This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/anim.c
Hans Lambermont 12315f4d0e Initial revision
2002-10-12 11:37:38 +00:00

513 lines
12 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "DNA_listBase.h"
#include "DNA_object_types.h"
#include "DNA_curve_types.h"
#include "DNA_key_types.h"
#include "DNA_view3d_types.h"
#include "DNA_effect_types.h"
#include "DNA_mesh_types.h"
#include "DNA_scene_types.h"
#include "BKE_global.h"
#include "BKE_utildefines.h"
#include "BKE_anim.h"
#include "BKE_ipo.h"
#include "BKE_object.h"
#include "BKE_displist.h"
#include "BKE_key.h"
#include "BKE_font.h"
#include "BKE_effect.h"
#include "BKE_bad_level_calls.h"
ListBase duplilist= {0, 0};
void free_path(Path *path)
{
if(path->data) MEM_freeN(path->data);
MEM_freeN(path);
}
void calc_curvepath(Object *ob)
{
BevList *bl;
BevPoint *bevp, *bevpn, *bevpfirst, *bevplast;
Curve *cu;
Nurb *nu;
Path *path;
float *fp, *dist, *maxdist, x, y, z;
float fac, d=0, fac1, fac2;
int a, tot, cycl=0;
float *ft;
/* in een pad zitten allemaal punten met gelijke afstand: path->len = aantal pt */
/* NU MET BEVELCURVE!!! */
if(ob==0 || ob->type != OB_CURVE) return;
cu= ob->data;
if(ob==G.obedit) nu= editNurb.first;
else nu= cu->nurb.first;
if(cu->path) free_path(cu->path);
cu->path= 0;
if((cu->flag & CU_PATH)==0) return;
bl= cu->bev.first;
if(bl==0) {
makeDispList(ob);
bl= cu->bev.first;
}
if(bl==0) return;
cu->path=path= MEM_callocN(sizeof(Path), "path");
/* als POLY: laatste punt != eerste punt */
cycl= (bl->poly!= -1);
if(cycl) tot= bl->nr;
else tot= bl->nr-1;
path->len= tot+1;
/* exception: vector handle paths and polygon paths should be subdivided at least a factor 6 (or more?) */
if(path->len<6*nu->pntsu) path->len= 6*nu->pntsu;
dist= (float *)MEM_mallocN((tot+1)*4, "berekenpaddist");
/* alle lengtes in *dist */
bevp= bevpfirst= (BevPoint *)(bl+1);
fp= dist;
*fp= 0;
for(a=0; a<tot; a++) {
fp++;
if(cycl && a==tot-1) {
x= bevpfirst->x - bevp->x;
y= bevpfirst->y - bevp->y;
z= bevpfirst->z - bevp->z;
}
else {
x= (bevp+1)->x - bevp->x;
y= (bevp+1)->y - bevp->y;
z= (bevp+1)->z - bevp->z;
}
*fp= *(fp-1)+ (float)sqrt(x*x+y*y+z*z);
bevp++;
}
path->totdist= *fp;
/* de padpunten in path->data */
/* nu ook met TILT */
ft= path->data = (float *)MEM_callocN(16*path->len, "pathdata");
bevp= bevpfirst;
bevpn= bevp+1;
bevplast= bevpfirst + (bl->nr-1);
fp= dist+1;
maxdist= dist+tot;
fac= 1.0f/((float)path->len-1.0f);
for(a=0; a<path->len; a++) {
d= ((float)a)*fac*path->totdist;
/* we zoeken plek 'd' in het array */
while((d>= *fp) && fp<maxdist) {
fp++;
if(bevp<bevplast) bevp++;
bevpn= bevp+1;
if(bevpn>bevplast) {
if(cycl) bevpn= bevpfirst;
else bevpn= bevplast;
}
}
fac1= *(fp)- *(fp-1);
fac2= *(fp)-d;
fac1= fac2/fac1;
fac2= 1.0f-fac1;
ft[0]= fac1*bevp->x+ fac2*(bevpn)->x;
ft[1]= fac1*bevp->y+ fac2*(bevpn)->y;
ft[2]= fac1*bevp->z+ fac2*(bevpn)->z;
ft[3]= fac1*bevp->alfa+ fac2*(bevpn)->alfa;
ft+= 4;
}
MEM_freeN(dist);
}
int interval_test(int min, int max, int p1, int cycl)
{
if(cycl) {
if( p1 < min)
p1= ((p1 -min) % (max-min+1)) + max+1;
else if(p1 > max)
p1= ((p1 -min) % (max-min+1)) + min;
}
else {
if(p1 < min) p1= min;
else if(p1 > max) p1= max;
}
return p1;
}
int where_on_path(Object *ob, float ctime, float *vec, float *dir) /* geeft OK terug */
{
Curve *cu;
Nurb *nu;
BevList *bl;
Path *path;
float *fp, *p0, *p1, *p2, *p3, fac;
float data[4];
int cycl=0, s0, s1, s2, s3;
if(ob==0 || ob->type != OB_CURVE) return 0;
cu= ob->data;
if(cu->path==0 || cu->path->data==0) calc_curvepath(ob);
path= cu->path;
fp= path->data;
/* cyclic testen */
bl= cu->bev.first;
if(bl && bl->poly> -1) cycl= 1;
/* ctime is van 0.0-1.0 */
ctime *= (path->len-1);
s1= (int)floor(ctime);
fac= (float)(s1+1)-ctime;
/* path->len is gecorrigeerd voor cyclic, zie boven, is beetje warrig! */
s0= interval_test(0, path->len-1-cycl, s1-1, cycl);
s1= interval_test(0, path->len-1-cycl, s1, cycl);
s2= interval_test(0, path->len-1-cycl, s1+1, cycl);
s3= interval_test(0, path->len-1-cycl, s1+2, cycl);
p0= fp + 4*s0;
p1= fp + 4*s1;
p2= fp + 4*s2;
p3= fp + 4*s3;
if(cu->flag & CU_FOLLOW) {
set_afgeleide_four_ipo(1.0f-fac, data, KEY_BSPLINE);
dir[0]= data[0]*p0[0] + data[1]*p1[0] + data[2]*p2[0] + data[3]*p3[0] ;
dir[1]= data[0]*p0[1] + data[1]*p1[1] + data[2]*p2[1] + data[3]*p3[1] ;
dir[2]= data[0]*p0[2] + data[1]*p1[2] + data[2]*p2[2] + data[3]*p3[2] ;
/* compatible maken met vectoquat */
dir[0]= -dir[0];
dir[1]= -dir[1];
dir[2]= -dir[2];
}
nu= cu->nurb.first;
/* zeker van zijn dat de eerste en laatste frame door de punten gaat */
if((nu->type & 7)==CU_POLY) set_four_ipo(1.0f-fac, data, KEY_LINEAR);
else if((nu->type & 7)==CU_BEZIER) set_four_ipo(1.0f-fac, data, KEY_LINEAR);
else if(s0==s1 || p2==p3) set_four_ipo(1.0f-fac, data, KEY_CARDINAL);
else set_four_ipo(1.0f-fac, data, KEY_BSPLINE);
vec[0]= data[0]*p0[0] + data[1]*p1[0] + data[2]*p2[0] + data[3]*p3[0] ;
vec[1]= data[0]*p0[1] + data[1]*p1[1] + data[2]*p2[1] + data[3]*p3[1] ;
vec[2]= data[0]*p0[2] + data[1]*p1[2] + data[2]*p2[2] + data[3]*p3[2] ;
vec[3]= data[0]*p0[3] + data[1]*p1[3] + data[2]*p2[3] + data[3]*p3[3] ;
return 1;
}
void frames_duplilist(Object *ob)
{
extern int enable_cu_speed; /* object.c */
Object *newob;
int cfrao, ok;
cfrao= G.scene->r.cfra;
if(ob->parent==0 && ob->track==0 && ob->ipo==0) return;
if(ob->transflag & OB_DUPLINOSPEED) enable_cu_speed= 0;
/* dit om zeker van te zijn dat er iets gezbufferd wordt: in drawobject.c: dt==wire en boundboxclip */
if(G.background==0 && ob->type==OB_MESH) {
Mesh *me= ob->data;
DispList *dl;
if(me->disp.first==0) addnormalsDispList(ob, &me->disp);
if(ob->dt==OB_SHADED) {
dl= ob->disp.first;
if(dl==0 || dl->col1==0) shadeDispList(ob);
}
}
for(G.scene->r.cfra= ob->dupsta; G.scene->r.cfra<=ob->dupend; G.scene->r.cfra++) {
ok= 1;
if(ob->dupoff) {
ok= G.scene->r.cfra - ob->dupsta;
ok= ok % (ob->dupon+ob->dupoff);
if(ok < ob->dupon) ok= 1;
else ok= 0;
}
if(ok) {
newob= MEM_mallocN(sizeof(Object), "newobobj dupli");
memcpy(newob, ob, sizeof(Object));
/* alleen de basis-ball behoeft een displist */
if(newob->type==OB_MBALL) newob->disp.first= newob->disp.last= 0;
BLI_addtail(&duplilist, newob);
do_ob_ipo(newob);
where_is_object(newob);
newob->flag |= OB_FROMDUPLI;
newob->id.newid= (ID *)ob; /* duplicator bewaren */
}
}
G.scene->r.cfra= cfrao;
enable_cu_speed= 1;
do_ob_ipo(ob);
}
void vertex_duplilist(Scene *sce, Object *par)
{
Object *ob, *newob;
Base *base;
MVert *mvert;
Mesh *me;
float vec[3], pvec[3], pmat[4][4], mat[3][3], tmat[4][4];
float *q2;
int lay, totvert, a;
Mat4CpyMat4(pmat, par->obmat);
Mat4One(tmat);
lay= G.scene->lay;
base= sce->base.first;
while(base) {
if(base->object->type>0 && (lay & base->lay) && G.obedit!=base->object) {
ob= base->object->parent;
while(ob) {
if(ob==par) {
ob= base->object;
/* mballs have a different dupli handling */
if(ob->type!=OB_MBALL) ob->flag |= OB_DONE; /* doesnt render */
me= par->data;
mvert= me->mvert;
mvert+= (me->totvert-1);
VECCOPY(pvec, mvert->co);
Mat4MulVecfl(pmat, pvec);
mvert= me->mvert;
totvert= me->totvert;
for(a=0; a<totvert; a++, mvert++) {
/* bereken de extra offset (tov. nulpunt parent) die de kinderen krijgen */
VECCOPY(vec, mvert->co);
Mat4MulVecfl(pmat, vec);
VecSubf(vec, vec, pmat[3]);
VecAddf(vec, vec, ob->obmat[3]);
newob= MEM_mallocN(sizeof(Object), "newobj dupli");
memcpy(newob, ob, sizeof(Object));
newob->flag |= OB_FROMDUPLI;
newob->id.newid= (ID *)par; /* duplicator bewaren */
/* alleen de basis-ball behoeft een displist */
if(newob->type==OB_MBALL) newob->disp.first= newob->disp.last= 0;
VECCOPY(newob->obmat[3], vec);
if(par->transflag & OB_DUPLIROT) {
VECCOPY(vec, mvert->no);
vec[0]= -vec[0]; vec[1]= -vec[1]; vec[2]= -vec[2];
q2= vectoquat(vec, ob->trackflag, ob->upflag);
QuatToMat3(q2, mat);
Mat4CpyMat4(tmat, newob->obmat);
Mat4MulMat43(newob->obmat, tmat, mat);
}
newob->parent= 0;
newob->track= 0;
/* newob->borig= base; */
BLI_addtail(&duplilist, newob);
VECCOPY(pvec, vec);
}
break;
}
ob= ob->parent;
}
}
base= base->next;
}
}
void particle_duplilist(Scene *sce, Object *par, PartEff *paf)
{
Object *ob, *newob;
Base *base;
Particle *pa;
float ctime, vec1[3];
float vec[3], tmat[4][4], mat[3][3];
float *q2;
int lay, a;
pa= paf->keys;
if(pa==0) {
build_particle_system(par);
pa= paf->keys;
if(pa==0) return;
}
ctime= bsystem_time(par, 0, (float)G.scene->r.cfra, 0.0);
lay= G.scene->lay;
base= sce->base.first;
while(base) {
if(base->object->type>0 && (base->lay & lay) && G.obedit!=base->object) {
ob= base->object->parent;
while(ob) {
if(ob==par) {
ob= base->object;
pa= paf->keys;
for(a=0; a<paf->totpart; a++, pa+=paf->totkey) {
if(ctime > pa->time) {
if(ctime < pa->time+pa->lifetime) {
newob= MEM_mallocN(sizeof(Object), "newobj dupli");
memcpy(newob, ob, sizeof(Object));
newob->flag |= OB_FROMDUPLI;
newob->id.newid= (ID *)par; /* duplicator bewaren */
/* alleen de basis-ball behoeft een displist */
if(newob->type==OB_MBALL) newob->disp.first= newob->disp.last= 0;
where_is_particle(paf, pa, ctime, vec);
if(paf->stype==PAF_VECT) {
where_is_particle(paf, pa, ctime+1.0f, vec1);
VecSubf(vec1, vec1, vec);
q2= vectoquat(vec1, ob->trackflag, ob->upflag);
QuatToMat3(q2, mat);
Mat4CpyMat4(tmat, newob->obmat);
Mat4MulMat43(newob->obmat, tmat, mat);
}
VECCOPY(newob->obmat[3], vec);
newob->parent= 0;
newob->track= 0;
BLI_addtail(&duplilist, newob);
}
}
}
break;
}
ob= ob->parent;
}
}
base= base->next;
}
}
void free_duplilist()
{
Object *ob;
while( ob= duplilist.first) {
BLI_remlink(&duplilist, ob);
MEM_freeN(ob);
}
}
void make_duplilist(Scene *sce, Object *ob)
{
PartEff *paf;
if(ob->transflag & OB_DUPLI) {
if(ob->transflag & OB_DUPLIVERTS) {
if(ob->type==OB_MESH) {
if(ob->transflag & OB_DUPLIVERTS) {
if( paf=give_parteff(ob) ) particle_duplilist(sce, ob, paf);
else vertex_duplilist(sce, ob);
}
}
else if(ob->type==OB_FONT) {
font_duplilist(ob);
}
}
else if(ob->transflag & OB_DUPLIFRAMES) frames_duplilist(ob);
}
}