0f - t) * omega) / sinom;
 | 
						|
		r_w[1] = sinf(t * omega) / sinom;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* fallback to lerp */
 | 
						|
		r_w[0] = 1.0f - t;
 | 
						|
		r_w[1] = t;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void interp_qt_qtqt(float result[4], const float quat1[4], const float quat2[4], const float t)
 | 
						|
{
 | 
						|
	float quat[4], cosom, w[2];
 | 
						|
 | 
						|
	BLI_ASSERT_UNIT_QUAT(quat1);
 | 
						|
	BLI_ASSERT_UNIT_QUAT(quat2);
 | 
						|
 | 
						|
	cosom = dot_qtqt(quat1, quat2);
 | 
						|
 | 
						|
	/* rotate around shortest angle */
 | 
						|
	if (cosom < 0.0f) {
 | 
						|
		cosom = -cosom;
 | 
						|
		negate_v4_v4(quat, quat1);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		copy_qt_qt(quat, quat1);
 | 
						|
	}
 | 
						|
 | 
						|
	interp_dot_slerp(t, cosom, w);
 | 
						|
 | 
						|
	result[0] = w[0] * quat[0] + w[1] * quat2[0];
 | 
						|
	result[1] = w[0] * quat[1] + w[1] * quat2[1];
 | 
						|
	result[2] = w[0] * quat[2] + w[1] * quat2[2];
 | 
						|
	result[3] = w[0] * quat[3] + w[1] * quat2[3];
 | 
						|
}
 | 
						|
 | 
						|
void add_qt_qtqt(float result[4], const float quat1[4], const float quat2[4], const float t)
 | 
						|
{
 | 
						|
	result[0] = quat1[0] + t * quat2[0];
 | 
						|
	result[1] = quat1[1] + t * quat2[1];
 | 
						|
	result[2] = quat1[2] + t * quat2[2];
 | 
						|
	result[3] = quat1[3] + t * quat2[3];
 | 
						|
}
 | 
						|
 | 
						|
/* same as tri_to_quat() but takes pre-computed normal from the triangle
 | 
						|
 * used for ngons when we know their normal */
 | 
						|
void tri_to_quat_ex(float quat[4], const float v1[3], const float v2[3], const float v3[3],
 | 
						|
                    const float no_orig[3])
 | 
						|
{
 | 
						|
	/* imaginary x-axis, y-axis triangle is being rotated */
 | 
						|
	float vec[3], q1[4], q2[4], n[3], si, co, angle, mat[3][3], imat[3][3];
 | 
						|
 | 
						|
	/* move z-axis to face-normal */
 | 
						|
#if 0
 | 
						|
	normal_tri_v3(vec, v1, v2, v3);
 | 
						|
#else
 | 
						|
	copy_v3_v3(vec, no_orig);
 | 
						|
	(void)v3;
 | 
						|
#endif
 | 
						|
 | 
						|
	n[0] =  vec[1];
 | 
						|
	n[1] = -vec[0];
 | 
						|
	n[2] =  0.0f;
 | 
						|
	normalize_v3(n);
 | 
						|
 | 
						|
	if (n[0] == 0.0f && n[1] == 0.0f) {
 | 
						|
		n[0] = 1.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	angle = -0.5f * saacos(vec[2]);
 | 
						|
	co = cosf(angle);
 | 
						|
	si = sinf(angle);
 | 
						|
	q1[0] = co;
 | 
						|
	q1[1] = n[0] * si;
 | 
						|
	q1[2] = n[1] * si;
 | 
						|
	q1[3] = 0.0f;
 | 
						|
 | 
						|
	/* rotate back line v1-v2 */
 | 
						|
	quat_to_mat3(mat, q1);
 | 
						|
	invert_m3_m3(imat, mat);
 | 
						|
	sub_v3_v3v3(vec, v2, v1);
 | 
						|
	mul_m3_v3(imat, vec);
 | 
						|
 | 
						|
	/* what angle has this line with x-axis? */
 | 
						|
	vec[2] = 0.0f;
 | 
						|
	normalize_v3(vec);
 | 
						|
 | 
						|
	angle = 0.5f * atan2f(vec[1], vec[0]);
 | 
						|
	co = cosf(angle);
 | 
						|
	si = sinf(angle);
 | 
						|
	q2[0] = co;
 | 
						|
	q2[1] = 0.0f;
 | 
						|
	q2[2] = 0.0f;
 | 
						|
	q2[3] = si;
 | 
						|
 | 
						|
	mul_qt_qtqt(quat, q1, q2);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * \return the length of the normal, use to test for degenerate triangles.
 | 
						|
 */
 | 
						|
float tri_to_quat(float quat[4], const float v1[3], const float v2[3], const float v3[3])
 | 
						|
{
 | 
						|
	float vec[3];
 | 
						|
	const float len = normal_tri_v3(vec, v1, v2, v3);
 | 
						|
 | 
						|
	tri_to_quat_ex(quat, v1, v2, v3, vec);
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
void print_qt(const char *str, const float q[4])
 | 
						|
{
 | 
						|
	printf("%s: %.3f %.3f %.3f %.3f\n", str, q[0], q[1], q[2], q[3]);
 | 
						|
}
 | 
						|
 | 
						|
/******************************** Axis Angle *********************************/
 | 
						|
 | 
						|
void axis_angle_normalized_to_quat(float q[4], const float axis[3], const float angle)
 | 
						|
{
 | 
						|
	const float phi = 0.5f * angle;
 | 
						|
	const float si = sinf(phi);
 | 
						|
	const float co = cosf(phi);
 | 
						|
	BLI_ASSERT_UNIT_V3(axis);
 | 
						|
	q[0] = co;
 | 
						|
	mul_v3_v3fl(q + 1, axis, si);
 | 
						|
}
 | 
						|
 | 
						|
void axis_angle_to_quat(float q[4], const float axis[3], const float angle)
 | 
						|
{
 | 
						|
	float nor[3];
 | 
						|
 | 
						|
	if (LIKELY(normalize_v3_v3(nor, axis) != 0.0f)) {
 | 
						|
		axis_angle_normalized_to_quat(q, nor, angle);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		unit_qt(q);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Quaternions to Axis Angle */
 | 
						|
void quat_to_axis_angle(float axis[3], float *angle, const float q[4])
 | 
						|
{
 | 
						|
	float ha, si;
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
	if (!((ha = dot_qtqt(q, q)) == 0.0f || (fabsf(ha - 1.0f) < (float)QUAT_EPSILON))) {
 | 
						|
		fprintf(stderr, "Warning! quat_to_axis_angle() called with non-normalized: size %.8f *** report a bug ***\n", ha);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/* calculate angle/2, and sin(angle/2) */
 | 
						|
	ha = acosf(q[0]);
 | 
						|
	si = sinf(ha);
 | 
						|
 | 
						|
	/* from half-angle to angle */
 | 
						|
	*angle = ha * 2;
 | 
						|
 | 
						|
	/* prevent division by zero for axis conversion */
 | 
						|
	if (fabsf(si) < 0.0005f)
 | 
						|
		si = 1.0f;
 | 
						|
 | 
						|
	axis[0] = q[1] / si;
 | 
						|
	axis[1] = q[2] / si;
 | 
						|
	axis[2] = q[3] / si;
 | 
						|
}
 | 
						|
 | 
						|
/* Axis Angle to Euler Rotation */
 | 
						|
void axis_angle_to_eulO(float eul[3], const short order, const float axis[3], const float angle)
 | 
						|
{
 | 
						|
	float q[4];
 | 
						|
 | 
						|
	/* use quaternions as intermediate representation for now... */
 | 
						|
	axis_angle_to_quat(q, axis, angle);
 | 
						|
	quat_to_eulO(eul, order, q);
 | 
						|
}
 | 
						|
 | 
						|
/* Euler Rotation to Axis Angle */
 | 
						|
void eulO_to_axis_angle(float axis[3], float *angle, const float eul[3], const short order)
 | 
						|
{
 | 
						|
	float q[4];
 | 
						|
 | 
						|
	/* use quaternions as intermediate representation for now... */
 | 
						|
	eulO_to_quat(q, eul, order);
 | 
						|
	quat_to_axis_angle(axis, angle, q);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * axis angle to 3x3 matrix
 | 
						|
 *
 | 
						|
 * This takes the angle with sin/cos applied so we can avoid calculating it in some cases.
 | 
						|
 *
 | 
						|
 * \param axis: rotation axis (must be normalized).
 | 
						|
 * \param angle_sin: sin(angle)
 | 
						|
 * \param angle_cos: cos(angle)
 | 
						|
 */
 | 
						|
void axis_angle_normalized_to_mat3_ex(float mat[3][3], const float axis[3],
 | 
						|
                                      const float angle_sin, const float angle_cos)
 | 
						|
{
 | 
						|
	float nsi[3], ico;
 | 
						|
	float n_00, n_01, n_11, n_02, n_12, n_22;
 | 
						|
 | 
						|
	BLI_ASSERT_UNIT_V3(axis);
 | 
						|
 | 
						|
	/* now convert this to a 3x3 matrix */
 | 
						|
 | 
						|
	ico = (1.0f - angle_cos);
 | 
						|
	nsi[0] = axis[0] * angle_sin;
 | 
						|
	nsi[1] = axis[1] * angle_sin;
 | 
						|
	nsi[2] = axis[2] * angle_sin;
 | 
						|
 | 
						|
	n_00 = (axis[0] * axis[0]) * ico;
 | 
						|
	n_01 = (axis[0] * axis[1]) * ico;
 | 
						|
	n_11 = (axis[1] * axis[1]) * ico;
 | 
						|
	n_02 = (axis[0] * axis[2]) * ico;
 | 
						|
	n_12 = (axis[1] * axis[2]) * ico;
 | 
						|
	n_22 = (axis[2] * axis[2]) * ico;
 | 
						|
 | 
						|
	mat[0][0] = n_00 + angle_cos;
 | 
						|
	mat[0][1] = n_01 + nsi[2];
 | 
						|
	mat[0][2] = n_02 - nsi[1];
 | 
						|
	mat[1][0] = n_01 - nsi[2];
 | 
						|
	mat[1][1] = n_11 + angle_cos;
 | 
						|
	mat[1][2] = n_12 + nsi[0];
 | 
						|
	mat[2][0] = n_02 + nsi[1];
 | 
						|
	mat[2][1] = n_12 - nsi[0];
 | 
						|
	mat[2][2] = n_22 + angle_cos;
 | 
						|
}
 | 
						|
 | 
						|
void axis_angle_normalized_to_mat3(float mat[3][3], const float axis[3], const float angle)
 | 
						|
{
 | 
						|
	axis_angle_normalized_to_mat3_ex(mat, axis, sinf(angle), cosf(angle));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* axis angle to 3x3 matrix - safer version (normalization of axis performed) */
 | 
						|
void axis_angle_to_mat3(float mat[3][3], const float axis[3], const float angle)
 | 
						|
{
 | 
						|
	float nor[3];
 | 
						|
 | 
						|
	/* normalize the axis first (to remove unwanted scaling) */
 | 
						|
	if (normalize_v3_v3(nor, axis) == 0.0f) {
 | 
						|
		unit_m3(mat);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	axis_angle_normalized_to_mat3(mat, nor, angle);
 | 
						|
}
 | 
						|
 | 
						|
/* axis angle to 4x4 matrix - safer version (normalization of axis performed) */
 | 
						|
void axis_angle_to_mat4(float mat[4][4], const float axis[3], const float angle)
 | 
						|
{
 | 
						|
	float tmat[3][3];
 | 
						|
 | 
						|
	axis_angle_to_mat3(tmat, axis, angle);
 | 
						|
	unit_m4(mat);
 | 
						|
	copy_m4_m3(mat, tmat);
 | 
						|
}
 | 
						|
 | 
						|
/* 3x3 matrix to axis angle */
 | 
						|
void mat3_normalized_to_axis_angle(float axis[3], float *angle, float mat[3][3])
 | 
						|
{
 | 
						|
	float q[4];
 | 
						|
 | 
						|
	/* use quaternions as intermediate representation */
 | 
						|
	/* TODO: it would be nicer to go straight there... */
 | 
						|
	mat3_normalized_to_quat(q, mat);
 | 
						|
	quat_to_axis_angle(axis, angle, q);
 | 
						|
}
 | 
						|
void mat3_to_axis_angle(float axis[3], float *angle, float mat[3][3])
 | 
						|
{
 | 
						|
	float q[4];
 | 
						|
 | 
						|
	/* use quaternions as intermediate representation */
 | 
						|
	/* TODO: it would be nicer to go straight there... */
 | 
						|
	mat3_to_quat(q, mat);
 | 
						|
	quat_to_axis_angle(axis, angle, q);
 | 
						|
}
 | 
						|
 | 
						|
/* 4x4 matrix to axis angle */
 | 
						|
void mat4_normalized_to_axis_angle(float axis[3], float *angle, float mat[4][4])
 | 
						|
{
 | 
						|
	float q[4];
 | 
						|
 | 
						|
	/* use quaternions as intermediate representation */
 | 
						|
	/* TODO: it would be nicer to go straight there... */
 | 
						|
	mat4_normalized_to_quat(q, mat);
 | 
						|
	quat_to_axis_angle(axis, angle, q);
 | 
						|
}
 | 
						|
 | 
						|
/* 4x4 matrix to axis angle */
 | 
						|
void mat4_to_axis_angle(float axis[3], float *angle, float mat[4][4])
 | 
						|
{
 | 
						|
	float q[4];
 | 
						|
 | 
						|
	/* use quaternions as intermediate representation */
 | 
						|
	/* TODO: it would be nicer to go straight there... */
 | 
						|
	mat4_to_quat(q, mat);
 | 
						|
	quat_to_axis_angle(axis, angle, q);
 | 
						|
}
 | 
						|
 | 
						|
void axis_angle_to_mat4_single(float mat[4][4], const char axis, const float angle)
 | 
						|
{
 | 
						|
	float mat3[3][3];
 | 
						|
	axis_angle_to_mat3_single(mat3, axis, angle);
 | 
						|
	copy_m4_m3(mat, mat3);
 | 
						|
}
 | 
						|
 | 
						|
/* rotation matrix from a single axis */
 | 
						|
void axis_angle_to_mat3_single(float mat[3][3], const char axis, const float angle)
 | 
						|
{
 | 
						|
	const float angle_cos = cosf(angle);
 | 
						|
	const float angle_sin = sinf(angle);
 | 
						|
 | 
						|
	switch (axis) {
 | 
						|
		case 'X': /* rotation around X */
 | 
						|
			mat[0][0] = 1.0f;
 | 
						|
			mat[0][1] = 0.0f;
 | 
						|
			mat[0][2] = 0.0f;
 | 
						|
			mat[1][0] = 0.0f;
 | 
						|
			mat[1][1] = angle_cos;
 | 
						|
			mat[1][2] = angle_sin;
 | 
						|
			mat[2][0] = 0.0f;
 | 
						|
			mat[2][1] = -angle_sin;
 | 
						|
			mat[2][2] = angle_cos;
 | 
						|
			break;
 | 
						|
		case 'Y': /* rotation around Y */
 | 
						|
			mat[0][0] = angle_cos;
 | 
						|
			mat[0][1] = 0.0f;
 | 
						|
			mat[0][2] = -angle_sin;
 | 
						|
			mat[1][0] = 0.0f;
 | 
						|
			mat[1][1] = 1.0f;
 | 
						|
			mat[1][2] = 0.0f;
 | 
						|
			mat[2][0] = angle_sin;
 | 
						|
			mat[2][1] = 0.0f;
 | 
						|
			mat[2][2] = angle_cos;
 | 
						|
			break;
 | 
						|
		case 'Z': /* rotation around Z */
 | 
						|
			mat[0][0] = angle_cos;
 | 
						|
			mat[0][1] = angle_sin;
 | 
						|
			mat[0][2] = 0.0f;
 | 
						|
			mat[1][0] = -angle_sin;
 | 
						|
			mat[1][1] = angle_cos;
 | 
						|
			mat[1][2] = 0.0f;
 | 
						|
			mat[2][0] = 0.0f;
 | 
						|
			mat[2][1] = 0.0f;
 | 
						|
			mat[2][2] = 1.0f;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			BLI_assert(0);
 | 
						|
			break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void angle_to_mat2(float mat[2][2], const float angle)
 | 
						|
{
 | 
						|
	const float angle_cos = cosf(angle);
 | 
						|
	const float angle_sin = sinf(angle);
 | 
						|
 | 
						|
	/* 2D rotation matrix */
 | 
						|
	mat[0][0] =  angle_cos;
 | 
						|
	mat[0][1] =  angle_sin;
 | 
						|
	mat[1][0] = -angle_sin;
 | 
						|
	mat[1][1] =  angle_cos;
 | 
						|
}
 | 
						|
 | 
						|
void axis_angle_to_quat_single(float q[4], const char axis, const float angle)
 | 
						|
{
 | 
						|
	const float angle_half = angle * 0.5f;
 | 
						|
	const float angle_cos = cosf(angle_half);
 | 
						|
	const float angle_sin = sinf(angle_half);
 | 
						|
	const int axis_index = (axis - 'X');
 | 
						|
 | 
						|
	assert(axis >= 'X' && axis <= 'Z');
 | 
						|
 | 
						|
	q[0] = angle_cos;
 | 
						|
	zero_v3(q + 1);
 | 
						|
	q[axis_index + 1] = angle_sin;
 | 
						|
}
 | 
						|
 | 
						|
/****************************** Exponential Map ******************************/
 | 
						|
 | 
						|
void quat_normalized_to_expmap(float expmap[3], const float q[4])
 | 
						|
{
 | 
						|
	float angle;
 | 
						|
	BLI_ASSERT_UNIT_QUAT(q);
 | 
						|
 | 
						|
	/* Obtain axis/angle representation. */
 | 
						|
	quat_to_axis_angle(expmap, &angle, q);
 | 
						|
 | 
						|
	/* Convert to exponential map. */
 | 
						|
	mul_v3_fl(expmap, angle);
 | 
						|
}
 | 
						|
 | 
						|
void quat_to_expmap(float expmap[3], const float q[4])
 | 
						|
{
 | 
						|
	float q_no[4];
 | 
						|
	normalize_qt_qt(q_no, q);
 | 
						|
	quat_normalized_to_expmap(expmap, q_no);
 | 
						|
}
 | 
						|
 | 
						|
void expmap_to_quat(float r[4], const float expmap[3])
 | 
						|
{
 | 
						|
	float axis[3];
 | 
						|
	float angle;
 | 
						|
 | 
						|
	/* Obtain axis/angle representation. */
 | 
						|
	if (LIKELY((angle = normalize_v3_v3(axis, expmap)) != 0.0f)) {
 | 
						|
		axis_angle_normalized_to_quat(r, axis, angle_wrap_rad(angle));
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		unit_qt(r);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/******************************** XYZ Eulers *********************************/
 | 
						|
 | 
						|
/* XYZ order */
 | 
						|
void eul_to_mat3(float mat[3][3], const float eul[3])
 | 
						|
{
 | 
						|
	double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
 | 
						|
 | 
						|
	ci = cos(eul[0]);
 | 
						|
	cj = cos(eul[1]);
 | 
						|
	ch = cos(eul[2]);
 | 
						|
	si = sin(eul[0]);
 | 
						|
	sj = sin(eul[1]);
 | 
						|
	sh = sin(eul[2]);
 | 
						|
	cc = ci * ch;
 | 
						|
	cs = ci * sh;
 | 
						|
	sc = si * ch;
 | 
						|
	ss = si * sh;
 | 
						|
 | 
						|
	mat[0][0] = (float)(cj * ch);
 | 
						|
	mat[1][0] = (float)(sj * sc - cs);
 | 
						|
	mat[2][0] = (float)(sj * cc + ss);
 | 
						|
	mat[0][1] = (float)(cj * sh);
 | 
						|
	mat[1][1] = (float)(sj * ss + cc);
 | 
						|
	mat[2][1] = (float)(sj * cs - sc);
 | 
						|
	mat[0][2] = (float)-sj;
 | 
						|
	mat[1][2] = (float)(cj * si);
 | 
						|
	mat[2][2] = (float)(cj * ci);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* XYZ order */
 | 
						|
void eul_to_mat4(float mat[4][4], const float eul[3])
 | 
						|
{
 | 
						|
	double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
 | 
						|
 | 
						|
	ci = cos(eul[0]);
 | 
						|
	cj = cos(eul[1]);
 | 
						|
	ch = cos(eul[2]);
 | 
						|
	si = sin(eul[0]);
 | 
						|
	sj = sin(eul[1]);
 | 
						|
	sh = sin(eul[2]);
 | 
						|
	cc = ci * ch;
 | 
						|
	cs = ci * sh;
 | 
						|
	sc = si * ch;
 | 
						|
	ss = si * sh;
 | 
						|
 | 
						|
	mat[0][0] = (float)(cj * ch);
 | 
						|
	mat[1][0] = (float)(sj * sc - cs);
 | 
						|
	mat[2][0] = (float)(sj * cc + ss);
 | 
						|
	mat[0][1] = (float)(cj * sh);
 | 
						|
	mat[1][1] = (float)(sj * ss + cc);
 | 
						|
	mat[2][1] = (float)(sj * cs - sc);
 | 
						|
	mat[0][2] = (float)-sj;
 | 
						|
	mat[1][2] = (float)(cj * si);
 | 
						|
	mat[2][2] = (float)(cj * ci);
 | 
						|
 | 
						|
 | 
						|
	mat[3][0] = mat[3][1] = mat[3][2] = mat[0][3] = mat[1][3] = mat[2][3] = 0.0f;
 | 
						|
	mat[3][3] = 1.0f;
 | 
						|
}
 | 
						|
 | 
						|
/* returns two euler calculation methods, so we can pick the best */
 | 
						|
 | 
						|
/* XYZ order */
 | 
						|
static void mat3_normalized_to_eul2(const float mat[3][3], float eul1[3], float eul2[3])
 | 
						|
{
 | 
						|
	const float cy = hypotf(mat[0][0], mat[0][1]);
 | 
						|
 | 
						|
	BLI_ASSERT_UNIT_M3(mat);
 | 
						|
 | 
						|
	if (cy > 16.0f * FLT_EPSILON) {
 | 
						|
 | 
						|
		eul1[0] = atan2f(mat[1][2], mat[2][2]);
 | 
						|
		eul1[1] = atan2f(-mat[0][2], cy);
 | 
						|
		eul1[2] = atan2f(mat[0][1], mat[0][0]);
 | 
						|
 | 
						|
		eul2[0] = atan2f(-mat[1][2], -mat[2][2]);
 | 
						|
		eul2[1] = atan2f(-mat[0][2], -cy);
 | 
						|
		eul2[2] = atan2f(-mat[0][1], -mat[0][0]);
 | 
						|
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		eul1[0] = atan2f(-mat[2][1], mat[1][1]);
 | 
						|
		eul1[1] = atan2f(-mat[0][2], cy);
 | 
						|
		eul1[2] = 0.0f;
 | 
						|
 | 
						|
		copy_v3_v3(eul2, eul1);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* XYZ order */
 | 
						|
void mat3_normalized_to_eul(float eul[3], float mat[3][3])
 | 
						|
{
 | 
						|
	float eul1[3], eul2[3];
 | 
						|
 | 
						|
	mat3_normalized_to_eul2(mat, eul1, eul2);
 | 
						|
 | 
						|
	/* return best, which is just the one with lowest values it in */
 | 
						|
	if (fabsf(eul1[0]) + fabsf(eul1[1]) + fabsf(eul1[2]) > fabsf(eul2[0]) + fabsf(eul2[1]) + fabsf(eul2[2])) {
 | 
						|
		copy_v3_v3(eul, eul2);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		copy_v3_v3(eul, eul1);
 | 
						|
	}
 | 
						|
}
 | 
						|
void mat3_to_eul(float eul[3], float mat[3][3])
 | 
						|
{
 | 
						|
	float unit_mat[3][3];
 | 
						|
	normalize_m3_m3(unit_mat, mat);
 | 
						|
	mat3_normalized_to_eul(eul, unit_mat);
 | 
						|
}
 | 
						|
 | 
						|
/* XYZ order */
 | 
						|
void mat4_normalized_to_eul(float eul[3], float m[4][4])
 | 
						|
{
 | 
						|
	float mat3[3][3];
 | 
						|
	copy_m3_m4(mat3, m);
 | 
						|
	mat3_normalized_to_eul(eul, mat3);
 | 
						|
}
 | 
						|
void mat4_to_eul(float eul[3], float m[4][4])
 | 
						|
{
 | 
						|
	float mat3[3][3];
 | 
						|
	copy_m3_m4(mat3, m);
 | 
						|
	mat3_to_eul(eul, mat3);
 | 
						|
}
 | 
						|
 | 
						|
/* XYZ order */
 | 
						|
void quat_to_eul(float eul[3], const float quat[4])
 | 
						|
{
 | 
						|
	float unit_mat[3][3];
 | 
						|
	quat_to_mat3(unit_mat, quat);
 | 
						|
	mat3_normalized_to_eul(eul, unit_mat);
 | 
						|
}
 | 
						|
 | 
						|
/* XYZ order */
 | 
						|
void eul_to_quat(float quat[4], const float eul[3])
 | 
						|
{
 | 
						|
	float ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
 | 
						|
 | 
						|
	ti = eul[0] * 0.5f;
 | 
						|
	tj = eul[1] * 0.5f;
 | 
						|
	th = eul[2] * 0.5f;
 | 
						|
	ci = cosf(ti);
 | 
						|
	cj = cosf(tj);
 | 
						|
	ch = cosf(th);
 | 
						|
	si = sinf(ti);
 | 
						|
	sj = sinf(tj);
 | 
						|
	sh = sinf(th);
 | 
						|
	cc = ci * ch;
 | 
						|
	cs = ci * sh;
 | 
						|
	sc = si * ch;
 | 
						|
	ss = si * sh;
 | 
						|
 | 
						|
	quat[0] = cj * cc + sj * ss;
 | 
						|
	quat[1] = cj * sc - sj * cs;
 | 
						|
	quat[2] = cj * ss + sj * cc;
 | 
						|
	quat[3] = cj * cs - sj * sc;
 | 
						|
}
 | 
						|
 | 
						|
/* XYZ order */
 | 
						|
void rotate_eul(float beul[3], const char axis, const float ang)
 | 
						|
{
 | 
						|
	float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
 | 
						|
 | 
						|
	assert(axis >= 'X' && axis <= 'Z');
 | 
						|
 | 
						|
	eul[0] = eul[1] = eul[2] = 0.0f;
 | 
						|
	if (axis == 'X') eul[0] = ang;
 | 
						|
	else if (axis == 'Y') eul[1] = ang;
 | 
						|
	else eul[2] = ang;
 | 
						|
 | 
						|
	eul_to_mat3(mat1, eul);
 | 
						|
	eul_to_mat3(mat2, beul);
 | 
						|
 | 
						|
	mul_m3_m3m3(totmat, mat2, mat1);
 | 
						|
 | 
						|
	mat3_to_eul(beul, totmat);
 | 
						|
}
 | 
						|
 | 
						|
/* order independent! */
 | 
						|
void compatible_eul(float eul[3], const float oldrot[3])
 | 
						|
{
 | 
						|
	/* we could use M_PI as pi_thresh: which is correct but 5.1 gives better results.
 | 
						|
	 * Checked with baking actions to fcurves - campbell */
 | 
						|
	const float pi_thresh = (5.1f);
 | 
						|
	const float pi_x2     = (2.0f * (float)M_PI);
 | 
						|
 | 
						|
	float deul[3];
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	/* correct differences of about 360 degrees first */
 | 
						|
	for (i = 0; i < 3; i++) {
 | 
						|
		deul[i] = eul[i] - oldrot[i];
 | 
						|
		if (deul[i] > pi_thresh) {
 | 
						|
			eul[i] -= floorf(( deul[i] / pi_x2) + 0.5f) * pi_x2;
 | 
						|
			deul[i] = eul[i] - oldrot[i];
 | 
						|
		}
 | 
						|
		else if (deul[i] < -pi_thresh) {
 | 
						|
			eul[i] += floorf((-deul[i] / pi_x2) + 0.5f) * pi_x2;
 | 
						|
			deul[i] = eul[i] - oldrot[i];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* is 1 of the axis rotations larger than 180 degrees and the other small? NO ELSE IF!! */
 | 
						|
	if (fabsf(deul[0]) > 3.2f && fabsf(deul[1]) < 1.6f && fabsf(deul[2]) < 1.6f) {
 | 
						|
		if (deul[0] > 0.0f) eul[0] -= pi_x2;
 | 
						|
		else                eul[0] += pi_x2;
 | 
						|
	}
 | 
						|
	if (fabsf(deul[1]) > 3.2f && fabsf(deul[2]) < 1.6f && fabsf(deul[0]) < 1.6f) {
 | 
						|
		if (deul[1] > 0.0f) eul[1] -= pi_x2;
 | 
						|
		else                eul[1] += pi_x2;
 | 
						|
	}
 | 
						|
	if (fabsf(deul[2]) > 3.2f && fabsf(deul[0]) < 1.6f && fabsf(deul[1]) < 1.6f) {
 | 
						|
		if (deul[2] > 0.0f) eul[2] -= pi_x2;
 | 
						|
		else                eul[2] += pi_x2;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* uses 2 methods to retrieve eulers, and picks the closest */
 | 
						|
 | 
						|
/* XYZ order */
 | 
						|
void mat3_normalized_to_compatible_eul(float eul[3], const float oldrot[3], float mat[3][3])
 | 
						|
{
 | 
						|
	float eul1[3], eul2[3];
 | 
						|
	float d1, d2;
 | 
						|
 | 
						|
	mat3_normalized_to_eul2(mat, eul1, eul2);
 | 
						|
 | 
						|
	compatible_eul(eul1, oldrot);
 | 
						|
	compatible_eul(eul2, oldrot);
 | 
						|
 | 
						|
	d1 = fabsf(eul1[0] - oldrot[0]) + fabsf(eul1[1] - oldrot[1]) + fabsf(eul1[2] - oldrot[2]);
 | 
						|
	d2 = fabsf(eul2[0] - oldrot[0]) + fabsf(eul2[1] - oldrot[1]) + fabsf(eul2[2] - oldrot[2]);
 | 
						|
 | 
						|
	/* return best, which is just the one with lowest difference */
 | 
						|
	if (d1 > d2) {
 | 
						|
		copy_v3_v3(eul, eul2);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		copy_v3_v3(eul, eul1);
 | 
						|
	}
 | 
						|
}
 | 
						|
void mat3_to_compatible_eul(float eul[3], const float oldrot[3], float mat[3][3])
 | 
						|
{
 | 
						|
	float unit_mat[3][3];
 | 
						|
	normalize_m3_m3(unit_mat, mat);
 | 
						|
	mat3_normalized_to_compatible_eul(eul, oldrot, unit_mat);
 | 
						|
}
 | 
						|
 | 
						|
void quat_to_compatible_eul(float eul[3], const float oldrot[3], const float quat[4])
 | 
						|
{
 | 
						|
	float unit_mat[3][3];
 | 
						|
	quat_to_mat3(unit_mat, quat);
 | 
						|
	mat3_normalized_to_compatible_eul(eul, oldrot, unit_mat);
 | 
						|
}
 | 
						|
 | 
						|
/************************** Arbitrary Order Eulers ***************************/
 | 
						|
 | 
						|
/* Euler Rotation Order Code:
 | 
						|
 * was adapted from
 | 
						|
 *      ANSI C code from the article
 | 
						|
 *      "Euler Angle Conversion"
 | 
						|
 *      by Ken Shoemake, shoemake@graphics.cis.upenn.edu
 | 
						|
 *      in "Graphics Gems IV", Academic Press, 1994
 | 
						|
 * for use in Blender
 | 
						|
 */
 | 
						|
 | 
						|
/* Type for rotation order info - see wiki for derivation details */
 | 
						|
typedef struct RotOrderInfo {
 | 
						|
	short axis[3];
 | 
						|
	short parity; /* parity of axis permutation (even=0, odd=1) - 'n' in original code */
 | 
						|
} RotOrderInfo;
 | 
						|
 | 
						|
/* Array of info for Rotation Order calculations
 | 
						|
 * WARNING: must be kept in same order as eEulerRotationOrders
 | 
						|
 */
 | 
						|
static const RotOrderInfo rotOrders[] = {
 | 
						|
	/* i, j, k, n */
 | 
						|
	{{0, 1, 2}, 0}, /* XYZ */
 | 
						|
	{{0, 2, 1}, 1}, /* XZY */
 | 
						|
	{{1, 0, 2}, 1}, /* YXZ */
 | 
						|
	{{1, 2, 0}, 0}, /* YZX */
 | 
						|
	{{2, 0, 1}, 0}, /* ZXY */
 | 
						|
	{{2, 1, 0}, 1}  /* ZYX */
 | 
						|
};
 | 
						|
 | 
						|
/* Get relevant pointer to rotation order set from the array
 | 
						|
 * NOTE: since we start at 1 for the values, but arrays index from 0,
 | 
						|
 *       there is -1 factor involved in this process...
 | 
						|
 */
 | 
						|
static const RotOrderInfo *get_rotation_order_info(const short order)
 | 
						|
{
 | 
						|
	assert(order >= 0 && order <= 6);
 | 
						|
	if (order < 1)
 | 
						|
		return &rotOrders[0];
 | 
						|
	else if (order < 6)
 | 
						|
		return &rotOrders[order - 1];
 | 
						|
	else
 | 
						|
		return &rotOrders[5];
 | 
						|
}
 | 
						|
 | 
						|
/* Construct quaternion from Euler angles (in radians). */
 | 
						|
void eulO_to_quat(float q[4], const float e[3], const short order)
 | 
						|
{
 | 
						|
	const RotOrderInfo *R = get_rotation_order_info(order);
 | 
						|
	short i = R->axis[0], j = R->axis[1], k = R->axis[2];
 | 
						|
	double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
 | 
						|
	double a[3];
 | 
						|
 | 
						|
	ti = e[i] * 0.5f;
 | 
						|
	tj = e[j] * (R->parity ? -0.5f : 0.5f);
 | 
						|
	th = e[k] * 0.5f;
 | 
						|
 | 
						|
	ci = cos(ti);
 | 
						|
	cj = cos(tj);
 | 
						|
	ch = cos(th);
 | 
						|
	si = sin(ti);
 | 
						|
	sj = sin(tj);
 | 
						|
	sh = sin(th);
 | 
						|
 | 
						|
	cc = ci * ch;
 | 
						|
	cs = ci * sh;
 | 
						|
	sc = si * ch;
 | 
						|
	ss = si * sh;
 | 
						|
 | 
						|
	a[i] = cj * sc - sj * cs;
 | 
						|
	a[j] = cj * ss + sj * cc;
 | 
						|
	a[k] = cj * cs - sj * sc;
 | 
						|
 | 
						|
	q[0] = (float)(cj * cc + sj * ss);
 | 
						|
	q[1] = (float)(a[0]);
 | 
						|
	q[2] = (float)(a[1]);
 | 
						|
	q[3] = (float)(a[2]);
 | 
						|
 | 
						|
	if (R->parity) q[j + 1] = -q[j + 1];
 | 
						|
}
 | 
						|
 | 
						|
/* Convert quaternion to Euler angles (in radians). */
 | 
						|
void quat_to_eulO(float e[3], short const order, const float q[4])
 | 
						|
{
 | 
						|
	float unit_mat[3][3];
 | 
						|
 | 
						|
	quat_to_mat3(unit_mat, q);
 | 
						|
	mat3_normalized_to_eulO(e, order, unit_mat);
 | 
						|
}
 | 
						|
 | 
						|
/* Construct 3x3 matrix from Euler angles (in radians). */
 | 
						|
void eulO_to_mat3(float M[3][3], const float e[3], const short order)
 | 
						|
{
 | 
						|
	const RotOrderInfo *R = get_rotation_order_info(order);
 | 
						|
	short i = R->axis[0], j = R->axis[1], k = R->axis[2];
 | 
						|
	double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
 | 
						|
 | 
						|
	if (R->parity) {
 | 
						|
		ti = -e[i];
 | 
						|
		tj = -e[j];
 | 
						|
		th = -e[k];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		ti = e[i];
 | 
						|
		tj = e[j];
 | 
						|
		th = e[k];
 | 
						|
	}
 | 
						|
 | 
						|
	ci = cos(ti);
 | 
						|
	cj = cos(tj);
 | 
						|
	ch = cos(th);
 | 
						|
	si = sin(ti);
 | 
						|
	sj = sin(tj);
 | 
						|
	sh = sin(th);
 | 
						|
 | 
						|
	cc = ci * ch;
 | 
						|
	cs = ci * sh;
 | 
						|
	sc = si * ch;
 | 
						|
	ss = si * sh;
 | 
						|
 | 
						|
	M[i][i] = (float)(cj * ch);
 | 
						|
	M[j][i] = (float)(sj * sc - cs);
 | 
						|
	M[k][i] = (float)(sj * cc + ss);
 | 
						|
	M[i][j] = (float)(cj * sh);
 | 
						|
	M[j][j] = (float)(sj * ss + cc);
 | 
						|
	M[k][j] = (float)(sj * cs - sc);
 | 
						|
	M[i][k] = (float)(-sj);
 | 
						|
	M[j][k] = (float)(cj * si);
 | 
						|
	M[k][k] = (float)(cj * ci);
 | 
						|
}
 | 
						|
 | 
						|
/* returns two euler calculation methods, so we can pick the best */
 | 
						|
static void mat3_normalized_to_eulo2(float mat[3][3], float eul1[3], float eul2[3], const short order)
 | 
						|
{
 | 
						|
	const RotOrderInfo *R = get_rotation_order_info(order);
 | 
						|
	short i = R->axis[0], j = R->axis[1], k = R->axis[2];
 | 
						|
	float cy;
 | 
						|
 | 
						|
	BLI_ASSERT_UNIT_M3(mat);
 | 
						|
 | 
						|
	cy = hypotf(mat[i][i], mat[i][j]);
 | 
						|
 | 
						|
	if (cy > 16.0f * FLT_EPSILON) {
 | 
						|
		eul1[i] = atan2f(mat[j][k], mat[k][k]);
 | 
						|
		eul1[j] = atan2f(-mat[i][k], cy);
 | 
						|
		eul1[k] = atan2f(mat[i][j], mat[i][i]);
 | 
						|
 | 
						|
		eul2[i] = atan2f(-mat[j][k], -mat[k][k]);
 | 
						|
		eul2[j] = atan2f(-mat[i][k], -cy);
 | 
						|
		eul2[k] = atan2f(-mat[i][j], -mat[i][i]);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		eul1[i] = atan2f(-mat[k][j], mat[j][j]);
 | 
						|
		eul1[j] = atan2f(-mat[i][k], cy);
 | 
						|
		eul1[k] = 0;
 | 
						|
 | 
						|
		copy_v3_v3(eul2, eul1);
 | 
						|
	}
 | 
						|
 | 
						|
	if (R->parity) {
 | 
						|
		negate_v3(eul1);
 | 
						|
		negate_v3(eul2);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Construct 4x4 matrix from Euler angles (in radians). */
 | 
						|
void eulO_to_mat4(float mat[4][4], const float e[3], const short order)
 | 
						|
{
 | 
						|
	float unit_mat[3][3];
 | 
						|
 | 
						|
	/* for now, we'll just do this the slow way (i.e. copying matrices) */
 | 
						|
	eulO_to_mat3(unit_mat, e, order);
 | 
						|
	copy_m4_m3(mat, unit_mat);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert 3x3 matrix to Euler angles (in radians). */
 | 
						|
void mat3_normalized_to_eulO(float eul[3], const short order, float m[3][3])
 | 
						|
{
 | 
						|
	float eul1[3], eul2[3];
 | 
						|
	float d1, d2;
 | 
						|
 | 
						|
	mat3_normalized_to_eulo2(m, eul1, eul2, order);
 | 
						|
 | 
						|
	d1 = fabsf(eul1[0]) + fabsf(eul1[1]) + fabsf(eul1[2]);
 | 
						|
	d2 = fabsf(eul2[0]) + fabsf(eul2[1]) + fabsf(eul2[2]);
 | 
						|
 | 
						|
	/* return best, which is just the one with lowest values it in */
 | 
						|
	if (d1 > d2) {
 | 
						|
		copy_v3_v3(eul, eul2);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		copy_v3_v3(eul, eul1);
 | 
						|
	}
 | 
						|
}
 | 
						|
void mat3_to_eulO(float eul[3], const short order, float m[3][3])
 | 
						|
{
 | 
						|
	float unit_mat[3][3];
 | 
						|
	normalize_m3_m3(unit_mat, m);
 | 
						|
	mat3_normalized_to_eulO(eul, order, unit_mat);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert 4x4 matrix to Euler angles (in radians). */
 | 
						|
void mat4_normalized_to_eulO(float eul[3], const short order, float m[4][4])
 | 
						|
{
 | 
						|
	float mat3[3][3];
 | 
						|
 | 
						|
	/* for now, we'll just do this the slow way (i.e. copying matrices) */
 | 
						|
	copy_m3_m4(mat3, m);
 | 
						|
	mat3_normalized_to_eulO(eul, order, mat3);
 | 
						|
}
 | 
						|
 | 
						|
void mat4_to_eulO(float eul[3], const short order, float m[4][4])
 | 
						|
{
 | 
						|
	float mat3[3][3];
 | 
						|
	copy_m3_m4(mat3, m);
 | 
						|
	normalize_m3(mat3);
 | 
						|
	mat3_normalized_to_eulO(eul, order, mat3);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* uses 2 methods to retrieve eulers, and picks the closest */
 | 
						|
void mat3_normalized_to_compatible_eulO(float eul[3], float oldrot[3], const short order, float mat[3][3])
 | 
						|
{
 | 
						|
	float eul1[3], eul2[3];
 | 
						|
	float d1, d2;
 | 
						|
 | 
						|
	mat3_normalized_to_eulo2(mat, eul1, eul2, order);
 | 
						|
 | 
						|
	compatible_eul(eul1, oldrot);
 | 
						|
	compatible_eul(eul2, oldrot);
 | 
						|
 | 
						|
	d1 = fabsf(eul1[0] - oldrot[0]) + fabsf(eul1[1] - oldrot[1]) + fabsf(eul1[2] - oldrot[2]);
 | 
						|
	d2 = fabsf(eul2[0] - oldrot[0]) + fabsf(eul2[1] - oldrot[1]) + fabsf(eul2[2] - oldrot[2]);
 | 
						|
 | 
						|
	/* return best, which is just the one with lowest difference */
 | 
						|
	if (d1 > d2) {
 | 
						|
		copy_v3_v3(eul, eul2);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		copy_v3_v3(eul, eul1);
 | 
						|
	}
 | 
						|
}
 | 
						|
void mat3_to_compatible_eulO(float eul[3], float oldrot[3], const short order, float mat[3][3])
 | 
						|
{
 | 
						|
	float unit_mat[3][3];
 | 
						|
 | 
						|
	normalize_m3_m3(unit_mat, mat);
 | 
						|
	mat3_normalized_to_compatible_eulO(eul, oldrot, order, unit_mat);
 | 
						|
}
 | 
						|
 | 
						|
void mat4_normalized_to_compatible_eulO(float eul[3], float oldrot[3], const short order, float m[4][4])
 | 
						|
{
 | 
						|
	float mat3[3][3];
 | 
						|
 | 
						|
	/* for now, we'll just do this the slow way (i.e. copying matrices) */
 | 
						|
	copy_m3_m4(mat3, m);
 | 
						|
	mat3_normalized_to_compatible_eulO(eul, oldrot, order, mat3);
 | 
						|
}
 | 
						|
void mat4_to_compatible_eulO(float eul[3], float oldrot[3], const short order, float m[4][4])
 | 
						|
{
 | 
						|
	float mat3[3][3];
 | 
						|
 | 
						|
	/* for now, we'll just do this the slow way (i.e. copying matrices) */
 | 
						|
	copy_m3_m4(mat3, m);
 | 
						|
	normalize_m3(mat3);
 | 
						|
	mat3_normalized_to_compatible_eulO(eul, oldrot, order, mat3);
 | 
						|
}
 | 
						|
 | 
						|
void quat_to_compatible_eulO(float eul[3], float oldrot[3], const short order, const float quat[4])
 | 
						|
{
 | 
						|
	float unit_mat[3][3];
 | 
						|
 | 
						|
	quat_to_mat3(unit_mat, quat);
 | 
						|
	mat3_normalized_to_compatible_eulO(eul, oldrot, order, unit_mat);
 | 
						|
}
 | 
						|
 | 
						|
/* rotate the given euler by the given angle on the specified axis */
 | 
						|
/* NOTE: is this safe to do with different axis orders? */
 | 
						|
 | 
						|
void rotate_eulO(float beul[3], const short order, char axis, float ang)
 | 
						|
{
 | 
						|
	float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
 | 
						|
 | 
						|
	assert(axis >= 'X' && axis <= 'Z');
 | 
						|
 | 
						|
	zero_v3(eul);
 | 
						|
 | 
						|
	if (axis == 'X')
 | 
						|
		eul[0] = ang;
 | 
						|
	else if (axis == 'Y')
 | 
						|
		eul[1] = ang;
 | 
						|
	else
 | 
						|
		eul[2] = ang;
 | 
						|
 | 
						|
	eulO_to_mat3(mat1, eul, order);
 | 
						|
	eulO_to_mat3(mat2, beul, order);
 | 
						|
 | 
						|
	mul_m3_m3m3(totmat, mat2, mat1);
 | 
						|
 | 
						|
	mat3_to_eulO(beul, order, totmat);
 | 
						|
}
 | 
						|
 | 
						|
/* the matrix is written to as 3 axis vectors */
 | 
						|
void eulO_to_gimbal_axis(float gmat[3][3], const float eul[3], const short order)
 | 
						|
{
 | 
						|
	const RotOrderInfo *R = get_rotation_order_info(order);
 | 
						|
 | 
						|
	float mat[3][3];
 | 
						|
	float teul[3];
 | 
						|
 | 
						|
	/* first axis is local */
 | 
						|
	eulO_to_mat3(mat, eul, order);
 | 
						|
	copy_v3_v3(gmat[R->axis[0]], mat[R->axis[0]]);
 | 
						|
 | 
						|
	/* second axis is local minus first rotation */
 | 
						|
	copy_v3_v3(teul, eul);
 | 
						|
	teul[R->axis[0]] = 0;
 | 
						|
	eulO_to_mat3(mat, teul, order);
 | 
						|
	copy_v3_v3(gmat[R->axis[1]], mat[R->axis[1]]);
 | 
						|
 | 
						|
 | 
						|
	/* Last axis is global */
 | 
						|
	zero_v3(gmat[R->axis[2]]);
 | 
						|
	gmat[R->axis[2]][R->axis[2]] = 1;
 | 
						|
}
 | 
						|
 | 
						|
/******************************* Dual Quaternions ****************************/
 | 
						|
 | 
						|
/**
 | 
						|
 * Conversion routines between (regular quaternion, translation) and
 | 
						|
 * dual quaternion.
 | 
						|
 *
 | 
						|
 * Version 1.0.0, February 7th, 2007
 | 
						|
 *
 | 
						|
 * Copyright (C) 2006-2007 University of Dublin, Trinity College, All Rights
 | 
						|
 * Reserved
 | 
						|
 *
 | 
						|
 * This software is provided 'as-is', without any express or implied
 | 
						|
 * warranty.  In no event will the author(s) be held liable for any damages
 | 
						|
 * arising from the use of this software.
 | 
						|
 *
 | 
						|
 * Permission is granted to anyone to use this software for any purpose,
 | 
						|
 * including commercial applications, and to alter it and redistribute it
 | 
						|
 * freely, subject to the following restrictions:
 | 
						|
 *
 | 
						|
 * 1. The origin of this software must not be misrepresented; you must not
 | 
						|
 *    claim that you wrote the original software. If you use this software
 | 
						|
 *    in a product, an acknowledgment in the product documentation would be
 | 
						|
 *    appreciated but is not required.
 | 
						|
 * 2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
 *    misrepresented as being the original software.
 | 
						|
 * 3. This notice may not be removed or altered from any source distribution.
 | 
						|
 * Changes for Blender:
 | 
						|
 * - renaming, style changes and optimization's
 | 
						|
 * - added support for scaling
 | 
						|
 */
 | 
						|
 | 
						|
void mat4_to_dquat(DualQuat *dq, float basemat[4][4], float mat[4][4])
 | 
						|
{
 | 
						|
	float *t, *q, dscale[3], scale[3], basequat[4], mat3[3][3];
 | 
						|
	float baseRS[4][4], baseinv[4][4], baseR[4][4], baseRinv[4][4];
 | 
						|
	float R[4][4], S[4][4];
 | 
						|
 | 
						|
	/* split scaling and rotation, there is probably a faster way to do
 | 
						|
	 * this, it's done like this now to correctly get negative scaling */
 | 
						|
	mul_m4_m4m4(baseRS, mat, basemat);
 | 
						|
	mat4_to_size(scale, baseRS);
 | 
						|
 | 
						|
	dscale[0] = scale[0] - 1.0f;
 | 
						|
	dscale[1] = scale[1] - 1.0f;
 | 
						|
	dscale[2] = scale[2] - 1.0f;
 | 
						|
 | 
						|
	copy_m3_m4(mat3, mat);
 | 
						|
 | 
						|
	if (!is_orthonormal_m3(mat3) || (determinant_m4(mat) < 0.0f) || len_squared_v3(dscale) > SQUARE(1e-4f)) {
 | 
						|
		/* extract R and S  */
 | 
						|
		float tmp[4][4];
 | 
						|
 | 
						|
		/* extra orthogonalize, to avoid flipping with stretched bones */
 | 
						|
		copy_m4_m4(tmp, baseRS);
 | 
						|
		orthogonalize_m4(tmp, 1);
 | 
						|
		mat4_to_quat(basequat, tmp);
 | 
						|
 | 
						|
		quat_to_mat4(baseR, basequat);
 | 
						|
		copy_v3_v3(baseR[3], baseRS[3]);
 | 
						|
 | 
						|
		invert_m4_m4(baseinv, basemat);
 | 
						|
		mul_m4_m4m4(R, baseR, baseinv);
 | 
						|
 | 
						|
		invert_m4_m4(baseRinv, baseR);
 | 
						|
		mul_m4_m4m4(S, baseRinv, baseRS);
 | 
						|
 | 
						|
		/* set scaling part */
 | 
						|
		mul_m4_series(dq->scale, basemat, S, baseinv);
 | 
						|
		dq->scale_weight = 1.0f;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* matrix does not contain scaling */
 | 
						|
		copy_m4_m4(R, mat);
 | 
						|
		dq->scale_weight = 0.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	/* non-dual part */
 | 
						|
	mat4_to_quat(dq->quat, R);
 | 
						|
 | 
						|
	/* dual part */
 | 
						|
	t = R[3];
 | 
						|
	q = dq->quat;
 | 
						|
	dq->trans[0] = -0.5f * ( t[0] * q[1] + t[1] * q[2] + t[2] * q[3]);
 | 
						|
	dq->trans[1] =  0.5f * ( t[0] * q[0] + t[1] * q[3] - t[2] * q[2]);
 | 
						|
	dq->trans[2] =  0.5f * (-t[0] * q[3] + t[1] * q[0] + t[2] * q[1]);
 | 
						|
	dq->trans[3] =  0.5f * ( t[0] * q[2] - t[1] * q[1] + t[2] * q[0]);
 | 
						|
}
 | 
						|
 | 
						|
void dquat_to_mat4(float mat[4][4], const DualQuat *dq)
 | 
						|
{
 | 
						|
	float len, q0[4];
 | 
						|
	const float *t;
 | 
						|
 | 
						|
	/* regular quaternion */
 | 
						|
	copy_qt_qt(q0, dq->quat);
 | 
						|
 | 
						|
	/* normalize */
 | 
						|
	len = sqrtf(dot_qtqt(q0, q0));
 | 
						|
	if (len != 0.0f) {
 | 
						|
		len = 1.0f / len;
 | 
						|
	}
 | 
						|
	mul_qt_fl(q0, len);
 | 
						|
 | 
						|
	/* rotation */
 | 
						|
	quat_to_mat4(mat, q0);
 | 
						|
 | 
						|
	/* translation */
 | 
						|
	t = dq->trans;
 | 
						|
	mat[3][0] = 2.0f * (-t[0] * q0[1] + t[1] * q0[0] - t[2] * q0[3] + t[3] * q0[2]) * len;
 | 
						|
	mat[3][1] = 2.0f * (-t[0] * q0[2] + t[1] * q0[3] + t[2] * q0[0] - t[3] * q0[1]) * len;
 | 
						|
	mat[3][2] = 2.0f * (-t[0] * q0[3] - t[1] * q0[2] + t[2] * q0[1] + t[3] * q0[0]) * len;
 | 
						|
 | 
						|
	/* scaling */
 | 
						|
	if (dq->scale_weight) {
 | 
						|
		mul_m4_m4m4(mat, mat, dq->scale);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void add_weighted_dq_dq(DualQuat *dqsum, const DualQuat *dq, float weight)
 | 
						|
{
 | 
						|
	bool flipped = false;
 | 
						|
 | 
						|
	/* make sure we interpolate quats in the right direction */
 | 
						|
	if (dot_qtqt(dq->quat, dqsum->quat) < 0) {
 | 
						|
		flipped = true;
 | 
						|
		weight = -weight;
 | 
						|
	}
 | 
						|
 | 
						|
	/* interpolate rotation and translation */
 | 
						|
	dqsum->quat[0] += weight * dq->quat[0];
 | 
						|
	dqsum->quat[1] += weight * dq->quat[1];
 | 
						|
	dqsum->quat[2] += weight * dq->quat[2];
 | 
						|
	dqsum->quat[3] += weight * dq->quat[3];
 | 
						|
 | 
						|
	dqsum->trans[0] += weight * dq->trans[0];
 | 
						|
	dqsum->trans[1] += weight * dq->trans[1];
 | 
						|
	dqsum->trans[2] += weight * dq->trans[2];
 | 
						|
	dqsum->trans[3] += weight * dq->trans[3];
 | 
						|
 | 
						|
	/* interpolate scale - but only if needed */
 | 
						|
	if (dq->scale_weight) {
 | 
						|
		float wmat[4][4];
 | 
						|
 | 
						|
		if (flipped) /* we don't want negative weights for scaling */
 | 
						|
			weight = -weight;
 | 
						|
 | 
						|
		copy_m4_m4(wmat, (float(*)[4])dq->scale);
 | 
						|
		mul_m4_fl(wmat, weight);
 | 
						|
		add_m4_m4m4(dqsum->scale, dqsum->scale, wmat);
 | 
						|
		dqsum->scale_weight += weight;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void normalize_dq(DualQuat *dq, float totweight)
 | 
						|
{
 | 
						|
	const float scale = 1.0f / totweight;
 | 
						|
 | 
						|
	mul_qt_fl(dq->quat, scale);
 | 
						|
	mul_qt_fl(dq->trans, scale);
 | 
						|
 | 
						|
	if (dq->scale_weight) {
 | 
						|
		float addweight = totweight - dq->scale_weight;
 | 
						|
 | 
						|
		if (addweight) {
 | 
						|
			dq->scale[0][0] += addweight;
 | 
						|
			dq->scale[1][1] += addweight;
 | 
						|
			dq->scale[2][2] += addweight;
 | 
						|
			dq->scale[3][3] += addweight;
 | 
						|
		}
 | 
						|
 | 
						|
		mul_m4_fl(dq->scale, scale);
 | 
						|
		dq->scale_weight = 1.0f;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void mul_v3m3_dq(float co[3], float mat[3][3], DualQuat *dq)
 | 
						|
{
 | 
						|
	float M[3][3], t[3], scalemat[3][3], len2;
 | 
						|
	float w = dq->quat[0], x = dq->quat[1], y = dq->quat[2], z = dq->quat[3];
 | 
						|
	float t0 = dq->trans[0], t1 = dq->trans[1], t2 = dq->trans[2], t3 = dq->trans[3];
 | 
						|
 | 
						|
	/* rotation matrix */
 | 
						|
	M[0][0] = w * w + x * x - y * y - z * z;
 | 
						|
	M[1][0] = 2 * (x * y - w * z);
 | 
						|
	M[2][0] = 2 * (x * z + w * y);
 | 
						|
 | 
						|
	M[0][1] = 2 * (x * y + w * z);
 | 
						|
	M[1][1] = w * w + y * y - x * x - z * z;
 | 
						|
	M[2][1] = 2 * (y * z - w * x);
 | 
						|
 | 
						|
	M[0][2] = 2 * (x * z - w * y);
 | 
						|
	M[1][2] = 2 * (y * z + w * x);
 | 
						|
	M[2][2] = w * w + z * z - x * x - y * y;
 | 
						|
 | 
						|
	len2 = dot_qtqt(dq->quat, dq->quat);
 | 
						|
	if (len2 > 0.0f)
 | 
						|
		len2 = 1.0f / len2;
 | 
						|
 | 
						|
	/* translation */
 | 
						|
	t[0] = 2 * (-t0 * x + w * t1 - t2 * z + y * t3);
 | 
						|
	t[1] = 2 * (-t0 * y + t1 * z - x * t3 + w * t2);
 | 
						|
	t[2] = 2 * (-t0 * z + x * t2 + w * t3 - t1 * y);
 | 
						|
 | 
						|
	/* apply scaling */
 | 
						|
	if (dq->scale_weight)
 | 
						|
		mul_m4_v3(dq->scale, co);
 | 
						|
 | 
						|
	/* apply rotation and translation */
 | 
						|
	mul_m3_v3(M, co);
 | 
						|
	co[0] = (co[0] + t[0]) * len2;
 | 
						|
	co[1] = (co[1] + t[1]) * len2;
 | 
						|
	co[2] = (co[2] + t[2]) * len2;
 | 
						|
 | 
						|
	/* compute crazyspace correction mat */
 | 
						|
	if (mat) {
 | 
						|
		if (dq->scale_weight) {
 | 
						|
			copy_m3_m4(scalemat, dq->scale);
 | 
						|
			mul_m3_m3m3(mat, M, scalemat);
 | 
						|
		}
 | 
						|
		else
 | 
						|
			copy_m3_m3(mat, M);
 | 
						|
		mul_m3_fl(mat, len2);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void copy_dq_dq(DualQuat *dq1, const DualQuat *dq2)
 | 
						|
{
 | 
						|
	memcpy(dq1, dq2, sizeof(DualQuat));
 | 
						|
}
 | 
						|
 | 
						|
/* axis matches eTrackToAxis_Modes */
 | 
						|
void quat_apply_track(float quat[4], short axis, short upflag)
 | 
						|
{
 | 
						|
	/* rotations are hard coded to match vec_to_quat */
 | 
						|
	const float sqrt_1_2 = (float)M_SQRT1_2;
 | 
						|
	const float quat_track[][4] = {
 | 
						|
		/* pos-y90 */
 | 
						|
		{sqrt_1_2, 0.0, -sqrt_1_2, 0.0},
 | 
						|
		/* Quaternion((1,0,0), radians(90)) * Quaternion((0,1,0), radians(90)) */
 | 
						|
		{0.5, 0.5, 0.5, 0.5},
 | 
						|
		/* pos-z90 */
 | 
						|
		{sqrt_1_2, 0.0, 0.0, sqrt_1_2},
 | 
						|
		/* neg-y90 */
 | 
						|
		{sqrt_1_2, 0.0, sqrt_1_2, 0.0},
 | 
						|
		/* Quaternion((1,0,0), radians(-90)) * Quaternion((0,1,0), radians(-90)) */
 | 
						|
		{0.5, -0.5, -0.5, 0.5},
 | 
						|
		/* no rotation */
 | 
						|
		{0.0, sqrt_1_2, sqrt_1_2, 0.0},
 | 
						|
	};
 | 
						|
 | 
						|
	assert(axis >= 0 && axis <= 5);
 | 
						|
	assert(upflag >= 0 && upflag <= 2);
 | 
						|
 | 
						|
	mul_qt_qtqt(quat, quat, quat_track[axis]);
 | 
						|
 | 
						|
	if (axis > 2) {
 | 
						|
		axis = (short)(axis - 3);
 | 
						|
	}
 | 
						|
 | 
						|
	/* there are 2 possible up-axis for each axis used, the 'quat_track' applies so the first
 | 
						|
	 * up axis is used X->Y, Y->X, Z->X, if this first up axis isn't used then rotate 90d
 | 
						|
	 * the strange bit shift below just find the low axis {X:Y, Y:X, Z:X} */
 | 
						|
	if (upflag != (2 - axis) >> 1) {
 | 
						|
		float q[4] = {sqrt_1_2, 0.0, 0.0, 0.0}; /* assign 90d rotation axis */
 | 
						|
		q[axis + 1] = ((axis == 1)) ? sqrt_1_2 : -sqrt_1_2; /* flip non Y axis */
 | 
						|
		mul_qt_qtqt(quat, quat, q);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void vec_apply_track(float vec[3], short axis)
 | 
						|
{
 | 
						|
	float tvec[3];
 | 
						|
 | 
						|
	assert(axis >= 0 && axis <= 5);
 | 
						|
 | 
						|
	copy_v3_v3(tvec, vec);
 | 
						|
 | 
						|
	switch (axis) {
 | 
						|
		case 0: /* pos-x */
 | 
						|
			/* vec[0] =  0.0; */
 | 
						|
			vec[1] = tvec[2];
 | 
						|
			vec[2] = -tvec[1];
 | 
						|
			break;
 | 
						|
		case 1: /* pos-y */
 | 
						|
			/* vec[0] = tvec[0]; */
 | 
						|
			/* vec[1] =  0.0; */
 | 
						|
			/* vec[2] = tvec[2]; */
 | 
						|
			break;
 | 
						|
		case 2: /* pos-z */
 | 
						|
			/* vec[0] = tvec[0]; */
 | 
						|
			/* vec[1] = tvec[1]; */
 | 
						|
			/* vec[2] =  0.0; */
 | 
						|
			break;
 | 
						|
		case 3: /* neg-x */
 | 
						|
			/* vec[0] =  0.0; */
 | 
						|
			vec[1] = tvec[2];
 | 
						|
			vec[2] = -tvec[1];
 | 
						|
			break;
 | 
						|
		case 4: /* neg-y */
 | 
						|
			vec[0] = -tvec[2];
 | 
						|
			/* vec[1] =  0.0; */
 | 
						|
			vec[2] = tvec[0];
 | 
						|
			break;
 | 
						|
		case 5: /* neg-z */
 | 
						|
			vec[0] = -tvec[0];
 | 
						|
			vec[1] = -tvec[1];
 | 
						|
			/* vec[2] =  0.0; */
 | 
						|
			break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* lens/angle conversion (radians) */
 | 
						|
float focallength_to_fov(float focal_length, float sensor)
 | 
						|
{
 | 
						|
	return 2.0f * atanf((sensor / 2.0f) / focal_length);
 | 
						|
}
 | 
						|
 | 
						|
float fov_to_focallength(float hfov, float sensor)
 | 
						|
{
 | 
						|
	return (sensor / 2.0f) / tanf(hfov * 0.5f);
 | 
						|
}
 | 
						|
 | 
						|
/* 'mod_inline(-3, 4)= 1', 'fmod(-3, 4)= -3' */
 | 
						|
static float mod_inline(float a, float b)
 | 
						|
{
 | 
						|
	return a - (b * floorf(a / b));
 | 
						|
}
 | 
						|
 | 
						|
float angle_wrap_rad(float angle)
 | 
						|
{
 | 
						|
	return mod_inline(angle + (float)M_PI, (float)M_PI * 2.0f) - (float)M_PI;
 | 
						|
}
 | 
						|
 | 
						|
float angle_wrap_deg(float angle)
 | 
						|
{
 | 
						|
	return mod_inline(angle + 180.0f, 360.0f) - 180.0f;
 | 
						|
}
 | 
						|
 | 
						|
/* returns an angle compatible with angle_compat */
 | 
						|
float angle_compat_rad(float angle, float angle_compat)
 | 
						|
{
 | 
						|
	return angle_compat + angle_wrap_rad(angle - angle_compat);
 | 
						|
}
 | 
						|
 | 
						|
/* axis conversion */
 | 
						|
static float _axis_convert_matrix[23][3][3] = {
 | 
						|
	{{-1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}, {0.0, 0.0, 1.0}},
 | 
						|
	{{-1.0, 0.0, 0.0}, {0.0, 0.0, -1.0}, {0.0, -1.0, 0.0}},
 | 
						|
	{{-1.0, 0.0, 0.0}, {0.0, 0.0, 1.0}, {0.0, 1.0, 0.0}},
 | 
						|
	{{-1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, -1.0}},
 | 
						|
	{{0.0, -1.0, 0.0}, {-1.0, 0.0, 0.0}, {0.0, 0.0, -1.0}},
 | 
						|
	{{0.0, 0.0, 1.0}, {-1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}},
 | 
						|
	{{0.0, 0.0, -1.0}, {-1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}},
 | 
						|
	{{0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0}, {0.0, 0.0, 1.0}},
 | 
						|
	{{0.0, -1.0, 0.0}, {0.0, 0.0, 1.0}, {-1.0, 0.0, 0.0}},
 | 
						|
	{{0.0, 0.0, -1.0}, {0.0, -1.0, 0.0}, {-1.0, 0.0, 0.0}},
 | 
						|
	{{0.0, 0.0, 1.0}, {0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0}},
 | 
						|
	{{0.0, 1.0, 0.0}, {0.0, 0.0, -1.0}, {-1.0, 0.0, 0.0}},
 | 
						|
	{{0.0, -1.0, 0.0}, {0.0, 0.0, -1.0}, {1.0, 0.0, 0.0}},
 | 
						|
	{{0.0, 0.0, 1.0}, {0.0, -1.0, 0.0}, {1.0, 0.0, 0.0}},
 | 
						|
	{{0.0, 0.0, -1.0}, {0.0, 1.0, 0.0}, {1.0, 0.0, 0.0}},
 | 
						|
	{{0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}, {1.0, 0.0, 0.0}},
 | 
						|
	{{0.0, -1.0, 0.0}, {1.0, 0.0, 0.0}, {0.0, 0.0, 1.0}},
 | 
						|
	{{0.0, 0.0, -1.0}, {1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}},
 | 
						|
	{{0.0, 0.0, 1.0}, {1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}},
 | 
						|
	{{0.0, 1.0, 0.0}, {1.0, 0.0, 0.0}, {0.0, 0.0, -1.0}},
 | 
						|
	{{1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}, {0.0, 0.0, -1.0}},
 | 
						|
	{{1.0, 0.0, 0.0}, {0.0, 0.0, 1.0}, {0.0, -1.0, 0.0}},
 | 
						|
	{{1.0, 0.0, 0.0}, {0.0, 0.0, -1.0}, {0.0, 1.0, 0.0}},
 | 
						|
};
 | 
						|
 | 
						|
static int _axis_convert_lut[23][24] = {
 | 
						|
	{0x8C8, 0x4D0, 0x2E0, 0xAE8, 0x701, 0x511, 0x119, 0xB29, 0x682, 0x88A,
 | 
						|
	 0x09A, 0x2A2, 0x80B, 0x413, 0x223, 0xA2B, 0x644, 0x454, 0x05C, 0xA6C,
 | 
						|
	 0x745, 0x94D, 0x15D, 0x365},
 | 
						|
	{0xAC8, 0x8D0, 0x4E0, 0x2E8, 0x741, 0x951, 0x159, 0x369, 0x702, 0xB0A,
 | 
						|
	 0x11A, 0x522, 0xA0B, 0x813, 0x423, 0x22B, 0x684, 0x894, 0x09C, 0x2AC,
 | 
						|
	 0x645, 0xA4D, 0x05D, 0x465},
 | 
						|
	{0x4C8, 0x2D0, 0xAE0, 0x8E8, 0x681, 0x291, 0x099, 0x8A9, 0x642, 0x44A,
 | 
						|
	 0x05A, 0xA62, 0x40B, 0x213, 0xA23, 0x82B, 0x744, 0x354, 0x15C, 0x96C,
 | 
						|
	 0x705, 0x50D, 0x11D, 0xB25},
 | 
						|
	{0x2C8, 0xAD0, 0x8E0, 0x4E8, 0x641, 0xA51, 0x059, 0x469, 0x742, 0x34A,
 | 
						|
	 0x15A, 0x962, 0x20B, 0xA13, 0x823, 0x42B, 0x704, 0xB14, 0x11C, 0x52C,
 | 
						|
	 0x685, 0x28D, 0x09D, 0x8A5},
 | 
						|
	{0x708, 0xB10, 0x120, 0x528, 0x8C1, 0xAD1, 0x2D9, 0x4E9, 0x942, 0x74A,
 | 
						|
	 0x35A, 0x162, 0x64B, 0xA53, 0x063, 0x46B, 0x804, 0xA14, 0x21C, 0x42C,
 | 
						|
	 0x885, 0x68D, 0x29D, 0x0A5},
 | 
						|
	{0xB08, 0x110, 0x520, 0x728, 0x941, 0x151, 0x359, 0x769, 0x802, 0xA0A,
 | 
						|
	 0x21A, 0x422, 0xA4B, 0x053, 0x463, 0x66B, 0x884, 0x094, 0x29C, 0x6AC,
 | 
						|
	 0x8C5, 0xACD, 0x2DD, 0x4E5},
 | 
						|
	{0x508, 0x710, 0xB20, 0x128, 0x881, 0x691, 0x299, 0x0A9, 0x8C2, 0x4CA,
 | 
						|
	 0x2DA, 0xAE2, 0x44B, 0x653, 0xA63, 0x06B, 0x944, 0x754, 0x35C, 0x16C,
 | 
						|
	 0x805, 0x40D, 0x21D, 0xA25},
 | 
						|
	{0x108, 0x510, 0x720, 0xB28, 0x801, 0x411, 0x219, 0xA29, 0x882, 0x08A,
 | 
						|
	 0x29A, 0x6A2, 0x04B, 0x453, 0x663, 0xA6B, 0x8C4, 0x4D4, 0x2DC, 0xAEC,
 | 
						|
	 0x945, 0x14D, 0x35D, 0x765},
 | 
						|
	{0x748, 0x350, 0x160, 0x968, 0xAC1, 0x2D1, 0x4D9, 0x8E9, 0xA42, 0x64A,
 | 
						|
	 0x45A, 0x062, 0x68B, 0x293, 0x0A3, 0x8AB, 0xA04, 0x214, 0x41C, 0x82C,
 | 
						|
	 0xB05, 0x70D, 0x51D, 0x125},
 | 
						|
	{0x948, 0x750, 0x360, 0x168, 0xB01, 0x711, 0x519, 0x129, 0xAC2, 0x8CA,
 | 
						|
	 0x4DA, 0x2E2, 0x88B, 0x693, 0x2A3, 0x0AB, 0xA44, 0x654, 0x45C, 0x06C,
 | 
						|
	 0xA05, 0x80D, 0x41D, 0x225},
 | 
						|
	{0x348, 0x150, 0x960, 0x768, 0xA41, 0x051, 0x459, 0x669, 0xA02, 0x20A,
 | 
						|
	 0x41A, 0x822, 0x28B, 0x093, 0x8A3, 0x6AB, 0xB04, 0x114, 0x51C, 0x72C,
 | 
						|
	 0xAC5, 0x2CD, 0x4DD, 0x8E5},
 | 
						|
	{0x148, 0x950, 0x760, 0x368, 0xA01, 0x811, 0x419, 0x229, 0xB02, 0x10A,
 | 
						|
	 0x51A, 0x722, 0x08B, 0x893, 0x6A3, 0x2AB, 0xAC4, 0x8D4, 0x4DC, 0x2EC,
 | 
						|
	 0xA45, 0x04D, 0x45D, 0x665},
 | 
						|
	{0x688, 0x890, 0x0A0, 0x2A8, 0x4C1, 0x8D1, 0xAD9, 0x2E9, 0x502, 0x70A,
 | 
						|
	 0xB1A, 0x122, 0x74B, 0x953, 0x163, 0x36B, 0x404, 0x814, 0xA1C, 0x22C,
 | 
						|
	 0x445, 0x64D, 0xA5D, 0x065},
 | 
						|
	{0x888, 0x090, 0x2A0, 0x6A8, 0x501, 0x111, 0xB19, 0x729, 0x402, 0x80A,
 | 
						|
	 0xA1A, 0x222, 0x94B, 0x153, 0x363, 0x76B, 0x444, 0x054, 0xA5C, 0x66C,
 | 
						|
	 0x4C5, 0x8CD, 0xADD, 0x2E5},
 | 
						|
	{0x288, 0x690, 0x8A0, 0x0A8, 0x441, 0x651, 0xA59, 0x069, 0x4C2, 0x2CA,
 | 
						|
	 0xADA, 0x8E2, 0x34B, 0x753, 0x963, 0x16B, 0x504, 0x714, 0xB1C, 0x12C,
 | 
						|
	 0x405, 0x20D, 0xA1D, 0x825},
 | 
						|
	{0x088, 0x290, 0x6A0, 0x8A8, 0x401, 0x211, 0xA19, 0x829, 0x442, 0x04A,
 | 
						|
	 0xA5A, 0x662, 0x14B, 0x353, 0x763, 0x96B, 0x4C4, 0x2D4, 0xADC, 0x8EC,
 | 
						|
	 0x505, 0x10D, 0xB1D, 0x725},
 | 
						|
	{0x648, 0x450, 0x060, 0xA68, 0x2C1, 0x4D1, 0x8D9, 0xAE9, 0x282, 0x68A,
 | 
						|
	 0x89A, 0x0A2, 0x70B, 0x513, 0x123, 0xB2B, 0x204, 0x414, 0x81C, 0xA2C,
 | 
						|
	 0x345, 0x74D, 0x95D, 0x165},
 | 
						|
	{0xA48, 0x650, 0x460, 0x068, 0x341, 0x751, 0x959, 0x169, 0x2C2, 0xACA,
 | 
						|
	 0x8DA, 0x4E2, 0xB0B, 0x713, 0x523, 0x12B, 0x284, 0x694, 0x89C, 0x0AC,
 | 
						|
	 0x205, 0xA0D, 0x81D, 0x425},
 | 
						|
	{0x448, 0x050, 0xA60, 0x668, 0x281, 0x091, 0x899, 0x6A9, 0x202, 0x40A,
 | 
						|
	 0x81A, 0xA22, 0x50B, 0x113, 0xB23, 0x72B, 0x344, 0x154, 0x95C, 0x76C,
 | 
						|
	 0x2C5, 0x4CD, 0x8DD, 0xAE5},
 | 
						|
	{0x048, 0xA50, 0x660, 0x468, 0x201, 0xA11, 0x819, 0x429, 0x342, 0x14A,
 | 
						|
	 0x95A, 0x762, 0x10B, 0xB13, 0x723, 0x52B, 0x2C4, 0xAD4, 0x8DC, 0x4EC,
 | 
						|
	 0x285, 0x08D, 0x89D, 0x6A5},
 | 
						|
	{0x808, 0xA10, 0x220, 0x428, 0x101, 0xB11, 0x719, 0x529, 0x142, 0x94A,
 | 
						|
	 0x75A, 0x362, 0x8CB, 0xAD3, 0x2E3, 0x4EB, 0x044, 0xA54, 0x65C, 0x46C,
 | 
						|
	 0x085, 0x88D, 0x69D, 0x2A5},
 | 
						|
	{0xA08, 0x210, 0x420, 0x828, 0x141, 0x351, 0x759, 0x969, 0x042, 0xA4A,
 | 
						|
	 0x65A, 0x462, 0xACB, 0x2D3, 0x4E3, 0x8EB, 0x084, 0x294, 0x69C, 0x8AC,
 | 
						|
	 0x105, 0xB0D, 0x71D, 0x525},
 | 
						|
	{0x408, 0x810, 0xA20, 0x228, 0x081, 0x891, 0x699, 0x2A9, 0x102, 0x50A,
 | 
						|
	 0x71A, 0xB22, 0x4CB, 0x8D3, 0xAE3, 0x2EB, 0x144, 0x954, 0x75C, 0x36C,
 | 
						|
	 0x045, 0x44D, 0x65D, 0xA65},
 | 
						|
};
 | 
						|
 | 
						|
// _axis_convert_num = {'X': 0, 'Y': 1, 'Z': 2, '-X': 3, '-Y': 4, '-Z': 5}
 | 
						|
 | 
						|
BLI_INLINE int _axis_signed(const int axis)
 | 
						|
{
 | 
						|
	return (axis < 3) ? axis : axis - 3;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Each argument us an axis in ['X', 'Y', 'Z', '-X', '-Y', '-Z']
 | 
						|
 * where the first 2 are a source and the second 2 are the target.
 | 
						|
 */
 | 
						|
bool mat3_from_axis_conversion(
 | 
						|
        int src_forward, int src_up, int dst_forward, int dst_up,
 | 
						|
        float r_mat[3][3])
 | 
						|
{
 | 
						|
	// from functools import reduce
 | 
						|
	int value;
 | 
						|
 | 
						|
	if (src_forward == dst_forward && src_up == dst_up) {
 | 
						|
		unit_m3(r_mat);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((_axis_signed(src_forward) == _axis_signed(src_up)) ||
 | 
						|
	    (_axis_signed(dst_forward)   == _axis_signed(dst_up)))
 | 
						|
	{
 | 
						|
		/* we could assert here! */
 | 
						|
		unit_m3(r_mat);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	value = ((src_forward << (0 * 3)) |
 | 
						|
	         (src_up      << (1 * 3)) |
 | 
						|
	         (dst_forward << (2 * 3)) |
 | 
						|
	         (dst_up      << (3 * 3)));
 | 
						|
 | 
						|
	for (uint i = 0; i < (sizeof(_axis_convert_matrix) / sizeof(*_axis_convert_matrix)); i++) {
 | 
						|
		for (uint j = 0; j < (sizeof(*_axis_convert_lut) / sizeof(*_axis_convert_lut[0])); j++) {
 | 
						|
			if (_axis_convert_lut[i][j] == value) {
 | 
						|
				copy_m3_m3(r_mat, _axis_convert_matrix[i]);
 | 
						|
				return true;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
//	BLI_assert(0);
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Use when the second axis can be guessed.
 | 
						|
 */
 | 
						|
bool mat3_from_axis_conversion_single(
 | 
						|
        int src_axis, int dst_axis,
 | 
						|
        float r_mat[3][3])
 | 
						|
{
 | 
						|
	if (src_axis == dst_axis) {
 | 
						|
		unit_m3(r_mat);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Pick predictable next axis. */
 | 
						|
	int src_axis_next = (src_axis + 1) % 3;
 | 
						|
	int dst_axis_next = (dst_axis + 1) % 3;
 | 
						|
 | 
						|
	if ((src_axis < 3) != (dst_axis < 3)) {
 | 
						|
		/* Flip both axis so matrix sign remains positive. */
 | 
						|
		dst_axis_next += 3;
 | 
						|
	}
 | 
						|
 | 
						|
	return mat3_from_axis_conversion(src_axis, src_axis_next, dst_axis, dst_axis_next, r_mat);
 | 
						|
}
 |