This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/mesh/editmesh_select_similar.c
Campbell Barton 109cbdf2e1 Cleanup: use BLI_kdtree_3d prefix
Use prefix now there isn't only the 3d version.
2019-03-20 00:48:51 +11:00

1351 lines
36 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2004 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup edmesh
*/
#include "MEM_guardedalloc.h"
#include "BLI_kdtree.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BKE_context.h"
#include "BKE_editmesh.h"
#include "BKE_layer.h"
#include "BKE_material.h"
#include "BKE_report.h"
#include "DNA_meshdata_types.h"
#include "WM_api.h"
#include "WM_types.h"
#include "RNA_access.h"
#include "RNA_define.h"
#include "ED_mesh.h"
#include "ED_screen.h"
#include "ED_select_utils.h"
#include "mesh_intern.h" /* own include */
/* -------------------------------------------------------------------- */
/** \name Select Similar (Vert/Edge/Face) Operator - common
* \{ */
static const EnumPropertyItem prop_similar_compare_types[] = {
{SIM_CMP_EQ, "EQUAL", 0, "Equal", ""},
{SIM_CMP_GT, "GREATER", 0, "Greater", ""},
{SIM_CMP_LT, "LESS", 0, "Less", ""},
{0, NULL, 0, NULL, NULL},
};
static const EnumPropertyItem prop_similar_types[] = {
{SIMVERT_NORMAL, "NORMAL", 0, "Normal", ""},
{SIMVERT_FACE, "FACE", 0, "Amount of Adjacent Faces", ""},
{SIMVERT_VGROUP, "VGROUP", 0, "Vertex Groups", ""},
{SIMVERT_EDGE, "EDGE", 0, "Amount of connecting edges", ""},
{SIMEDGE_LENGTH, "LENGTH", 0, "Length", ""},
{SIMEDGE_DIR, "DIR", 0, "Direction", ""},
{SIMEDGE_FACE, "FACE", 0, "Amount of Faces Around an Edge", ""},
{SIMEDGE_FACE_ANGLE, "FACE_ANGLE", 0, "Face Angles", ""},
{SIMEDGE_CREASE, "CREASE", 0, "Crease", ""},
{SIMEDGE_BEVEL, "BEVEL", 0, "Bevel", ""},
{SIMEDGE_SEAM, "SEAM", 0, "Seam", ""},
{SIMEDGE_SHARP, "SHARP", 0, "Sharpness", ""},
#ifdef WITH_FREESTYLE
{SIMEDGE_FREESTYLE, "FREESTYLE_EDGE", 0, "Freestyle Edge Marks", ""},
#endif
{SIMFACE_MATERIAL, "MATERIAL", 0, "Material", ""},
{SIMFACE_AREA, "AREA", 0, "Area", ""},
{SIMFACE_SIDES, "SIDES", 0, "Polygon Sides", ""},
{SIMFACE_PERIMETER, "PERIMETER", 0, "Perimeter", ""},
{SIMFACE_NORMAL, "NORMAL", 0, "Normal", ""},
{SIMFACE_COPLANAR, "COPLANAR", 0, "Co-planar", ""},
{SIMFACE_SMOOTH, "SMOOTH", 0, "Flat/Smooth", ""},
{SIMFACE_FACEMAP, "FACE_MAP", 0, "Face-Map", ""},
#ifdef WITH_FREESTYLE
{SIMFACE_FREESTYLE, "FREESTYLE_FACE", 0, "Freestyle Face Marks", ""},
#endif
{0, NULL, 0, NULL, NULL},
};
static int mesh_select_similar_compare_int(const int delta, const int compare)
{
switch (compare) {
case SIM_CMP_EQ:
return (delta == 0);
case SIM_CMP_GT:
return (delta > 0);
case SIM_CMP_LT:
return (delta < 0);
default:
BLI_assert(0);
return 0;
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Select Similar Face
* \{ */
enum {
SIMFACE_DATA_NONE = 0,
SIMFACE_DATA_TRUE = (1 << 0),
SIMFACE_DATA_FALSE = (1 << 1),
SIMFACE_DATA_ALL = (SIMFACE_DATA_TRUE | SIMFACE_DATA_FALSE),
};
/**
* Return true if we still don't know the final value for this edge data.
* In other words, if we need to keep iterating over the objects or we can
* just go ahead and select all the objects.
*/
static bool face_data_value_set(BMFace *face, const int hflag, int *r_value)
{
if (BM_elem_flag_test(face, hflag)) {
*r_value |= SIMFACE_DATA_TRUE;
}
else {
*r_value |= SIMFACE_DATA_FALSE;
}
return *r_value != SIMFACE_DATA_ALL;
}
/**
* Note: This is not normal, but the face direction itself and always in
* a positive quadrant (tries z, y then x).
* Also, unlike edge_pos_direction_worldspace_get we don't normalize the direction.
* In fact we scale the direction by the distance of the face center to the origin.
*/
static void face_to_plane(const Object *ob, BMFace *face, float r_plane[4])
{
float normal[3], co[3];
copy_v3_v3(normal, face->no);
mul_transposed_mat3_m4_v3(ob->imat, normal);
normalize_v3(normal);
mul_v3_m4v3(co, ob->obmat, BM_FACE_FIRST_LOOP(face)->v->co);
plane_from_point_normal_v3(r_plane, co, normal);
}
/* TODO(dfelinto): `types` that should technically be compared in world space but are not:
* -SIMFACE_AREA
* -SIMFACE_PERIMETER
*/
static int similar_face_select_exec(bContext *C, wmOperator *op)
{
ViewLayer *view_layer = CTX_data_view_layer(C);
const int type = RNA_enum_get(op->ptr, "type");
const float thresh = RNA_float_get(op->ptr, "threshold");
const float thresh_radians = thresh * (float)M_PI;
const int compare = RNA_enum_get(op->ptr, "compare");
int tot_faces_selected_all = 0;
uint objects_len = 0;
Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data(view_layer, CTX_wm_view3d(C), &objects_len);
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
Object *ob = objects[ob_index];
BMEditMesh *em = BKE_editmesh_from_object(ob);
tot_faces_selected_all += em->bm->totfacesel;
}
if (tot_faces_selected_all == 0) {
BKE_report(op->reports, RPT_ERROR, "No face selected");
MEM_freeN(objects);
return OPERATOR_CANCELLED;
}
KDTree_3d *tree = NULL;
KDTree_4d *tree_plane = NULL;
GSet *gset = NULL;
GSet **gset_array = NULL;
int face_data_value = SIMFACE_DATA_NONE;
switch (type) {
case SIMFACE_AREA:
case SIMFACE_PERIMETER:
case SIMFACE_NORMAL:
tree = BLI_kdtree_3d_new(tot_faces_selected_all);
break;
case SIMFACE_COPLANAR:
tree_plane = BLI_kdtree_4d_new(tot_faces_selected_all);
break;
case SIMFACE_SIDES:
case SIMFACE_MATERIAL:
gset = BLI_gset_ptr_new("Select similar face");
break;
case SIMFACE_FACEMAP:
gset_array = MEM_callocN(sizeof(GSet *) * objects_len, "Select similar face: facemap gset array");
break;
}
int tree_index = 0;
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
Object *ob = objects[ob_index];
BMEditMesh *em = BKE_editmesh_from_object(ob);
BMesh *bm = em->bm;
Material ***material_array = NULL;
invert_m4_m4(ob->imat, ob->obmat);
int custom_data_offset = 0;
if (bm->totfacesel == 0) {
continue;
}
float ob_m3[3][3];
copy_m3_m4(ob_m3, ob->obmat);
switch (type) {
case SIMFACE_MATERIAL:
{
if (ob->totcol == 0) {
continue;
}
material_array = give_matarar(ob);
break;
}
case SIMFACE_FREESTYLE:
{
if (!CustomData_has_layer(&bm->pdata, CD_FREESTYLE_FACE)) {
face_data_value |= SIMFACE_DATA_FALSE;
continue;
}
break;
}
case SIMFACE_FACEMAP:
{
custom_data_offset = CustomData_get_offset(&bm->pdata, CD_FACEMAP);
if (custom_data_offset == -1) {
continue;
}
else {
gset_array[ob_index] = BLI_gset_ptr_new("Select similar face: facemap gset");
}
}
}
BMFace *face; /* Mesh face. */
BMIter iter; /* Selected faces iterator. */
BM_ITER_MESH (face, &iter, bm, BM_FACES_OF_MESH) {
if (BM_elem_flag_test(face, BM_ELEM_SELECT)) {
switch (type) {
case SIMFACE_SIDES:
BLI_gset_add(gset, POINTER_FROM_INT(face->len));
break;
case SIMFACE_MATERIAL:
{
Material *material = (*material_array)[face->mat_nr];
if (material != NULL) {
BLI_gset_add(gset, material);
}
break;
}
case SIMFACE_AREA:
{
float area = BM_face_calc_area_with_mat3(face, ob_m3);
float dummy[3] = {area, 0.0f, 0.0f};
BLI_kdtree_3d_insert(tree, tree_index++, dummy);
break;
}
case SIMFACE_PERIMETER:
{
float perimeter = BM_face_calc_perimeter_with_mat3(face, ob_m3);
float dummy[3] = {perimeter, 0.0f, 0.0f};
BLI_kdtree_3d_insert(tree, tree_index++, dummy);
break;
}
case SIMFACE_NORMAL:
{
float normal[3];
copy_v3_v3(normal, face->no);
mul_transposed_mat3_m4_v3(ob->imat, normal);
normalize_v3(normal);
BLI_kdtree_3d_insert(tree, tree_index++, normal);
break;
}
case SIMFACE_COPLANAR:
{
float plane[4];
face_to_plane(ob, face, plane);
BLI_kdtree_4d_insert(tree_plane, tree_index++, plane);
break;
}
case SIMFACE_SMOOTH:
{
if (!face_data_value_set(face, BM_ELEM_SMOOTH, &face_data_value)) {
goto face_select_all;
}
break;
}
case SIMFACE_FREESTYLE:
{
FreestyleFace *fface;
fface = CustomData_bmesh_get(&bm->pdata, face->head.data, CD_FREESTYLE_FACE);
if ((fface == NULL) || ((fface->flag & FREESTYLE_FACE_MARK) == 0)) {
face_data_value |= SIMFACE_DATA_FALSE;
}
else {
face_data_value |= SIMFACE_DATA_TRUE;
}
if (face_data_value == SIMFACE_DATA_ALL) {
goto face_select_all;
}
break;
}
case SIMFACE_FACEMAP:
{
BLI_assert(custom_data_offset != -1);
int *face_map = BM_ELEM_CD_GET_VOID_P(face, custom_data_offset);
BLI_gset_add(gset_array[ob_index], face_map);
break;
}
}
}
}
}
BLI_assert((type != SIMFACE_FREESTYLE) || (face_data_value != SIMFACE_DATA_NONE));
if (tree != NULL) {
BLI_kdtree_3d_balance(tree);
}
if (tree_plane != NULL) {
BLI_kdtree_4d_balance(tree_plane);
}
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
Object *ob = objects[ob_index];
BMEditMesh *em = BKE_editmesh_from_object(ob);
BMesh *bm = em->bm;
bool changed = false;
Material ***material_array = NULL;
int custom_data_offset;
float ob_m3[3][3];
copy_m3_m4(ob_m3, ob->obmat);
bool has_custom_data_layer = false;
switch (type) {
case SIMFACE_MATERIAL:
{
if (ob->totcol == 0) {
continue;
}
material_array = give_matarar(ob);
break;
}
case SIMFACE_FREESTYLE:
{
has_custom_data_layer = CustomData_has_layer(&bm->pdata, CD_FREESTYLE_FACE);
if ((face_data_value == SIMFACE_DATA_TRUE) && !has_custom_data_layer) {
continue;
}
break;
}
case SIMFACE_FACEMAP:
{
custom_data_offset = CustomData_get_offset(&bm->pdata, CD_FACEMAP);
if (custom_data_offset == -1) {
continue;
}
}
}
BMFace *face; /* Mesh face. */
BMIter iter; /* Selected faces iterator. */
BM_ITER_MESH (face, &iter, bm, BM_FACES_OF_MESH) {
if (!BM_elem_flag_test(face, BM_ELEM_SELECT) &&
!BM_elem_flag_test(face, BM_ELEM_HIDDEN))
{
bool select = false;
switch (type) {
case SIMFACE_SIDES:
{
const int num_sides = face->len;
GSetIterator gs_iter;
GSET_ITER(gs_iter, gset) {
const int num_sides_iter = POINTER_AS_INT(BLI_gsetIterator_getKey(&gs_iter));
const int delta_i = num_sides - num_sides_iter;
if (mesh_select_similar_compare_int(delta_i, compare)) {
select = true;
break;
}
}
break;
}
case SIMFACE_MATERIAL:
{
const Material *material = (*material_array)[face->mat_nr];
if (material == NULL) {
continue;
}
GSetIterator gs_iter;
GSET_ITER(gs_iter, gset) {
const Material *material_iter = BLI_gsetIterator_getKey(&gs_iter);
if (material == material_iter) {
select = true;
break;
}
}
break;
}
case SIMFACE_AREA:
{
float area = BM_face_calc_area_with_mat3(face, ob_m3);
if (ED_select_similar_compare_float_tree(tree, area, thresh, compare)) {
select = true;
}
break;
}
case SIMFACE_PERIMETER:
{
float perimeter = BM_face_calc_perimeter_with_mat3(face, ob_m3);
if (ED_select_similar_compare_float_tree(tree, perimeter, thresh, compare)) {
select = true;
}
break;
}
case SIMFACE_NORMAL:
{
float normal[3];
copy_v3_v3(normal, face->no);
mul_transposed_mat3_m4_v3(ob->imat, normal);
normalize_v3(normal);
/* We are treating the normals as coordinates, the "nearest" one will
* also be the one closest to the angle. */
KDTreeNearest_3d nearest;
if (BLI_kdtree_3d_find_nearest(tree, normal, &nearest) != -1) {
if (angle_normalized_v3v3(normal, nearest.co) <= thresh_radians) {
select = true;
}
}
break;
}
case SIMFACE_COPLANAR:
{
float plane[4];
face_to_plane(ob, face, plane);
KDTreeNearest_4d nearest;
if (BLI_kdtree_4d_find_nearest(tree_plane, plane, &nearest) != -1) {
if (nearest.dist <= thresh) {
if ((fabsf(plane[3] - nearest.co[3]) <= thresh) &&
(angle_v3v3(plane, nearest.co) <= thresh_radians))
{
select = true;
}
}
}
break;
}
case SIMFACE_SMOOTH:
if ((BM_elem_flag_test(face, BM_ELEM_SMOOTH) != 0) ==
((face_data_value & SIMFACE_DATA_TRUE) != 0))
{
select = true;
}
break;
case SIMFACE_FREESTYLE:
{
FreestyleFace *fface;
if (!has_custom_data_layer) {
BLI_assert(face_data_value == SIMFACE_DATA_FALSE);
select = true;
break;
}
fface = CustomData_bmesh_get(&bm->pdata, face->head.data, CD_FREESTYLE_FACE);
if (((fface != NULL) && (fface->flag & FREESTYLE_FACE_MARK)) ==
((face_data_value & SIMFACE_DATA_TRUE) != 0))
{
select = true;
}
break;
}
case SIMFACE_FACEMAP:
{
const int *face_map = BM_ELEM_CD_GET_VOID_P(face, custom_data_offset);
GSetIterator gs_iter;
GSET_ITER(gs_iter, gset_array[ob_index]) {
const int *face_map_iter = BLI_gsetIterator_getKey(&gs_iter);
if (*face_map == *face_map_iter) {
select = true;
break;
}
}
break;
}
}
if (select) {
BM_face_select_set(bm, face, true);
changed = true;
}
}
}
if (changed) {
EDBM_selectmode_flush(em);
EDBM_update_generic(em, false, false);
}
}
if (false) {
face_select_all:
BLI_assert(ELEM(type,
SIMFACE_SMOOTH,
SIMFACE_FREESTYLE
));
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
Object *ob = objects[ob_index];
BMEditMesh *em = BKE_editmesh_from_object(ob);
BMesh *bm = em->bm;
BMFace *face; /* Mesh face. */
BMIter iter; /* Selected faces iterator. */
BM_ITER_MESH (face, &iter, bm, BM_FACES_OF_MESH) {
if (!BM_elem_flag_test(face, BM_ELEM_SELECT)) {
BM_face_select_set(bm, face, true);
}
}
EDBM_selectmode_flush(em);
EDBM_update_generic(em, false, false);
}
}
MEM_freeN(objects);
BLI_kdtree_3d_free(tree);
BLI_kdtree_4d_free(tree_plane);
if (gset != NULL) {
BLI_gset_free(gset, NULL);
}
if (gset_array != NULL) {
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
if (gset_array[ob_index] != NULL) {
BLI_gset_free(gset_array[ob_index], NULL);
}
}
MEM_freeN(gset_array);
}
return OPERATOR_FINISHED;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Select Similar Edge
* \{ */
/**
* Note: This is not normal, but the edge direction itself and always in
* a positive quadrant (tries z, y then x).
* Therefore we need to use the entire object transformation matrix.
*/
static void edge_pos_direction_worldspace_get(Object *ob, BMEdge *edge, float *r_dir)
{
float v1[3], v2[3];
copy_v3_v3(v1, edge->v1->co);
copy_v3_v3(v2, edge->v2->co);
mul_m4_v3(ob->obmat, v1);
mul_m4_v3(ob->obmat, v2);
sub_v3_v3v3(r_dir, v1, v2);
normalize_v3(r_dir);
/* Make sure we have a consistent direction that can be checked regardless of
* the verts order of the edges. This spares us from storing dir and -dir in the tree. */
if (fabs(r_dir[2]) < FLT_EPSILON) {
if (fabs(r_dir[1]) < FLT_EPSILON) {
if (r_dir[0] < 0.0f) {
mul_v3_fl(r_dir, -1.0f);
}
}
else if (r_dir[1] < 0.0f) {
mul_v3_fl(r_dir, -1.0f);
}
}
else if (r_dir[2] < 0.0f) {
mul_v3_fl(r_dir, -1.0f);
}
}
static float edge_length_squared_worldspace_get(Object *ob, BMEdge *edge)
{
float v1[3], v2[3];
mul_v3_mat3_m4v3(v1, ob->obmat, edge->v1->co);
mul_v3_mat3_m4v3(v2, ob->obmat, edge->v2->co);
return len_squared_v3v3(v1, v2);
}
enum {
SIMEDGE_DATA_NONE = 0,
SIMEDGE_DATA_TRUE = (1 << 0),
SIMEDGE_DATA_FALSE = (1 << 1),
SIMEDGE_DATA_ALL = (SIMEDGE_DATA_TRUE | SIMEDGE_DATA_FALSE),
};
/**
* Return true if we still don't know the final value for this edge data.
* In other words, if we need to keep iterating over the objects or we can
* just go ahead and select all the objects.
*/
static bool edge_data_value_set(BMEdge *edge, const int hflag, int *r_value)
{
if (BM_elem_flag_test(edge, hflag)) {
*r_value |= SIMEDGE_DATA_TRUE;
}
else {
*r_value |= SIMEDGE_DATA_FALSE;
}
return *r_value != SIMEDGE_DATA_ALL;
}
/* TODO(dfelinto): `types` that should technically be compared in world space but are not:
* -SIMEDGE_FACE_ANGLE
*/
static int similar_edge_select_exec(bContext *C, wmOperator *op)
{
ViewLayer *view_layer = CTX_data_view_layer(C);
const int type = RNA_enum_get(op->ptr, "type");
const float thresh = RNA_float_get(op->ptr, "threshold");
const float thresh_radians = thresh * (float)M_PI + FLT_EPSILON;
const int compare = RNA_enum_get(op->ptr, "compare");
int custom_data_type = -1;
int tot_edges_selected_all = 0;
uint objects_len = 0;
Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data(view_layer, CTX_wm_view3d(C), &objects_len);
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
Object *ob = objects[ob_index];
BMEditMesh *em = BKE_editmesh_from_object(ob);
tot_edges_selected_all += em->bm->totedgesel;
}
if (tot_edges_selected_all == 0) {
BKE_report(op->reports, RPT_ERROR, "No edge selected");
MEM_freeN(objects);
return OPERATOR_CANCELLED;
}
KDTree_3d *tree = NULL;
GSet *gset = NULL;
int edge_data_value = SIMEDGE_DATA_NONE;
switch (type) {
case SIMEDGE_CREASE:
case SIMEDGE_BEVEL:
case SIMEDGE_FACE_ANGLE:
case SIMEDGE_LENGTH:
case SIMEDGE_DIR:
tree = BLI_kdtree_3d_new(tot_edges_selected_all);
break;
case SIMEDGE_FACE:
gset = BLI_gset_ptr_new("Select similar edge: face");
break;
}
switch (type) {
case SIMEDGE_CREASE:
custom_data_type = CD_CREASE;
break;
case SIMEDGE_BEVEL:
custom_data_type = CD_BWEIGHT;
break;
}
int tree_index = 0;
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
Object *ob = objects[ob_index];
BMEditMesh *em = BKE_editmesh_from_object(ob);
BMesh *bm = em->bm;
if (bm->totedgesel == 0) {
continue;
}
switch (type) {
case SIMEDGE_FREESTYLE:
{
if (!CustomData_has_layer(&bm->edata, CD_FREESTYLE_EDGE)) {
edge_data_value |= SIMEDGE_DATA_FALSE;
continue;
}
break;
}
case SIMEDGE_CREASE:
case SIMEDGE_BEVEL:
{
if (!CustomData_has_layer(&bm->edata, custom_data_type)) {
float dummy[3] = {0.0f, 0.0f, 0.0f};
BLI_kdtree_3d_insert(tree, tree_index++, dummy);
continue;
}
break;
}
}
float ob_m3[3][3], ob_m3_inv[3][3];
copy_m3_m4(ob_m3, ob->obmat);
invert_m3_m3(ob_m3_inv, ob_m3);
BMEdge *edge; /* Mesh edge. */
BMIter iter; /* Selected edges iterator. */
BM_ITER_MESH (edge, &iter, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(edge, BM_ELEM_SELECT)) {
switch (type) {
case SIMEDGE_FACE:
BLI_gset_add(gset, POINTER_FROM_INT(BM_edge_face_count(edge)));
break;
case SIMEDGE_DIR:
{
float dir[3];
edge_pos_direction_worldspace_get(ob, edge, dir);
BLI_kdtree_3d_insert(tree, tree_index++, dir);
break;
}
case SIMEDGE_LENGTH:
{
float length = edge_length_squared_worldspace_get(ob, edge);
float dummy[3] = {length, 0.0f, 0.0f};
BLI_kdtree_3d_insert(tree, tree_index++, dummy);
break;
}
case SIMEDGE_FACE_ANGLE:
{
if (BM_edge_face_count_at_most(edge, 2) == 2) {
float angle = BM_edge_calc_face_angle_with_imat3(edge, ob_m3_inv);
float dummy[3] = {angle, 0.0f, 0.0f};
BLI_kdtree_3d_insert(tree, tree_index++, dummy);
}
break;
}
case SIMEDGE_SEAM:
if (!edge_data_value_set(edge, BM_ELEM_SEAM, &edge_data_value)) {
goto edge_select_all;
}
break;
case SIMEDGE_SHARP:
if (!edge_data_value_set(edge, BM_ELEM_SMOOTH, &edge_data_value)) {
goto edge_select_all;
}
break;
case SIMEDGE_FREESTYLE:
{
FreestyleEdge *fedge;
fedge = CustomData_bmesh_get(&bm->edata, edge->head.data, CD_FREESTYLE_EDGE);
if ((fedge == NULL) || ((fedge->flag & FREESTYLE_EDGE_MARK) == 0)) {
edge_data_value |= SIMEDGE_DATA_FALSE;
}
else {
edge_data_value |= SIMEDGE_DATA_TRUE;
}
if (edge_data_value == SIMEDGE_DATA_ALL) {
goto edge_select_all;
}
break;
}
case SIMEDGE_CREASE:
case SIMEDGE_BEVEL:
{
const float *value = CustomData_bmesh_get(&bm->edata, edge->head.data, custom_data_type);
float dummy[3] = {*value, 0.0f, 0.0f};
BLI_kdtree_3d_insert(tree, tree_index++, dummy);
break;
}
}
}
}
}
BLI_assert((type != SIMEDGE_FREESTYLE) || (edge_data_value != SIMEDGE_DATA_NONE));
if (tree != NULL) {
BLI_kdtree_3d_balance(tree);
}
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
Object *ob = objects[ob_index];
BMEditMesh *em = BKE_editmesh_from_object(ob);
BMesh *bm = em->bm;
bool changed = false;
bool has_custom_data_layer = false;
switch (type) {
case SIMEDGE_FREESTYLE:
{
has_custom_data_layer = CustomData_has_layer(&bm->edata, CD_FREESTYLE_EDGE);
if ((edge_data_value == SIMEDGE_DATA_TRUE) && !has_custom_data_layer) {
continue;
}
break;
}
case SIMEDGE_CREASE:
case SIMEDGE_BEVEL:
{
has_custom_data_layer = CustomData_has_layer(&bm->edata, custom_data_type);
if (!has_custom_data_layer) {
/* Proceed only if we have to select all the edges that have custom data value of 0.0f.
* In this case we will just select all the edges.
* Otherwise continue the for loop. */
if (!ED_select_similar_compare_float_tree(tree, 0.0f, thresh, compare)) {
continue;
}
}
}
}
float ob_m3[3][3], ob_m3_inv[3][3];
copy_m3_m4(ob_m3, ob->obmat);
invert_m3_m3(ob_m3_inv, ob_m3);
BMEdge *edge; /* Mesh edge. */
BMIter iter; /* Selected edges iterator. */
BM_ITER_MESH (edge, &iter, bm, BM_EDGES_OF_MESH) {
if (!BM_elem_flag_test(edge, BM_ELEM_SELECT) &&
!BM_elem_flag_test(edge, BM_ELEM_HIDDEN))
{
bool select = false;
switch (type) {
case SIMEDGE_FACE:
{
const int num_faces = BM_edge_face_count(edge);
GSetIterator gs_iter;
GSET_ITER(gs_iter, gset) {
const int num_faces_iter = POINTER_AS_INT(BLI_gsetIterator_getKey(&gs_iter));
const int delta_i = num_faces - num_faces_iter;
if (mesh_select_similar_compare_int(delta_i, compare)) {
select = true;
break;
}
}
break;
}
case SIMEDGE_DIR:
{
float dir[3];
edge_pos_direction_worldspace_get(ob, edge, dir);
/* We are treating the direction as coordinates, the "nearest" one will
* also be the one closest to the intended direction. */
KDTreeNearest_3d nearest;
if (BLI_kdtree_3d_find_nearest(tree, dir, &nearest) != -1) {
if (angle_normalized_v3v3(dir, nearest.co) <= thresh_radians) {
select = true;
}
}
break;
}
case SIMEDGE_LENGTH:
{
float length = edge_length_squared_worldspace_get(ob, edge);
if (ED_select_similar_compare_float_tree(tree, length, thresh, compare)) {
select = true;
}
break;
}
case SIMEDGE_FACE_ANGLE:
{
if (BM_edge_face_count_at_most(edge, 2) == 2) {
float angle = BM_edge_calc_face_angle_with_imat3(edge, ob_m3_inv);
if (ED_select_similar_compare_float_tree(tree, angle, thresh, SIM_CMP_EQ)) {
select = true;
}
}
break;
}
case SIMEDGE_SEAM:
if ((BM_elem_flag_test(edge, BM_ELEM_SEAM) != 0) ==
((edge_data_value & SIMEDGE_DATA_TRUE) != 0))
{
select = true;
}
break;
case SIMEDGE_SHARP:
if ((BM_elem_flag_test(edge, BM_ELEM_SMOOTH) != 0) ==
((edge_data_value & SIMEDGE_DATA_TRUE) != 0))
{
select = true;
}
break;
case SIMEDGE_FREESTYLE:
{
FreestyleEdge *fedge;
if (!has_custom_data_layer) {
BLI_assert(edge_data_value == SIMEDGE_DATA_FALSE);
select = true;
break;
}
fedge = CustomData_bmesh_get(&bm->edata, edge->head.data, CD_FREESTYLE_EDGE);
if (((fedge != NULL) && (fedge->flag & FREESTYLE_EDGE_MARK)) ==
((edge_data_value & SIMEDGE_DATA_TRUE) != 0))
{
select = true;
}
break;
}
case SIMEDGE_CREASE:
case SIMEDGE_BEVEL:
{
if (!has_custom_data_layer) {
select = true;
break;
}
const float *value = CustomData_bmesh_get(&bm->edata, edge->head.data, custom_data_type);
if (ED_select_similar_compare_float_tree(tree, *value, thresh, compare)) {
select = true;
}
break;
}
}
if (select) {
BM_edge_select_set(bm, edge, true);
changed = true;
}
}
}
if (changed) {
EDBM_selectmode_flush(em);
EDBM_update_generic(em, false, false);
}
}
if (false) {
edge_select_all:
BLI_assert(ELEM(type,
SIMEDGE_SEAM,
SIMEDGE_SHARP,
SIMEDGE_FREESTYLE
));
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
Object *ob = objects[ob_index];
BMEditMesh *em = BKE_editmesh_from_object(ob);
BMesh *bm = em->bm;
BMEdge *edge; /* Mesh edge. */
BMIter iter; /* Selected edges iterator. */
BM_ITER_MESH (edge, &iter, bm, BM_EDGES_OF_MESH) {
if (!BM_elem_flag_test(edge, BM_ELEM_SELECT)) {
BM_edge_select_set(bm, edge, true);
}
}
EDBM_selectmode_flush(em);
EDBM_update_generic(em, false, false);
}
}
MEM_freeN(objects);
BLI_kdtree_3d_free(tree);
if (gset != NULL) {
BLI_gset_free(gset, NULL);
}
return OPERATOR_FINISHED;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Select Similar Vert
* \{ */
static int similar_vert_select_exec(bContext *C, wmOperator *op)
{
ViewLayer *view_layer = CTX_data_view_layer(C);
/* get the type from RNA */
const int type = RNA_enum_get(op->ptr, "type");
const float thresh = RNA_float_get(op->ptr, "threshold");
const float thresh_radians = thresh * (float)M_PI + FLT_EPSILON;
const int compare = RNA_enum_get(op->ptr, "compare");
int tot_verts_selected_all = 0;
uint objects_len = 0;
Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data(view_layer, CTX_wm_view3d(C), &objects_len);
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
Object *ob = objects[ob_index];
BMEditMesh *em = BKE_editmesh_from_object(ob);
tot_verts_selected_all += em->bm->totvertsel;
}
if (tot_verts_selected_all == 0) {
BKE_report(op->reports, RPT_ERROR, "No vertex selected");
MEM_freeN(objects);
return OPERATOR_CANCELLED;
}
KDTree_3d *tree = NULL;
GSet *gset = NULL;
switch (type) {
case SIMVERT_NORMAL:
tree = BLI_kdtree_3d_new(tot_verts_selected_all);
break;
case SIMVERT_EDGE:
case SIMVERT_FACE:
gset = BLI_gset_ptr_new("Select similar vertex: edge/face");
break;
case SIMVERT_VGROUP:
gset = BLI_gset_str_new("Select similar vertex: vertex groups");
break;
}
int normal_tree_index = 0;
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
Object *ob = objects[ob_index];
BMEditMesh *em = BKE_editmesh_from_object(ob);
BMesh *bm = em->bm;
int cd_dvert_offset = -1;
int dvert_selected = 0;
invert_m4_m4(ob->imat, ob->obmat);
if (bm->totvertsel == 0) {
continue;
}
if (type == SIMVERT_VGROUP) {
cd_dvert_offset = CustomData_get_offset(&bm->vdata, CD_MDEFORMVERT);
if (cd_dvert_offset == -1) {
continue;
}
}
BMVert *vert; /* Mesh vertex. */
BMIter iter; /* Selected verts iterator. */
BM_ITER_MESH (vert, &iter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(vert, BM_ELEM_SELECT)) {
switch (type) {
case SIMVERT_FACE:
BLI_gset_add(gset, POINTER_FROM_INT(BM_vert_face_count(vert)));
break;
case SIMVERT_EDGE:
BLI_gset_add(gset, POINTER_FROM_INT(BM_vert_edge_count(vert)));
break;
case SIMVERT_NORMAL:
{
float normal[3];
copy_v3_v3(normal, vert->no);
mul_transposed_mat3_m4_v3(ob->imat, normal);
normalize_v3(normal);
BLI_kdtree_3d_insert(tree, normal_tree_index++, normal);
break;
}
case SIMVERT_VGROUP:
{
MDeformVert *dvert = BM_ELEM_CD_GET_VOID_P(vert, cd_dvert_offset);
MDeformWeight *dw = dvert->dw;
for (int i = 0; i < dvert->totweight; i++, dw++) {
if (dw->weight > 0.0f) {
dvert_selected |= (1 << dw->def_nr);
}
}
break;
}
}
}
}
if (type == SIMVERT_VGROUP) {
/* We store the names of the vertex groups, so we can select
* vertex groups with the same name in different objects. */
const int dvert_tot = BLI_listbase_count(&ob->defbase);
for (int i = 0; i < dvert_tot; i++) {
if (dvert_selected & (1 << i)) {
bDeformGroup *dg = BLI_findlink(&ob->defbase, i);
BLI_gset_add(gset, dg->name);
}
}
}
}
if (type == SIMVERT_VGROUP) {
if (BLI_gset_len(gset) == 0) {
BKE_report(op->reports,
RPT_INFO,
"No vertex group among the selected vertices");
}
}
/* Remove duplicated entries. */
if (tree != NULL) {
BLI_kdtree_3d_balance(tree);
}
/* Run .the BM operators. */
for (uint ob_index = 0; ob_index < objects_len; ob_index++) {
Object *ob = objects[ob_index];
BMEditMesh *em = BKE_editmesh_from_object(ob);
BMesh *bm = em->bm;
bool changed = false;
int cd_dvert_offset = -1;
int dvert_selected = 0;
if (type == SIMVERT_VGROUP) {
cd_dvert_offset = CustomData_get_offset(&bm->vdata, CD_MDEFORMVERT);
if (cd_dvert_offset == -1) {
continue;
}
/* We map back the names of the vertex groups to their corresponsing indices
* for this object. This is fast, and keep the logic for each vertex very simple. */
GSetIterator gs_iter;
GSET_ITER(gs_iter, gset) {
const char *name = BLI_gsetIterator_getKey(&gs_iter);
int vgroup_id = BLI_findstringindex(&ob->defbase,
name,
offsetof(bDeformGroup, name));
if (vgroup_id != -1) {
dvert_selected |= (1 << vgroup_id);
}
}
if (dvert_selected == 0) {
continue;
}
}
BMVert *vert; /* Mesh vertex. */
BMIter iter; /* Selected verts iterator. */
BM_ITER_MESH (vert, &iter, bm, BM_VERTS_OF_MESH) {
if (!BM_elem_flag_test(vert, BM_ELEM_SELECT) &&
!BM_elem_flag_test(vert, BM_ELEM_HIDDEN))
{
bool select = false;
switch (type) {
case SIMVERT_EDGE:
{
const int num_edges = BM_vert_edge_count(vert);
GSetIterator gs_iter;
GSET_ITER(gs_iter, gset) {
const int num_edges_iter = POINTER_AS_INT(BLI_gsetIterator_getKey(&gs_iter));
const int delta_i = num_edges - num_edges_iter;
if (mesh_select_similar_compare_int(delta_i, compare)) {
select = true;
break;
}
}
break;
}
case SIMVERT_FACE:
{
const int num_faces = BM_vert_face_count(vert);
GSetIterator gs_iter;
GSET_ITER(gs_iter, gset) {
const int num_faces_iter = POINTER_AS_INT(BLI_gsetIterator_getKey(&gs_iter));
const int delta_i = num_faces - num_faces_iter;
if (mesh_select_similar_compare_int(delta_i, compare)) {
select = true;
break;
}
}
break;
}
case SIMVERT_NORMAL:
{
float normal[3];
copy_v3_v3(normal, vert->no);
mul_transposed_mat3_m4_v3(ob->imat, normal);
normalize_v3(normal);
/* We are treating the normals as coordinates, the "nearest" one will
* also be the one closest to the angle. */
KDTreeNearest_3d nearest;
if (BLI_kdtree_3d_find_nearest(tree, normal, &nearest) != -1) {
if (angle_normalized_v3v3(normal, nearest.co) <= thresh_radians) {
select = true;
}
}
break;
}
case SIMVERT_VGROUP:
{
MDeformVert *dvert = BM_ELEM_CD_GET_VOID_P(vert, cd_dvert_offset);
MDeformWeight *dw = dvert->dw;
for (int i = 0; i < dvert->totweight; i++, dw++) {
if (dw->weight > 0.0f) {
if (dvert_selected & (1 << dw->def_nr)) {
select = true;
break;
}
}
}
break;
}
}
if (select) {
BM_vert_select_set(bm, vert, true);
changed = true;
}
}
}
if (changed) {
EDBM_selectmode_flush(em);
EDBM_update_generic(em, false, false);
}
}
MEM_freeN(objects);
BLI_kdtree_3d_free(tree);
if (gset != NULL) {
BLI_gset_free(gset, NULL);
}
return OPERATOR_FINISHED;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Select Similar Operator
* \{ */
static int edbm_select_similar_exec(bContext *C, wmOperator *op)
{
ToolSettings *ts = CTX_data_tool_settings(C);
PropertyRNA *prop = RNA_struct_find_property(op->ptr, "threshold");
const int type = RNA_enum_get(op->ptr, "type");
if (!RNA_property_is_set(op->ptr, prop)) {
RNA_property_float_set(op->ptr, prop, ts->select_thresh);
}
else {
ts->select_thresh = RNA_property_float_get(op->ptr, prop);
}
if (type < 100) return similar_vert_select_exec(C, op);
else if (type < 200) return similar_edge_select_exec(C, op);
else return similar_face_select_exec(C, op);
}
static const EnumPropertyItem *select_similar_type_itemf(
bContext *C, PointerRNA *UNUSED(ptr), PropertyRNA *UNUSED(prop),
bool *r_free)
{
Object *obedit;
if (!C) /* needed for docs and i18n tools */
return prop_similar_types;
obedit = CTX_data_edit_object(C);
if (obedit && obedit->type == OB_MESH) {
EnumPropertyItem *item = NULL;
int a, totitem = 0;
BMEditMesh *em = BKE_editmesh_from_object(obedit);
if (em->selectmode & SCE_SELECT_VERTEX) {
for (a = SIMVERT_NORMAL; a < SIMEDGE_LENGTH; a++) {
RNA_enum_items_add_value(&item, &totitem, prop_similar_types, a);
}
}
else if (em->selectmode & SCE_SELECT_EDGE) {
for (a = SIMEDGE_LENGTH; a < SIMFACE_MATERIAL; a++) {
RNA_enum_items_add_value(&item, &totitem, prop_similar_types, a);
}
}
else if (em->selectmode & SCE_SELECT_FACE) {
#ifdef WITH_FREESTYLE
const int a_end = SIMFACE_FREESTYLE;
#else
const int a_end = SIMFACE_FACEMAP;
#endif
for (a = SIMFACE_MATERIAL; a <= a_end; a++) {
RNA_enum_items_add_value(&item, &totitem, prop_similar_types, a);
}
}
RNA_enum_item_end(&item, &totitem);
*r_free = true;
return item;
}
return prop_similar_types;
}
void MESH_OT_select_similar(wmOperatorType *ot)
{
PropertyRNA *prop;
/* identifiers */
ot->name = "Select Similar";
ot->idname = "MESH_OT_select_similar";
ot->description = "Select similar vertices, edges or faces by property types";
/* api callbacks */
ot->invoke = WM_menu_invoke;
ot->exec = edbm_select_similar_exec;
ot->poll = ED_operator_editmesh;
/* flags */
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;
/* properties */
prop = ot->prop = RNA_def_enum(ot->srna, "type", prop_similar_types, SIMVERT_NORMAL, "Type", "");
RNA_def_enum_funcs(prop, select_similar_type_itemf);
RNA_def_enum(ot->srna, "compare", prop_similar_compare_types, SIM_CMP_EQ, "Compare", "");
RNA_def_float(ot->srna, "threshold", 0.0f, 0.0f, 1.0f, "Threshold", "", 0.0f, 1.0f);
}
/** \} */