This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/lattice.c
Hans Lambermont 12315f4d0e Initial revision
2002-10-12 11:37:38 +00:00

634 lines
13 KiB
C

/**
* lattice.c MIXED MODEL
* june 2001 ton
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "DNA_armature_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_lattice_types.h"
#include "DNA_curve_types.h"
#include "DNA_key_types.h"
#include "DNA_ika_types.h"
#include "BKE_utildefines.h"
#include "BKE_armature.h"
#include "BKE_library.h"
#include "BKE_global.h"
#include "BKE_main.h"
#include "BKE_screen.h"
#include "BKE_displist.h"
#include "BKE_lattice.h"
#include "BKE_key.h"
#include "BKE_object.h"
#include "BKE_ika.h"
Lattice *editLatt=0, *deformLatt=0;
float *latticedata=0, latmat[4][4];
int lt_applyflag= 0;
void resizelattice(Lattice *lt)
{
BPoint *bp;
int u, v, w;
float vec[3], fu, fv, fw, du=0.0, dv=0.0, dw=0.0;
MEM_freeN(lt->def);
lt->def= MEM_callocN(lt->pntsu*lt->pntsv*lt->pntsw*sizeof(BPoint), "lattice bp");
bp= lt->def;
while(lt->pntsu*lt->pntsv*lt->pntsw > 32000) {
if( lt->pntsu>=lt->pntsv && lt->pntsu>=lt->pntsw) lt->pntsu--;
else if( lt->pntsv>=lt->pntsu && lt->pntsv>=lt->pntsw) lt->pntsv--;
else lt->pntsw--;
}
calc_lat_fudu(lt->flag, lt->pntsu, &fu, &du);
calc_lat_fudu(lt->flag, lt->pntsv, &fv, &dv);
calc_lat_fudu(lt->flag, lt->pntsw, &fw, &dw);
vec[2]= fw;
for(w=0; w<lt->pntsw; w++) {
vec[1]= fv;
for(v=0; v<lt->pntsv; v++) {
vec[0]= fu;
for(u=0; u<lt->pntsu; u++, bp++) {
VECCOPY(bp->vec, vec);
vec[0]+= du;
}
vec[1]+= dv;
}
vec[2]+= dw;
}
}
Lattice *add_lattice()
{
Lattice *lt;
lt= alloc_libblock(&G.main->latt, ID_LT, "Lattice");
lt->pntsu=lt->pntsv=lt->pntsw= 2;
lt->flag= LT_GRID;
lt->typeu= lt->typev= lt->typew= KEY_BSPLINE;
/* tijdelijk */
lt->def= MEM_callocN(sizeof(BPoint), "lattvert");
resizelattice(lt); /* maakt een regelmatige lattice */
return lt;
}
Lattice *copy_lattice(Lattice *lt)
{
Lattice *ltn;
ltn= copy_libblock(lt);
ltn->def= MEM_dupallocN(lt->def);
id_us_plus((ID *)ltn->ipo);
ltn->key= copy_key(ltn->key);
if(ltn->key) ltn->key->from= (ID *)ltn;
return ltn;
}
void free_lattice(Lattice *lt)
{
if(lt->def) MEM_freeN(lt->def);
}
void make_local_lattice(Lattice *lt)
{
Object *ob;
Lattice *ltn;
int local=0, lib=0;
/* - zijn er alleen lib users: niet doen
* - zijn er alleen locale users: flag zetten
* - mixed: copy
*/
if(lt->id.lib==0) return;
if(lt->id.us==1) {
lt->id.lib= 0;
lt->id.flag= LIB_LOCAL;
new_id(0, (ID *)lt, 0);
return;
}
ob= G.main->object.first;
while(ob) {
if(ob->data==lt) {
if(ob->id.lib) lib= 1;
else local= 1;
}
ob= ob->id.next;
}
if(local && lib==0) {
lt->id.lib= 0;
lt->id.flag= LIB_LOCAL;
new_id(0, (ID *)lt, 0);
}
else if(local && lib) {
ltn= copy_lattice(lt);
ltn->id.us= 0;
ob= G.main->object.first;
while(ob) {
if(ob->data==lt) {
if(ob->id.lib==0) {
ob->data= ltn;
ltn->id.us++;
lt->id.us--;
}
}
ob= ob->id.next;
}
}
}
void calc_lat_fudu(int flag, int res, float *fu, float *du)
{
if(res==1) {
*fu= 0.0;
*du= 0.0;
}
else if(flag & LT_GRID) {
*fu= -0.5f*(res-1);
*du= 1.0f;
}
else {
*fu= -1.0f;
*du= 2.0f/(res-1);
}
}
void init_latt_deform(Object *oblatt, Object *ob)
{
/* we maken een array met alle verschillen */
BPoint *bp;
float *fp, imat[4][4];
float vec[3], fu, fv, fw, du=0.0, dv=0.0, dw=0.0;
int u, v, w;
if(oblatt==G.obedit) deformLatt= editLatt;
else deformLatt= oblatt->data;
fp= latticedata= MEM_mallocN(sizeof(float)*3*deformLatt->pntsu*deformLatt->pntsv*deformLatt->pntsw, "latticedata");
bp= deformLatt->def;
if(ob) where_is_object(ob);
/* bijv bij particle systeem: ob==0 */
if(ob==0) {
/* in deformspace, matrix berekenen */
Mat4Invert(latmat, oblatt->obmat);
/* terug: in deform array verwerken */
Mat4Invert(imat, latmat);
}
else {
/* in deformspace, matrix berekenen */
Mat4Invert(imat, oblatt->obmat);
Mat4MulMat4(latmat, ob->obmat, imat);
/* terug: in deform array verwerken */
Mat4Invert(imat, latmat);
}
calc_lat_fudu(deformLatt->flag, deformLatt->pntsu, &fu, &du);
calc_lat_fudu(deformLatt->flag, deformLatt->pntsv, &fv, &dv);
calc_lat_fudu(deformLatt->flag, deformLatt->pntsw, &fw, &dw);
/* we berekenen hier steeds de u v w lattice coordinaten, weinig reden ze te onthouden */
vec[2]= fw;
for(w=0; w<deformLatt->pntsw; w++) {
vec[1]= fv;
for(v=0; v<deformLatt->pntsv; v++) {
vec[0]= fu;
for(u=0; u<deformLatt->pntsu; u++, bp++) {
VecSubf(fp, bp->vec, vec);
Mat4Mul3Vecfl(imat, fp);
vec[0]+= du;
fp+= 3;
}
vec[1]+= dv;
}
vec[2]+= dw;
}
}
void calc_latt_deform(float *co)
{
Lattice *lt;
float fu, du, u, v, w, tu[4], tv[4], tw[4];
float *fpw, *fpv, *fpu, vec[3];
int ui, vi, wi, uu, vv, ww;
if(latticedata==0) return;
lt= deformLatt; /* kortere notatie! */
/* co is in lokale coords, met latmat behandelen */
VECCOPY(vec, co);
Mat4MulVecfl(latmat, vec);
/* u v w coords */
if(lt->pntsu>1) {
calc_lat_fudu(lt->flag, lt->pntsu, &fu, &du);
u= (vec[0]-fu)/du;
ui= (int)floor(u);
u -= ui;
set_four_ipo(u, tu, lt->typeu);
}
else {
tu[0]= tu[2]= tu[3]= 0.0; tu[1]= 1.0;
ui= 0;
}
if(lt->pntsv>1) {
calc_lat_fudu(lt->flag, lt->pntsv, &fu, &du);
v= (vec[1]-fu)/du;
vi= (int)floor(v);
v -= vi;
set_four_ipo(v, tv, lt->typev);
}
else {
tv[0]= tv[2]= tv[3]= 0.0; tv[1]= 1.0;
vi= 0;
}
if(lt->pntsw>1) {
calc_lat_fudu(lt->flag, lt->pntsw, &fu, &du);
w= (vec[2]-fu)/du;
wi= (int)floor(w);
w -= wi;
set_four_ipo(w, tw, lt->typew);
}
else {
tw[0]= tw[2]= tw[3]= 0.0; tw[1]= 1.0;
wi= 0;
}
for(ww= wi-1; ww<=wi+2; ww++) {
w= tw[ww-wi+1];
if(w!=0.0) {
if(ww>0) {
if(ww<lt->pntsw) fpw= latticedata + 3*ww*lt->pntsu*lt->pntsv;
else fpw= latticedata + 3*(lt->pntsw-1)*lt->pntsu*lt->pntsv;
}
else fpw= latticedata;
for(vv= vi-1; vv<=vi+2; vv++) {
v= w*tv[vv-vi+1];
if(v!=0.0) {
if(vv>0) {
if(vv<lt->pntsv) fpv= fpw + 3*vv*lt->pntsu;
else fpv= fpw + 3*(lt->pntsv-1)*lt->pntsu;
}
else fpv= fpw;
for(uu= ui-1; uu<=ui+2; uu++) {
u= v*tu[uu-ui+1];
if(u!=0.0) {
if(uu>0) {
if(uu<lt->pntsu) fpu= fpv + 3*uu;
else fpu= fpv + 3*(lt->pntsu-1);
}
else fpu= fpv;
co[0]+= u*fpu[0];
co[1]+= u*fpu[1];
co[2]+= u*fpu[2];
}
}
}
}
}
}
}
void end_latt_deform()
{
MEM_freeN(latticedata);
latticedata= 0;
}
int object_deform(Object *ob)
{
Mesh *me;
Curve *cu;
DispList *dl;
MVert *mvert;
float *fp;
int a, tot;
if(ob->parent==0) return 0;
/* altijd proberen in deze fie de hele deform te doen: apply! */
if(ob->parent->type==OB_LATTICE) {
init_latt_deform(ob->parent, ob);
if(ob->type==OB_MESH) {
me= ob->data;
dl= find_displist_create(&ob->disp, DL_VERTS);
mvert= me->mvert;
if(dl->verts) MEM_freeN(dl->verts);
dl->nr= me->totvert;
dl->verts= fp= MEM_mallocN(3*sizeof(float)*me->totvert, "deform1");
for(a=0; a<me->totvert; a++, mvert++, fp+=3) {
if(lt_applyflag) calc_latt_deform(mvert->co);
else {
VECCOPY(fp, mvert->co);
calc_latt_deform(fp);
}
}
}
else if ELEM(ob->type, OB_CURVE, OB_SURF) {
cu= ob->data;
if(lt_applyflag) {
Nurb *nu;
BPoint *bp;
nu= cu->nurb.first;
while(nu) {
if(nu->bp) {
a= nu->pntsu*nu->pntsv;
bp= nu->bp;
while(a--) {
calc_latt_deform(bp->vec);
bp++;
}
}
nu= nu->next;
}
}
/* when apply, do this too, looks more interactive */
dl= cu->disp.first;
while(dl) {
fp= dl->verts;
if(dl->type==DL_INDEX3) tot=dl->parts;
else tot= dl->nr*dl->parts;
for(a=0; a<tot; a++, fp+=3) {
calc_latt_deform(fp);
}
dl= dl->next;
}
}
end_latt_deform();
boundbox_displist(ob);
return 1;
}
else if(ob->parent->type==OB_ARMATURE) {
if (ob->partype != PARSKEL){
return 0;
}
init_armature_deform (ob->parent, ob);
switch (ob->type){
case OB_MESH:
me= ob->data;
dl= find_displist_create(&ob->disp, DL_VERTS);
mvert= me->mvert;
if(dl->verts) MEM_freeN(dl->verts);
dl->nr= me->totvert;
dl->verts= fp= MEM_mallocN(3*sizeof(float)*me->totvert, "deform1");
for(a=0; a<me->totvert; a++, mvert++, fp+=3) {
if(lt_applyflag){
calc_armature_deform(ob->parent, mvert->co, a);
}
else {
VECCOPY(fp, mvert->co);
calc_armature_deform(ob->parent, fp, a);
}
}
break;
default:
break;
}
boundbox_displist(ob);
return 1;
}
else if(ob->parent->type==OB_IKA) {
Ika *ika;
if(ob->partype!=PARSKEL) return 0;
ika= ob->parent->data;
if(ika->def==0) return 0;
init_skel_deform(ob->parent, ob);
if(ob->type==OB_MESH) {
me= ob->data;
dl= find_displist_create(&ob->disp, DL_VERTS);
mvert= me->mvert;
if(dl->verts) MEM_freeN(dl->verts);
dl->nr= me->totvert;
dl->verts= fp= MEM_mallocN(3*sizeof(float)*me->totvert, "deform1");
for(a=0; a<me->totvert; a++, mvert++, fp+=3) {
if(lt_applyflag) calc_skel_deform(ika, mvert->co);
else {
VECCOPY(fp, mvert->co);
calc_skel_deform(ika, fp);
}
}
}
else if ELEM(ob->type, OB_CURVE, OB_SURF) {
cu= ob->data;
if(lt_applyflag) {
Nurb *nu;
BPoint *bp;
nu= cu->nurb.first;
while(nu) {
if(nu->bp) {
a= nu->pntsu*nu->pntsv;
bp= nu->bp;
while(a--) {
calc_skel_deform(ika, bp->vec);
bp++;
}
}
nu= nu->next;
}
}
/* when apply, do this too, looks more interactive */
dl= cu->disp.first;
while(dl) {
fp= dl->verts;
tot= dl->nr*dl->parts;
for(a=0; a<tot; a++, fp+=3) {
calc_skel_deform(ika, fp);
}
dl= dl->next;
}
}
boundbox_displist(ob);
return 1;
}
return 0;
}
BPoint *latt_bp(Lattice *lt, int u, int v, int w)
{
return lt->def+ u + v*lt->pntsu + w*lt->pntsu*lt->pntsv;
}
void outside_lattice(Lattice *lt)
{
BPoint *bp, *bp1, *bp2;
int u, v, w;
float fac1, du=0.0, dv=0.0, dw=0.0;
bp= lt->def;
if(lt->pntsu>1) du= 1.0f/((float)lt->pntsu-1);
if(lt->pntsv>1) dv= 1.0f/((float)lt->pntsv-1);
if(lt->pntsw>1) dw= 1.0f/((float)lt->pntsw-1);
for(w=0; w<lt->pntsw; w++) {
for(v=0; v<lt->pntsv; v++) {
for(u=0; u<lt->pntsu; u++, bp++) {
if(u==0 || v==0 || w==0 || u==lt->pntsu-1 || v==lt->pntsv-1 || w==lt->pntsw-1);
else {
bp->hide= 1;
bp->f1 &= ~SELECT;
/* u extrema */
bp1= latt_bp(lt, 0, v, w);
bp2= latt_bp(lt, lt->pntsu-1, v, w);
fac1= du*u;
bp->vec[0]= (1.0f-fac1)*bp1->vec[0] + fac1*bp2->vec[0];
bp->vec[1]= (1.0f-fac1)*bp1->vec[1] + fac1*bp2->vec[1];
bp->vec[2]= (1.0f-fac1)*bp1->vec[2] + fac1*bp2->vec[2];
/* v extrema */
bp1= latt_bp(lt, u, 0, w);
bp2= latt_bp(lt, u, lt->pntsv-1, w);
fac1= dv*v;
bp->vec[0]+= (1.0f-fac1)*bp1->vec[0] + fac1*bp2->vec[0];
bp->vec[1]+= (1.0f-fac1)*bp1->vec[1] + fac1*bp2->vec[1];
bp->vec[2]+= (1.0f-fac1)*bp1->vec[2] + fac1*bp2->vec[2];
/* w extrema */
bp1= latt_bp(lt, u, v, 0);
bp2= latt_bp(lt, u, v, lt->pntsw-1);
fac1= dw*w;
bp->vec[0]+= (1.0f-fac1)*bp1->vec[0] + fac1*bp2->vec[0];
bp->vec[1]+= (1.0f-fac1)*bp1->vec[1] + fac1*bp2->vec[1];
bp->vec[2]+= (1.0f-fac1)*bp1->vec[2] + fac1*bp2->vec[2];
VecMulf(bp->vec, 0.3333333f);
}
}
}
}
}