This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/mball.c

2399 lines
64 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Jiri Hnidek <jiri.hnidek@vslib.cz>.
*
* ***** END GPL LICENSE BLOCK *****
*
* MetaBalls are created from a single Object (with a name without number in it),
* here the DispList and BoundBox also is located.
* All objects with the same name (but with a number in it) are added to this.
*
* texture coordinates are patched within the displist
*/
/** \file blender/blenkernel/intern/mball.c
* \ingroup bke
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <ctype.h>
#include <float.h>
#include "MEM_guardedalloc.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_meta_types.h"
#include "DNA_scene_types.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_bpath.h"
#include "BKE_global.h"
#include "BKE_main.h"
/* #include "BKE_object.h" */
#include "BKE_animsys.h"
#include "BKE_scene.h"
#include "BKE_library.h"
#include "BKE_displist.h"
#include "BKE_mball.h"
#include "BKE_object.h"
#include "BKE_material.h"
/* Data types */
typedef struct vertex { /* surface vertex */
float co[3]; /* position and surface normal */
float no[3];
} VERTEX;
typedef struct vertices { /* list of vertices in polygonization */
int count, max; /* # vertices, max # allowed */
VERTEX *ptr; /* dynamically allocated */
} VERTICES;
typedef struct corner { /* corner of a cube */
int i, j, k; /* (i, j, k) is index within lattice */
float co[3], value; /* location and function value */
struct corner *next;
} CORNER;
typedef struct cube { /* partitioning cell (cube) */
int i, j, k; /* lattice location of cube */
CORNER *corners[8]; /* eight corners */
} CUBE;
typedef struct cubes { /* linked list of cubes acting as stack */
CUBE cube; /* a single cube */
struct cubes *next; /* remaining elements */
} CUBES;
typedef struct centerlist { /* list of cube locations */
int i, j, k; /* cube location */
struct centerlist *next; /* remaining elements */
} CENTERLIST;
typedef struct edgelist { /* list of edges */
int i1, j1, k1, i2, j2, k2; /* edge corner ids */
int vid; /* vertex id */
struct edgelist *next; /* remaining elements */
} EDGELIST;
typedef struct intlist { /* list of integers */
int i; /* an integer */
struct intlist *next; /* remaining elements */
} INTLIST;
typedef struct intlists { /* list of list of integers */
INTLIST *list; /* a list of integers */
struct intlists *next; /* remaining elements */
} INTLISTS;
typedef struct process { /* parameters, function, storage */
/* what happens here? floats, I think. */
/* float (*function)(void); */ /* implicit surface function */
float (*function)(float, float, float);
float size, delta; /* cube size, normal delta */
int bounds; /* cube range within lattice */
CUBES *cubes; /* active cubes */
VERTICES vertices; /* surface vertices */
CENTERLIST **centers; /* cube center hash table */
CORNER **corners; /* corner value hash table */
EDGELIST **edges; /* edge and vertex id hash table */
} PROCESS;
/* dividing scene using octal tree makes polygonisation faster */
typedef struct ml_pointer {
struct ml_pointer *next, *prev;
struct MetaElem *ml;
} ml_pointer;
typedef struct octal_node {
struct octal_node *nodes[8];/* children of current node */
struct octal_node *parent; /* parent of current node */
struct ListBase elems; /* ListBase of MetaElem pointers (ml_pointer) */
float x_min, y_min, z_min; /* 1st border point */
float x_max, y_max, z_max; /* 7th border point */
float x, y, z; /* center of node */
int pos, neg; /* number of positive and negative MetaElements in the node */
int count; /* number of MetaElems, which belongs to the node */
} octal_node;
typedef struct octal_tree {
struct octal_node *first; /* first node */
int pos, neg; /* number of positive and negative MetaElements in the scene */
short depth; /* number of scene subdivision */
} octal_tree;
struct pgn_elements {
struct pgn_elements *next, *prev;
char *data;
};
/* Forward declarations */
static int vertid(const CORNER *c1, const CORNER *c2, PROCESS *p, MetaBall *mb);
static int setcenter(CENTERLIST *table[], const int i, const int j, const int k);
static CORNER *setcorner(PROCESS *p, int i, int j, int k);
static void converge(const float p1[3], const float p2[3], float v1, float v2,
float (*function)(float, float, float), float p[3], MetaBall *mb, int f);
/* Global variables */
static struct {
float thresh;
int totelem;
MetaElem **mainb;
octal_tree *metaball_tree;
} G_mb = {0};
/* Functions */
void BKE_mball_unlink(MetaBall *mb)
{
int a;
for (a = 0; a < mb->totcol; a++) {
if (mb->mat[a]) mb->mat[a]->id.us--;
mb->mat[a] = NULL;
}
}
/* do not free mball itself */
void BKE_mball_free(MetaBall *mb)
{
BKE_mball_unlink(mb);
if (mb->adt) {
BKE_free_animdata((ID *)mb);
mb->adt = NULL;
}
if (mb->mat) MEM_freeN(mb->mat);
if (mb->bb) MEM_freeN(mb->bb);
BLI_freelistN(&mb->elems);
if (mb->disp.first) BKE_displist_free(&mb->disp);
}
MetaBall *BKE_mball_add(const char *name)
{
MetaBall *mb;
mb = BKE_libblock_alloc(&G.main->mball, ID_MB, name);
mb->size[0] = mb->size[1] = mb->size[2] = 1.0;
mb->texflag = MB_AUTOSPACE;
mb->wiresize = 0.4f;
mb->rendersize = 0.2f;
mb->thresh = 0.6f;
return mb;
}
MetaBall *BKE_mball_copy(MetaBall *mb)
{
MetaBall *mbn;
int a;
mbn = BKE_libblock_copy(&mb->id);
BLI_duplicatelist(&mbn->elems, &mb->elems);
mbn->mat = MEM_dupallocN(mb->mat);
for (a = 0; a < mbn->totcol; a++) {
id_us_plus((ID *)mbn->mat[a]);
}
mbn->bb = MEM_dupallocN(mb->bb);
mbn->editelems = NULL;
mbn->lastelem = NULL;
return mbn;
}
static void extern_local_mball(MetaBall *mb)
{
if (mb->mat) {
extern_local_matarar(mb->mat, mb->totcol);
}
}
void BKE_mball_make_local(MetaBall *mb)
{
Main *bmain = G.main;
Object *ob;
int is_local = FALSE, is_lib = FALSE;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if (mb->id.lib == NULL) return;
if (mb->id.us == 1) {
id_clear_lib_data(bmain, &mb->id);
extern_local_mball(mb);
return;
}
for (ob = G.main->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) {
if (ob->data == mb) {
if (ob->id.lib) is_lib = TRUE;
else is_local = TRUE;
}
}
if (is_local && is_lib == FALSE) {
id_clear_lib_data(bmain, &mb->id);
extern_local_mball(mb);
}
else if (is_local && is_lib) {
MetaBall *mb_new = BKE_mball_copy(mb);
mb_new->id.us = 0;
/* Remap paths of new ID using old library as base. */
BKE_id_lib_local_paths(bmain, mb->id.lib, &mb_new->id);
for (ob = G.main->object.first; ob; ob = ob->id.next) {
if (ob->data == mb) {
if (ob->id.lib == NULL) {
ob->data = mb_new;
mb_new->id.us++;
mb->id.us--;
}
}
}
}
}
/* most simple meta-element adding function
* don't do context manipulation here (rna uses) */
MetaElem *BKE_mball_element_add(MetaBall *mb, const int type)
{
MetaElem *ml = MEM_callocN(sizeof(MetaElem), "metaelem");
unit_qt(ml->quat);
ml->rad = 2.0;
ml->s = 2.0;
ml->flag = MB_SCALE_RAD;
switch (type) {
case MB_BALL:
ml->type = MB_BALL;
ml->expx = ml->expy = ml->expz = 1.0;
break;
case MB_TUBE:
ml->type = MB_TUBE;
ml->expx = ml->expy = ml->expz = 1.0;
break;
case MB_PLANE:
ml->type = MB_PLANE;
ml->expx = ml->expy = ml->expz = 1.0;
break;
case MB_ELIPSOID:
ml->type = MB_ELIPSOID;
ml->expx = 1.2f;
ml->expy = 0.8f;
ml->expz = 1.0;
break;
case MB_CUBE:
ml->type = MB_CUBE;
ml->expx = ml->expy = ml->expz = 1.0;
break;
default:
break;
}
BLI_addtail(&mb->elems, ml);
return ml;
}
/** Compute bounding box of all MetaElems/MetaBalls.
*
* Bounding box is computed from polygonized surface. Object *ob is
* basic MetaBall (usually with name Meta). All other MetaBalls (with
* names Meta.001, Meta.002, etc) are included in this Bounding Box.
*/
void BKE_mball_texspace_calc(Object *ob)
{
DispList *dl;
BoundBox *bb;
float *data, min[3], max[3] /*, loc[3], size[3] */;
int tot, do_it = FALSE;
if (ob->bb == NULL) ob->bb = MEM_callocN(sizeof(BoundBox), "mb boundbox");
bb = ob->bb;
/* Weird one, this. */
/* INIT_MINMAX(min, max); */
(min)[0] = (min)[1] = (min)[2] = 1.0e30f;
(max)[0] = (max)[1] = (max)[2] = -1.0e30f;
dl = ob->disp.first;
while (dl) {
tot = dl->nr;
if (tot) do_it = TRUE;
data = dl->verts;
while (tot--) {
/* Also weird... but longer. From utildefines. */
minmax_v3v3_v3(min, max, data);
data += 3;
}
dl = dl->next;
}
if (!do_it) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
#if 0
loc[0] = (min[0] + max[0]) / 2.0f;
loc[1] = (min[1] + max[1]) / 2.0f;
loc[2] = (min[2] + max[2]) / 2.0f;
size[0] = (max[0] - min[0]) / 2.0f;
size[1] = (max[1] - min[1]) / 2.0f;
size[2] = (max[2] - min[2]) / 2.0f;
#endif
BKE_boundbox_init_from_minmax(bb, min, max);
}
float *BKE_mball_make_orco(Object *ob, ListBase *dispbase)
{
BoundBox *bb;
DispList *dl;
float *data, *orco, *orcodata;
float loc[3], size[3];
int a;
/* restore size and loc */
bb = ob->bb;
loc[0] = (bb->vec[0][0] + bb->vec[4][0]) / 2.0f;
size[0] = bb->vec[4][0] - loc[0];
loc[1] = (bb->vec[0][1] + bb->vec[2][1]) / 2.0f;
size[1] = bb->vec[2][1] - loc[1];
loc[2] = (bb->vec[0][2] + bb->vec[1][2]) / 2.0f;
size[2] = bb->vec[1][2] - loc[2];
dl = dispbase->first;
orcodata = MEM_mallocN(sizeof(float) * 3 * dl->nr, "MballOrco");
data = dl->verts;
orco = orcodata;
a = dl->nr;
while (a--) {
orco[0] = (data[0] - loc[0]) / size[0];
orco[1] = (data[1] - loc[1]) / size[1];
orco[2] = (data[2] - loc[2]) / size[2];
data += 3;
orco += 3;
}
return orcodata;
}
/* Note on mball basis stuff 2.5x (this is a can of worms)
* This really needs a rewrite/refactor its totally broken in anything other then basic cases
* Multiple Scenes + Set Scenes & mixing mball basis SHOULD work but fails to update the depsgraph on rename
* and linking into scenes or removal of basis mball. so take care when changing this code.
*
* Main idiot thing here is that the system returns find_basis_mball() objects which fail a is_basis_mball() test.
*
* Not only that but the depsgraph and their areas depend on this behavior!, so making small fixes here isn't worth it.
* - Campbell
*/
/** \brief Test, if Object *ob is basic MetaBall.
*
* It test last character of Object ID name. If last character
* is digit it return 0, else it return 1.
*/
int BKE_mball_is_basis(Object *ob)
{
int len;
/* just a quick test */
len = strlen(ob->id.name);
if (isdigit(ob->id.name[len - 1]) ) return 0;
return 1;
}
/* return nonzero if ob1 is a basis mball for ob */
int BKE_mball_is_basis_for(Object *ob1, Object *ob2)
{
int basis1nr, basis2nr;
char basis1name[MAX_ID_NAME], basis2name[MAX_ID_NAME];
BLI_split_name_num(basis1name, &basis1nr, ob1->id.name + 2, '.');
BLI_split_name_num(basis2name, &basis2nr, ob2->id.name + 2, '.');
if (!strcmp(basis1name, basis2name)) return BKE_mball_is_basis(ob1);
else return 0;
}
/* \brief copy some properties from object to other metaball object with same base name
*
* When some properties (wiresize, threshold, update flags) of metaball are changed, then this properties
* are copied to all metaballs in same "group" (metaballs with same base name: MBall,
* MBall.001, MBall.002, etc). The most important is to copy properties to the base metaball,
* because this metaball influence polygonisation of metaballs. */
void BKE_mball_properties_copy(Scene *scene, Object *active_object)
{
Scene *sce_iter = scene;
Base *base;
Object *ob;
MetaBall *active_mball = (MetaBall *)active_object->data;
int basisnr, obnr;
char basisname[MAX_ID_NAME], obname[MAX_ID_NAME];
BLI_split_name_num(basisname, &basisnr, active_object->id.name + 2, '.');
/* XXX recursion check, see scene.c, just too simple code this BKE_scene_base_iter_next() */
if (F_ERROR == BKE_scene_base_iter_next(&sce_iter, 0, NULL, NULL))
return;
while (BKE_scene_base_iter_next(&sce_iter, 1, &base, &ob)) {
if (ob->type == OB_MBALL) {
if (ob != active_object) {
BLI_split_name_num(obname, &obnr, ob->id.name + 2, '.');
/* Object ob has to be in same "group" ... it means, that it has to have
* same base of its name */
if (strcmp(obname, basisname) == 0) {
MetaBall *mb = ob->data;
/* Copy properties from selected/edited metaball */
mb->wiresize = active_mball->wiresize;
mb->rendersize = active_mball->rendersize;
mb->thresh = active_mball->thresh;
mb->flag = active_mball->flag;
}
}
}
}
}
/** \brief This function finds basic MetaBall.
*
* Basic MetaBall doesn't include any number at the end of
* its name. All MetaBalls with same base of name can be
* blended. MetaBalls with different basic name can't be
* blended.
*
* warning!, is_basis_mball() can fail on returned object, see long note above.
*/
Object *BKE_mball_basis_find(Scene *scene, Object *basis)
{
Scene *sce_iter = scene;
Base *base;
Object *ob, *bob = basis;
MetaElem *ml = NULL;
int basisnr, obnr;
char basisname[MAX_ID_NAME], obname[MAX_ID_NAME];
BLI_split_name_num(basisname, &basisnr, basis->id.name + 2, '.');
G_mb.totelem = 0;
/* XXX recursion check, see scene.c, just too simple code this BKE_scene_base_iter_next() */
if (F_ERROR == BKE_scene_base_iter_next(&sce_iter, 0, NULL, NULL))
return NULL;
while (BKE_scene_base_iter_next(&sce_iter, 1, &base, &ob)) {
if (ob->type == OB_MBALL) {
if (ob == bob) {
MetaBall *mb = ob->data;
/* if bob object is in edit mode, then dynamic list of all MetaElems
* is stored in editelems */
if (mb->editelems) ml = mb->editelems->first;
/* if bob object is in object mode */
else ml = mb->elems.first;
}
else {
BLI_split_name_num(obname, &obnr, ob->id.name + 2, '.');
/* object ob has to be in same "group" ... it means, that it has to have
* same base of its name */
if (strcmp(obname, basisname) == 0) {
MetaBall *mb = ob->data;
/* if object is in edit mode, then dynamic list of all MetaElems
* is stored in editelems */
if (mb->editelems) ml = mb->editelems->first;
/* if bob object is in object mode */
else ml = mb->elems.first;
if (obnr < basisnr) {
if (!(ob->flag & OB_FROMDUPLI)) {
basis = ob;
basisnr = obnr;
}
}
}
}
for ( ; ml; ml = ml->next) {
if (!(ml->flag & MB_HIDE)) {
G_mb.totelem++;
}
}
}
}
return basis;
}
/* ******************** ARITH ************************* */
/* BASED AT CODE (but mostly rewritten) :
* C code from the article
* "An Implicit Surface Polygonizer"
* by Jules Bloomenthal, jbloom@beauty.gmu.edu
* in "Graphics Gems IV", Academic Press, 1994
*
* Authored by Jules Bloomenthal, Xerox PARC.
* Copyright (c) Xerox Corporation, 1991. All rights reserved.
* Permission is granted to reproduce, use and distribute this code for
* any and all purposes, provided that this notice appears in all copies. */
#define RES 12 /* # converge iterations */
#define L 0 /* left direction: -x, -i */
#define R 1 /* right direction: +x, +i */
#define B 2 /* bottom direction: -y, -j */
#define T 3 /* top direction: +y, +j */
#define N 4 /* near direction: -z, -k */
#define F 5 /* far direction: +z, +k */
#define LBN 0 /* left bottom near corner */
#define LBF 1 /* left bottom far corner */
#define LTN 2 /* left top near corner */
#define LTF 3 /* left top far corner */
#define RBN 4 /* right bottom near corner */
#define RBF 5 /* right bottom far corner */
#define RTN 6 /* right top near corner */
#define RTF 7 /* right top far corner */
/* the LBN corner of cube (i, j, k), corresponds with location
* (i-0.5)*size, (j-0.5)*size, (k-0.5)*size) */
#define HASHBIT (5)
#define HASHSIZE (size_t)(1 << (3 * HASHBIT)) /*! < hash table size (32768) */
#define HASH(i, j, k) ((((( (i) & 31) << 5) | ( (j) & 31)) << 5) | ( (k) & 31) )
#define MB_BIT(i, bit) (((i) >> (bit)) & 1)
#define FLIP(i, bit) ((i) ^ 1 << (bit)) /* flip the given bit of i */
/* **************** POLYGONIZATION ************************ */
static void calc_mballco(MetaElem *ml, float vec[3])
{
if (ml->mat) {
mul_m4_v3((float (*)[4])ml->mat, vec);
}
}
static float densfunc(MetaElem *ball, float x, float y, float z)
{
float dist2;
float dvec[3] = {x, y, z};
mul_m4_v3((float (*)[4])ball->imat, dvec);
switch (ball->type) {
case MB_BALL:
/* do nothing */
break;
case MB_TUBE:
if (dvec[0] > ball->expx) dvec[0] -= ball->expx;
else if (dvec[0] < -ball->expx) dvec[0] += ball->expx;
else dvec[0] = 0.0;
break;
case MB_PLANE:
if (dvec[0] > ball->expx) dvec[0] -= ball->expx;
else if (dvec[0] < -ball->expx) dvec[0] += ball->expx;
else dvec[0] = 0.0;
if (dvec[1] > ball->expy) dvec[1] -= ball->expy;
else if (dvec[1] < -ball->expy) dvec[1] += ball->expy;
else dvec[1] = 0.0;
break;
case MB_ELIPSOID:
dvec[0] /= ball->expx;
dvec[1] /= ball->expy;
dvec[2] /= ball->expz;
break;
case MB_CUBE:
if (dvec[0] > ball->expx) dvec[0] -= ball->expx;
else if (dvec[0] < -ball->expx) dvec[0] += ball->expx;
else dvec[0] = 0.0;
if (dvec[1] > ball->expy) dvec[1] -= ball->expy;
else if (dvec[1] < -ball->expy) dvec[1] += ball->expy;
else dvec[1] = 0.0;
if (dvec[2] > ball->expz) dvec[2] -= ball->expz;
else if (dvec[2] < -ball->expz) dvec[2] += ball->expz;
else dvec[2] = 0.0;
break;
/* *** deprecated, could be removed?, do-versioned at least *** */
case MB_TUBEX:
if (dvec[0] > ball->len) dvec[0] -= ball->len;
else if (dvec[0] < -ball->len) dvec[0] += ball->len;
else dvec[0] = 0.0;
break;
case MB_TUBEY:
if (dvec[1] > ball->len) dvec[1] -= ball->len;
else if (dvec[1] < -ball->len) dvec[1] += ball->len;
else dvec[1] = 0.0;
break;
case MB_TUBEZ:
if (dvec[2] > ball->len) dvec[2] -= ball->len;
else if (dvec[2] < -ball->len) dvec[2] += ball->len;
else dvec[2] = 0.0;
break;
/* *** end deprecated *** */
}
dist2 = 1.0f - (len_v3(dvec) / ball->rad2);
if ((ball->flag & MB_NEGATIVE) == 0) {
return (dist2 < 0.0f) ? -0.5f : (ball->s * dist2 * dist2 * dist2) - 0.5f;
}
else {
return (dist2 < 0.0f) ? 0.5f : 0.5f - (ball->s * dist2 * dist2 * dist2);
}
}
static octal_node *find_metaball_octal_node(octal_node *node, float x, float y, float z, short depth)
{
if (!depth) return node;
if (z < node->z) {
if (y < node->y) {
if (x < node->x) {
if (node->nodes[0])
return find_metaball_octal_node(node->nodes[0], x, y, z, depth--);
else
return node;
}
else {
if (node->nodes[1])
return find_metaball_octal_node(node->nodes[1], x, y, z, depth--);
else
return node;
}
}
else {
if (x < node->x) {
if (node->nodes[3])
return find_metaball_octal_node(node->nodes[3], x, y, z, depth--);
else
return node;
}
else {
if (node->nodes[2])
return find_metaball_octal_node(node->nodes[2], x, y, z, depth--);
else
return node;
}
}
}
else {
if (y < node->y) {
if (x < node->x) {
if (node->nodes[4])
return find_metaball_octal_node(node->nodes[4], x, y, z, depth--);
else
return node;
}
else {
if (node->nodes[5])
return find_metaball_octal_node(node->nodes[5], x, y, z, depth--);
else
return node;
}
}
else {
if (x < node->x) {
if (node->nodes[7])
return find_metaball_octal_node(node->nodes[7], x, y, z, depth--);
else
return node;
}
else {
if (node->nodes[6])
return find_metaball_octal_node(node->nodes[6], x, y, z, depth--);
else
return node;
}
}
}
return node;
}
static float metaball(float x, float y, float z)
/* float x, y, z; */
{
struct octal_node *node;
struct ml_pointer *ml_p;
float dens = 0;
int a;
if (G_mb.totelem > 1) {
node = find_metaball_octal_node(G_mb.metaball_tree->first, x, y, z, G_mb.metaball_tree->depth);
if (node) {
for (ml_p = node->elems.first; ml_p; ml_p = ml_p->next) {
dens += densfunc(ml_p->ml, x, y, z);
}
dens += -0.5f * (G_mb.metaball_tree->pos - node->pos);
dens += 0.5f * (G_mb.metaball_tree->neg - node->neg);
}
else {
for (a = 0; a < G_mb.totelem; a++) {
dens += densfunc(G_mb.mainb[a], x, y, z);
}
}
}
else {
dens += densfunc(G_mb.mainb[0], x, y, z);
}
return G_mb.thresh - dens;
}
/* ******************************************** */
static int *indices = NULL;
static int totindex, curindex;
static void accum_mballfaces(int i1, int i2, int i3, int i4)
{
int *newi, *cur;
/* static int i = 0; I would like to delete altogether, but I don't dare to, yet */
if (totindex == curindex) {
totindex += 256;
newi = MEM_mallocN(4 * sizeof(int) * totindex, "vertindex");
if (indices) {
memcpy(newi, indices, 4 * sizeof(int) * (totindex - 256));
MEM_freeN(indices);
}
indices = newi;
}
cur = indices + 4 * curindex;
/* displists now support array drawing, we treat tri's as fake quad */
cur[0] = i1;
cur[1] = i2;
cur[2] = i3;
if (i4 == 0)
cur[3] = i3;
else
cur[3] = i4;
curindex++;
}
/* ******************* MEMORY MANAGEMENT *********************** */
static void *new_pgn_element(int size)
{
/* during polygonize 1000s of elements are allocated
* and never freed in between. Freeing only done at the end.
*/
int blocksize = 16384;
static int offs = 0; /* the current free address */
static struct pgn_elements *cur = NULL;
static ListBase lb = {NULL, NULL};
void *adr;
if (size > 10000 || size == 0) {
printf("incorrect use of new_pgn_element\n");
}
else if (size == -1) {
cur = lb.first;
while (cur) {
MEM_freeN(cur->data);
cur = cur->next;
}
BLI_freelistN(&lb);
return NULL;
}
size = 4 * ( (size + 3) / 4);
if (cur) {
if (size + offs < blocksize) {
adr = (void *) (cur->data + offs);
offs += size;
return adr;
}
}
cur = MEM_callocN(sizeof(struct pgn_elements), "newpgn");
cur->data = MEM_callocN(blocksize, "newpgn");
BLI_addtail(&lb, cur);
offs = size;
return cur->data;
}
static void freepolygonize(PROCESS *p)
{
MEM_freeN(p->corners);
MEM_freeN(p->edges);
MEM_freeN(p->centers);
new_pgn_element(-1);
if (p->vertices.ptr) MEM_freeN(p->vertices.ptr);
}
/**** Cubical Polygonization (optional) ****/
#define LB 0 /* left bottom edge */
#define LT 1 /* left top edge */
#define LN 2 /* left near edge */
#define LF 3 /* left far edge */
#define RB 4 /* right bottom edge */
#define RT 5 /* right top edge */
#define RN 6 /* right near edge */
#define RF 7 /* right far edge */
#define BN 8 /* bottom near edge */
#define BF 9 /* bottom far edge */
#define TN 10 /* top near edge */
#define TF 11 /* top far edge */
static INTLISTS *cubetable[256];
/* edge: LB, LT, LN, LF, RB, RT, RN, RF, BN, BF, TN, TF */
static int corner1[12] = {
LBN, LTN, LBN, LBF, RBN, RTN, RBN, RBF, LBN, LBF, LTN, LTF
};
static int corner2[12] = {
LBF, LTF, LTN, LTF, RBF, RTF, RTN, RTF, RBN, RBF, RTN, RTF
};
static int leftface[12] = {
B, L, L, F, R, T, N, R, N, B, T, F
};
/* face on left when going corner1 to corner2 */
static int rightface[12] = {
L, T, N, L, B, R, R, F, B, F, N, T
};
/* face on right when going corner1 to corner2 */
/* docube: triangulate the cube directly, without decomposition */
static void docube(CUBE *cube, PROCESS *p, MetaBall *mb)
{
INTLISTS *polys;
CORNER *c1, *c2;
int i, index = 0, count, indexar[8];
for (i = 0; i < 8; i++) if (cube->corners[i]->value > 0.0f) index += (1 << i);
for (polys = cubetable[index]; polys; polys = polys->next) {
INTLIST *edges;
count = 0;
for (edges = polys->list; edges; edges = edges->next) {
c1 = cube->corners[corner1[edges->i]];
c2 = cube->corners[corner2[edges->i]];
indexar[count] = vertid(c1, c2, p, mb);
count++;
}
if (count > 2) {
switch (count) {
case 3:
accum_mballfaces(indexar[2], indexar[1], indexar[0], 0);
break;
case 4:
if (indexar[0] == 0) accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
else accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
break;
case 5:
if (indexar[0] == 0) accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
else accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
accum_mballfaces(indexar[4], indexar[3], indexar[0], 0);
break;
case 6:
if (indexar[0] == 0) {
accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
accum_mballfaces(indexar[0], indexar[5], indexar[4], indexar[3]);
}
else {
accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
accum_mballfaces(indexar[5], indexar[4], indexar[3], indexar[0]);
}
break;
case 7:
if (indexar[0] == 0) {
accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
accum_mballfaces(indexar[0], indexar[5], indexar[4], indexar[3]);
}
else {
accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
accum_mballfaces(indexar[5], indexar[4], indexar[3], indexar[0]);
}
accum_mballfaces(indexar[6], indexar[5], indexar[0], 0);
break;
}
}
}
}
/* testface: given cube at lattice (i, j, k), and four corners of face,
* if surface crosses face, compute other four corners of adjacent cube
* and add new cube to cube stack */
static void testface(int i, int j, int k, CUBE *old, int bit, int c1, int c2, int c3, int c4, PROCESS *p)
{
CUBE newc;
CUBES *oldcubes = p->cubes;
CORNER *corn1, *corn2, *corn3, *corn4;
int n, pos;
corn1 = old->corners[c1];
corn2 = old->corners[c2];
corn3 = old->corners[c3];
corn4 = old->corners[c4];
pos = corn1->value > 0.0f ? 1 : 0;
/* test if no surface crossing */
if ( (corn2->value > 0) == pos && (corn3->value > 0) == pos && (corn4->value > 0) == pos) return;
/* test if cube out of bounds */
/*if ( abs(i) > p->bounds || abs(j) > p->bounds || abs(k) > p->bounds) return;*/
/* test if already visited (always as last) */
if (setcenter(p->centers, i, j, k)) return;
/* create new cube and add cube to top of stack: */
p->cubes = (CUBES *) new_pgn_element(sizeof(CUBES));
p->cubes->next = oldcubes;
newc.i = i;
newc.j = j;
newc.k = k;
for (n = 0; n < 8; n++) newc.corners[n] = NULL;
newc.corners[FLIP(c1, bit)] = corn1;
newc.corners[FLIP(c2, bit)] = corn2;
newc.corners[FLIP(c3, bit)] = corn3;
newc.corners[FLIP(c4, bit)] = corn4;
if (newc.corners[0] == NULL) newc.corners[0] = setcorner(p, i, j, k);
if (newc.corners[1] == NULL) newc.corners[1] = setcorner(p, i, j, k + 1);
if (newc.corners[2] == NULL) newc.corners[2] = setcorner(p, i, j + 1, k);
if (newc.corners[3] == NULL) newc.corners[3] = setcorner(p, i, j + 1, k + 1);
if (newc.corners[4] == NULL) newc.corners[4] = setcorner(p, i + 1, j, k);
if (newc.corners[5] == NULL) newc.corners[5] = setcorner(p, i + 1, j, k + 1);
if (newc.corners[6] == NULL) newc.corners[6] = setcorner(p, i + 1, j + 1, k);
if (newc.corners[7] == NULL) newc.corners[7] = setcorner(p, i + 1, j + 1, k + 1);
p->cubes->cube = newc;
}
/* setcorner: return corner with the given lattice location
* set (and cache) its function value */
static CORNER *setcorner(PROCESS *p, int i, int j, int k)
{
/* for speed, do corner value caching here */
CORNER *c;
int index;
/* does corner exist? */
index = HASH(i, j, k);
c = p->corners[index];
for (; c != NULL; c = c->next) {
if (c->i == i && c->j == j && c->k == k) {
return c;
}
}
c = (CORNER *) new_pgn_element(sizeof(CORNER));
c->i = i;
c->co[0] = ((float)i - 0.5f) * p->size;
c->j = j;
c->co[1] = ((float)j - 0.5f) * p->size;
c->k = k;
c->co[2] = ((float)k - 0.5f) * p->size;
c->value = p->function(c->co[0], c->co[1], c->co[2]);
c->next = p->corners[index];
p->corners[index] = c;
return c;
}
/* nextcwedge: return next clockwise edge from given edge around given face */
static int nextcwedge(int edge, int face)
{
switch (edge) {
case LB:
return (face == L) ? LF : BN;
case LT:
return (face == L) ? LN : TF;
case LN:
return (face == L) ? LB : TN;
case LF:
return (face == L) ? LT : BF;
case RB:
return (face == R) ? RN : BF;
case RT:
return (face == R) ? RF : TN;
case RN:
return (face == R) ? RT : BN;
case RF:
return (face == R) ? RB : TF;
case BN:
return (face == B) ? RB : LN;
case BF:
return (face == B) ? LB : RF;
case TN:
return (face == T) ? LT : RN;
case TF:
return (face == T) ? RT : LF;
}
return 0;
}
/* otherface: return face adjoining edge that is not the given face */
static int otherface(int edge, int face)
{
int other = leftface[edge];
return face == other ? rightface[edge] : other;
}
/* makecubetable: create the 256 entry table for cubical polygonization */
static void makecubetable(void)
{
static int is_done = FALSE;
int i, e, c, done[12], pos[8];
if (is_done) return;
is_done = TRUE;
for (i = 0; i < 256; i++) {
for (e = 0; e < 12; e++) done[e] = 0;
for (c = 0; c < 8; c++) pos[c] = MB_BIT(i, c);
for (e = 0; e < 12; e++)
if (!done[e] && (pos[corner1[e]] != pos[corner2[e]])) {
INTLIST *ints = NULL;
INTLISTS *lists = (INTLISTS *) MEM_callocN(sizeof(INTLISTS), "mball_intlist");
int start = e, edge = e;
/* get face that is to right of edge from pos to neg corner: */
int face = pos[corner1[e]] ? rightface[e] : leftface[e];
while (1) {
edge = nextcwedge(edge, face);
done[edge] = 1;
if (pos[corner1[edge]] != pos[corner2[edge]]) {
INTLIST *tmp = ints;
ints = (INTLIST *) MEM_callocN(sizeof(INTLIST), "mball_intlist");
ints->i = edge;
ints->next = tmp; /* add edge to head of list */
if (edge == start) break;
face = otherface(edge, face);
}
}
lists->list = ints; /* add ints to head of table entry */
lists->next = cubetable[i];
cubetable[i] = lists;
}
}
}
void BKE_mball_cubeTable_free(void)
{
int i;
INTLISTS *lists, *nlists;
INTLIST *ints, *nints;
for (i = 0; i < 256; i++) {
lists = cubetable[i];
while (lists) {
nlists = lists->next;
ints = lists->list;
while (ints) {
nints = ints->next;
MEM_freeN(ints);
ints = nints;
}
MEM_freeN(lists);
lists = nlists;
}
cubetable[i] = NULL;
}
}
/**** Storage ****/
/* setcenter: set (i, j, k) entry of table[]
* return 1 if already set; otherwise, set and return 0 */
static int setcenter(CENTERLIST *table[], const int i, const int j, const int k)
{
int index;
CENTERLIST *newc, *l, *q;
index = HASH(i, j, k);
q = table[index];
for (l = q; l != NULL; l = l->next) {
if (l->i == i && l->j == j && l->k == k) return 1;
}
newc = (CENTERLIST *) new_pgn_element(sizeof(CENTERLIST));
newc->i = i;
newc->j = j;
newc->k = k;
newc->next = q;
table[index] = newc;
return 0;
}
/* setedge: set vertex id for edge */
static void setedge(EDGELIST *table[],
int i1, int j1,
int k1, int i2,
int j2, int k2,
int vid)
{
unsigned int index;
EDGELIST *newe;
if (i1 > i2 || (i1 == i2 && (j1 > j2 || (j1 == j2 && k1 > k2)))) {
int t = i1;
i1 = i2;
i2 = t;
t = j1;
j1 = j2;
j2 = t;
t = k1;
k1 = k2;
k2 = t;
}
index = HASH(i1, j1, k1) + HASH(i2, j2, k2);
newe = (EDGELIST *) new_pgn_element(sizeof(EDGELIST));
newe->i1 = i1;
newe->j1 = j1;
newe->k1 = k1;
newe->i2 = i2;
newe->j2 = j2;
newe->k2 = k2;
newe->vid = vid;
newe->next = table[index];
table[index] = newe;
}
/* getedge: return vertex id for edge; return -1 if not set */
static int getedge(EDGELIST *table[],
int i1, int j1, int k1,
int i2, int j2, int k2)
{
EDGELIST *q;
if (i1 > i2 || (i1 == i2 && (j1 > j2 || (j1 == j2 && k1 > k2)))) {
int t = i1;
i1 = i2;
i2 = t;
t = j1;
j1 = j2;
j2 = t;
t = k1;
k1 = k2;
k2 = t;
}
q = table[HASH(i1, j1, k1) + HASH(i2, j2, k2)];
for (; q != NULL; q = q->next) {
if (q->i1 == i1 && q->j1 == j1 && q->k1 == k1 &&
q->i2 == i2 && q->j2 == j2 && q->k2 == k2)
{
return q->vid;
}
}
return -1;
}
/**** Vertices ****/
#undef R
/* vertid: return index for vertex on edge:
* c1->value and c2->value are presumed of different sign
* return saved index if any; else compute vertex and save */
/* addtovertices: add v to sequence of vertices */
static void addtovertices(VERTICES *vertices, VERTEX v)
{
if (vertices->count == vertices->max) {
int i;
VERTEX *newv;
vertices->max = vertices->count == 0 ? 10 : 2 * vertices->count;
newv = (VERTEX *) MEM_callocN(vertices->max * sizeof(VERTEX), "addtovertices");
for (i = 0; i < vertices->count; i++) newv[i] = vertices->ptr[i];
if (vertices->ptr != NULL) MEM_freeN(vertices->ptr);
vertices->ptr = newv;
}
vertices->ptr[vertices->count++] = v;
}
/* vnormal: compute unit length surface normal at point */
static void vnormal(const float point[3], PROCESS *p, float r_no[3])
{
float delta = 0.2f * p->delta;
float f = p->function(point[0], point[1], point[2]);
r_no[0] = p->function(point[0] + delta, point[1], point[2]) - f;
r_no[1] = p->function(point[0], point[1] + delta, point[2]) - f;
r_no[2] = p->function(point[0], point[1], point[2] + delta) - f;
f = normalize_v3(r_no);
if (0) {
float tvec[3];
delta *= 2.0f;
f = p->function(point[0], point[1], point[2]);
tvec[0] = p->function(point[0] + delta, point[1], point[2]) - f;
tvec[1] = p->function(point[0], point[1] + delta, point[2]) - f;
tvec[2] = p->function(point[0], point[1], point[2] + delta) - f;
if (normalize_v3(tvec) != 0.0f) {
add_v3_v3(r_no, tvec);
normalize_v3(r_no);
}
}
}
static int vertid(const CORNER *c1, const CORNER *c2, PROCESS *p, MetaBall *mb)
{
VERTEX v;
int vid = getedge(p->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k);
if (vid != -1) {
return vid; /* previously computed */
}
converge(c1->co, c2->co, c1->value, c2->value, p->function, v.co, mb, 1); /* position */
vnormal(v.co, p, v.no);
addtovertices(&p->vertices, v); /* save vertex */
vid = p->vertices.count - 1;
setedge(p->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k, vid);
return vid;
}
/* converge: from two points of differing sign, converge to zero crossing */
/* watch it: p1 and p2 are used to calculate */
static void converge(const float p1[3], const float p2[3], float v1, float v2,
float (*function)(float, float, float), float p[3], MetaBall *mb, int f)
{
int i = 0;
float pos[3], neg[3];
float positive = 0.0f, negative = 0.0f;
float dvec[3];
if (v1 < 0) {
copy_v3_v3(pos, p2);
copy_v3_v3(neg, p1);
positive = v2;
negative = v1;
}
else {
copy_v3_v3(pos, p1);
copy_v3_v3(neg, p2);
positive = v1;
negative = v2;
}
sub_v3_v3v3(dvec, pos, neg);
/* Approximation by linear interpolation is faster then binary subdivision,
* but it results sometimes (mb->thresh < 0.2) into the strange results */
if ((mb->thresh > 0.2f) && (f == 1)) {
if ((dvec[1] == 0.0f) && (dvec[2] == 0.0f)) {
p[0] = neg[0] - negative * dvec[0] / (positive - negative);
p[1] = neg[1];
p[2] = neg[2];
return;
}
if ((dvec[0] == 0.0f) && (dvec[2] == 0.0f)) {
p[0] = neg[0];
p[1] = neg[1] - negative * dvec[1] / (positive - negative);
p[2] = neg[2];
return;
}
if ((dvec[0] == 0.0f) && (dvec[1] == 0.0f)) {
p[0] = neg[0];
p[1] = neg[1];
p[2] = neg[2] - negative * dvec[2] / (positive - negative);
return;
}
}
if ((dvec[1] == 0.0f) && (dvec[2] == 0.0f)) {
p[1] = neg[1];
p[2] = neg[2];
while (1) {
if (i++ == RES) return;
p[0] = 0.5f * (pos[0] + neg[0]);
if ((function(p[0], p[1], p[2])) > 0.0f) pos[0] = p[0]; else neg[0] = p[0];
}
}
if ((dvec[0] == 0.0f) && (dvec[2] == 0.0f)) {
p[0] = neg[0];
p[2] = neg[2];
while (1) {
if (i++ == RES) return;
p[1] = 0.5f * (pos[1] + neg[1]);
if ((function(p[0], p[1], p[2])) > 0.0f) pos[1] = p[1]; else neg[1] = p[1];
}
}
if ((dvec[0] == 0.0f) && (dvec[1] == 0.0f)) {
p[0] = neg[0];
p[1] = neg[1];
while (1) {
if (i++ == RES) return;
p[2] = 0.5f * (pos[2] + neg[2]);
if ((function(p[0], p[1], p[2])) > 0.0f) pos[2] = p[2]; else neg[2] = p[2];
}
}
/* This is necessary to find start point */
while (1) {
mid_v3_v3v3(&p[0], pos, neg);
if (i++ == RES) {
return;
}
if ((function(p[0], p[1], p[2])) > 0.0f) {
copy_v3_v3(pos, &p[0]);
}
else {
copy_v3_v3(neg, &p[0]);
}
}
}
/* ************************************** */
static void add_cube(PROCESS *mbproc, int i, int j, int k, int count)
{
CUBES *ncube;
int n;
int a, b, c;
/* hmmm, not only one, but eight cube will be added on the stack
* ... */
for (a = i - 1; a < i + count; a++)
for (b = j - 1; b < j + count; b++)
for (c = k - 1; c < k + count; c++) {
/* test if cube has been found before */
if (setcenter(mbproc->centers, a, b, c) == 0) {
/* push cube on stack: */
ncube = (CUBES *) new_pgn_element(sizeof(CUBES));
ncube->next = mbproc->cubes;
mbproc->cubes = ncube;
ncube->cube.i = a;
ncube->cube.j = b;
ncube->cube.k = c;
/* set corners of initial cube: */
for (n = 0; n < 8; n++)
ncube->cube.corners[n] = setcorner(mbproc, a + MB_BIT(n, 2), b + MB_BIT(n, 1), c + MB_BIT(n, 0));
}
}
}
static void find_first_points(PROCESS *mbproc, MetaBall *mb, int a)
{
MetaElem *ml;
float f = 0.0f;
ml = G_mb.mainb[a];
f = 1.0 - (mb->thresh / ml->s);
/* Skip, when Stiffness of MetaElement is too small ... MetaElement can't be
* visible alone ... but still can influence others MetaElements :-) */
if (f > 0.0f) {
float IN[3] = {0.0f}, OUT[3] = {0.0f}, in[3] = {0.0f}, out[3];
int i, j, k, c_i, c_j, c_k;
int index[3] = {1, 0, -1};
float in_v /*, out_v*/;
float workp[3];
float dvec[3];
float tmp_v, workp_v, max_len, len, nx, ny, nz, MAXN;
calc_mballco(ml, in);
in_v = mbproc->function(in[0], in[1], in[2]);
for (i = 0; i < 3; i++) {
switch (ml->type) {
case MB_BALL:
OUT[0] = out[0] = IN[0] + index[i] * ml->rad;
break;
case MB_TUBE:
case MB_PLANE:
case MB_ELIPSOID:
case MB_CUBE:
OUT[0] = out[0] = IN[0] + index[i] * (ml->expx + ml->rad);
break;
}
for (j = 0; j < 3; j++) {
switch (ml->type) {
case MB_BALL:
OUT[1] = out[1] = IN[1] + index[j] * ml->rad;
break;
case MB_TUBE:
case MB_PLANE:
case MB_ELIPSOID:
case MB_CUBE:
OUT[1] = out[1] = IN[1] + index[j] * (ml->expy + ml->rad);
break;
}
for (k = 0; k < 3; k++) {
out[0] = OUT[0];
out[1] = OUT[1];
switch (ml->type) {
case MB_BALL:
case MB_TUBE:
case MB_PLANE:
out[2] = IN[2] + index[k] * ml->rad;
break;
case MB_ELIPSOID:
case MB_CUBE:
out[2] = IN[2] + index[k] * (ml->expz + ml->rad);
break;
}
calc_mballco(ml, out);
/*out_v = mbproc->function(out[0], out[1], out[2]);*/ /*UNUSED*/
/* find "first points" on Implicit Surface of MetaElemnt ml */
copy_v3_v3(workp, in);
workp_v = in_v;
max_len = len_v3v3(out, in);
nx = abs((out[0] - in[0]) / mbproc->size);
ny = abs((out[1] - in[1]) / mbproc->size);
nz = abs((out[2] - in[2]) / mbproc->size);
MAXN = MAX3(nx, ny, nz);
if (MAXN != 0.0f) {
dvec[0] = (out[0] - in[0]) / MAXN;
dvec[1] = (out[1] - in[1]) / MAXN;
dvec[2] = (out[2] - in[2]) / MAXN;
len = 0.0;
while (len <= max_len) {
workp[0] += dvec[0];
workp[1] += dvec[1];
workp[2] += dvec[2];
/* compute value of implicite function */
tmp_v = mbproc->function(workp[0], workp[1], workp[2]);
/* add cube to the stack, when value of implicite function crosses zero value */
if ((tmp_v < 0.0f && workp_v >= 0.0f) || (tmp_v > 0.0f && workp_v <= 0.0f)) {
/* indexes of CUBE, which includes "first point" */
c_i = (int)floor(workp[0] / mbproc->size);
c_j = (int)floor(workp[1] / mbproc->size);
c_k = (int)floor(workp[2] / mbproc->size);
/* add CUBE (with indexes c_i, c_j, c_k) to the stack,
* this cube includes found point of Implicit Surface */
if ((ml->flag & MB_NEGATIVE) == 0) {
add_cube(mbproc, c_i, c_j, c_k, 1);
}
else {
add_cube(mbproc, c_i, c_j, c_k, 2);
}
}
len = len_v3v3(workp, in);
workp_v = tmp_v;
}
}
}
}
}
}
}
static void polygonize(PROCESS *mbproc, MetaBall *mb)
{
CUBE c;
int a;
mbproc->vertices.count = mbproc->vertices.max = 0;
mbproc->vertices.ptr = NULL;
/* allocate hash tables and build cube polygon table: */
mbproc->centers = MEM_callocN(HASHSIZE * sizeof(CENTERLIST *), "mbproc->centers");
mbproc->corners = MEM_callocN(HASHSIZE * sizeof(CORNER *), "mbproc->corners");
mbproc->edges = MEM_callocN(2 * HASHSIZE * sizeof(EDGELIST *), "mbproc->edges");
makecubetable();
for (a = 0; a < G_mb.totelem; a++) {
/* try to find 8 points on the surface for each MetaElem */
find_first_points(mbproc, mb, a);
}
/* polygonize all MetaElems of current MetaBall */
while (mbproc->cubes != NULL) { /* process active cubes till none left */
c = mbproc->cubes->cube;
/* polygonize the cube directly: */
docube(&c, mbproc, mb);
/* pop current cube from stack */
mbproc->cubes = mbproc->cubes->next;
/* test six face directions, maybe add to stack: */
testface(c.i - 1, c.j, c.k, &c, 2, LBN, LBF, LTN, LTF, mbproc);
testface(c.i + 1, c.j, c.k, &c, 2, RBN, RBF, RTN, RTF, mbproc);
testface(c.i, c.j - 1, c.k, &c, 1, LBN, LBF, RBN, RBF, mbproc);
testface(c.i, c.j + 1, c.k, &c, 1, LTN, LTF, RTN, RTF, mbproc);
testface(c.i, c.j, c.k - 1, &c, 0, LBN, LTN, RBN, RTN, mbproc);
testface(c.i, c.j, c.k + 1, &c, 0, LBF, LTF, RBF, RTF, mbproc);
}
}
static float init_meta(Scene *scene, Object *ob) /* return totsize */
{
Scene *sce_iter = scene;
Base *base;
Object *bob;
MetaBall *mb;
MetaElem *ml;
float size, totsize, obinv[4][4], obmat[4][4], vec[3];
//float max = 0.0f;
int a, obnr, zero_size = 0;
char obname[MAX_ID_NAME];
copy_m4_m4(obmat, ob->obmat); /* to cope with duplicators from BKE_scene_base_iter_next */
invert_m4_m4(obinv, ob->obmat);
a = 0;
BLI_split_name_num(obname, &obnr, ob->id.name + 2, '.');
/* make main array */
BKE_scene_base_iter_next(&sce_iter, 0, NULL, NULL);
while (BKE_scene_base_iter_next(&sce_iter, 1, &base, &bob)) {
if (bob->type == OB_MBALL) {
zero_size = 0;
ml = NULL;
if (bob == ob && (base->flag & OB_FROMDUPLI) == 0) {
mb = ob->data;
if (mb->editelems) ml = mb->editelems->first;
else ml = mb->elems.first;
}
else {
char name[MAX_ID_NAME];
int nr;
BLI_split_name_num(name, &nr, bob->id.name + 2, '.');
if (strcmp(obname, name) == 0) {
mb = bob->data;
if (mb->editelems) ml = mb->editelems->first;
else ml = mb->elems.first;
}
}
/* when metaball object has zero scale, then MetaElem to this MetaBall
* will not be put to mainb array */
if (bob->size[0] == 0.0f || bob->size[1] == 0.0f || bob->size[2] == 0.0f) {
zero_size = 1;
}
else if (bob->parent) {
struct Object *pob = bob->parent;
while (pob) {
if (pob->size[0] == 0.0f || pob->size[1] == 0.0f || pob->size[2] == 0.0f) {
zero_size = 1;
break;
}
pob = pob->parent;
}
}
if (zero_size) {
unsigned int ml_count = 0;
while (ml) {
ml_count++;
ml = ml->next;
}
G_mb.totelem -= ml_count;
}
else {
while (ml) {
if (!(ml->flag & MB_HIDE)) {
int i;
float temp1[4][4], temp2[4][4], temp3[4][4];
float (*mat)[4] = NULL, (*imat)[4] = NULL;
float max_x, max_y, max_z, min_x, min_y, min_z;
max_x = max_y = max_z = -3.4e38;
min_x = min_y = min_z = 3.4e38;
/* too big stiffness seems only ugly due to linear interpolation
* no need to have possibility for too big stiffness */
if (ml->s > 10.0f) ml->s = 10.0f;
/* Rotation of MetaElem is stored in quat */
quat_to_mat4(temp3, ml->quat);
/* Translation of MetaElem */
unit_m4(temp2);
temp2[3][0] = ml->x;
temp2[3][1] = ml->y;
temp2[3][2] = ml->z;
mult_m4_m4m4(temp1, temp2, temp3);
/* make a copy because of duplicates */
G_mb.mainb[a] = new_pgn_element(sizeof(MetaElem));
*(G_mb.mainb[a]) = *ml;
G_mb.mainb[a]->bb = new_pgn_element(sizeof(BoundBox));
mat = new_pgn_element(4 * 4 * sizeof(float));
imat = new_pgn_element(4 * 4 * sizeof(float));
/* mat is the matrix to transform from mball into the basis-mball */
invert_m4_m4(obinv, obmat);
mult_m4_m4m4(temp2, obinv, bob->obmat);
/* MetaBall transformation */
mult_m4_m4m4(mat, temp2, temp1);
invert_m4_m4(imat, mat);
G_mb.mainb[a]->rad2 = ml->rad * ml->rad;
G_mb.mainb[a]->mat = (float *) mat;
G_mb.mainb[a]->imat = (float *) imat;
/* untransformed Bounding Box of MetaElem */
/* 0 */
G_mb.mainb[a]->bb->vec[0][0] = -ml->expx;
G_mb.mainb[a]->bb->vec[0][1] = -ml->expy;
G_mb.mainb[a]->bb->vec[0][2] = -ml->expz;
/* 1 */
G_mb.mainb[a]->bb->vec[1][0] = ml->expx;
G_mb.mainb[a]->bb->vec[1][1] = -ml->expy;
G_mb.mainb[a]->bb->vec[1][2] = -ml->expz;
/* 2 */
G_mb.mainb[a]->bb->vec[2][0] = ml->expx;
G_mb.mainb[a]->bb->vec[2][1] = ml->expy;
G_mb.mainb[a]->bb->vec[2][2] = -ml->expz;
/* 3 */
G_mb.mainb[a]->bb->vec[3][0] = -ml->expx;
G_mb.mainb[a]->bb->vec[3][1] = ml->expy;
G_mb.mainb[a]->bb->vec[3][2] = -ml->expz;
/* 4 */
G_mb.mainb[a]->bb->vec[4][0] = -ml->expx;
G_mb.mainb[a]->bb->vec[4][1] = -ml->expy;
G_mb.mainb[a]->bb->vec[4][2] = ml->expz;
/* 5 */
G_mb.mainb[a]->bb->vec[5][0] = ml->expx;
G_mb.mainb[a]->bb->vec[5][1] = -ml->expy;
G_mb.mainb[a]->bb->vec[5][2] = ml->expz;
/* 6 */
G_mb.mainb[a]->bb->vec[6][0] = ml->expx;
G_mb.mainb[a]->bb->vec[6][1] = ml->expy;
G_mb.mainb[a]->bb->vec[6][2] = ml->expz;
/* 7 */
G_mb.mainb[a]->bb->vec[7][0] = -ml->expx;
G_mb.mainb[a]->bb->vec[7][1] = ml->expy;
G_mb.mainb[a]->bb->vec[7][2] = ml->expz;
/* transformation of Metalem bb */
for (i = 0; i < 8; i++)
mul_m4_v3((float (*)[4])mat, G_mb.mainb[a]->bb->vec[i]);
/* find max and min of transformed bb */
for (i = 0; i < 8; i++) {
/* find maximums */
if (G_mb.mainb[a]->bb->vec[i][0] > max_x) max_x = G_mb.mainb[a]->bb->vec[i][0];
if (G_mb.mainb[a]->bb->vec[i][1] > max_y) max_y = G_mb.mainb[a]->bb->vec[i][1];
if (G_mb.mainb[a]->bb->vec[i][2] > max_z) max_z = G_mb.mainb[a]->bb->vec[i][2];
/* find minimums */
if (G_mb.mainb[a]->bb->vec[i][0] < min_x) min_x = G_mb.mainb[a]->bb->vec[i][0];
if (G_mb.mainb[a]->bb->vec[i][1] < min_y) min_y = G_mb.mainb[a]->bb->vec[i][1];
if (G_mb.mainb[a]->bb->vec[i][2] < min_z) min_z = G_mb.mainb[a]->bb->vec[i][2];
}
/* create "new" bb, only point 0 and 6, which are
* necessary for octal tree filling */
G_mb.mainb[a]->bb->vec[0][0] = min_x - ml->rad;
G_mb.mainb[a]->bb->vec[0][1] = min_y - ml->rad;
G_mb.mainb[a]->bb->vec[0][2] = min_z - ml->rad;
G_mb.mainb[a]->bb->vec[6][0] = max_x + ml->rad;
G_mb.mainb[a]->bb->vec[6][1] = max_y + ml->rad;
G_mb.mainb[a]->bb->vec[6][2] = max_z + ml->rad;
a++;
}
ml = ml->next;
}
}
}
}
/* totsize (= 'manhattan' radius) */
totsize = 0.0;
for (a = 0; a < G_mb.totelem; a++) {
vec[0] = G_mb.mainb[a]->x + G_mb.mainb[a]->rad + G_mb.mainb[a]->expx;
vec[1] = G_mb.mainb[a]->y + G_mb.mainb[a]->rad + G_mb.mainb[a]->expy;
vec[2] = G_mb.mainb[a]->z + G_mb.mainb[a]->rad + G_mb.mainb[a]->expz;
calc_mballco(G_mb.mainb[a], vec);
size = fabsf(vec[0]);
if (size > totsize) totsize = size;
size = fabsf(vec[1]);
if (size > totsize) totsize = size;
size = fabsf(vec[2]);
if (size > totsize) totsize = size;
vec[0] = G_mb.mainb[a]->x - G_mb.mainb[a]->rad;
vec[1] = G_mb.mainb[a]->y - G_mb.mainb[a]->rad;
vec[2] = G_mb.mainb[a]->z - G_mb.mainb[a]->rad;
calc_mballco(G_mb.mainb[a], vec);
size = fabsf(vec[0]);
if (size > totsize) totsize = size;
size = fabsf(vec[1]);
if (size > totsize) totsize = size;
size = fabsf(vec[2]);
if (size > totsize) totsize = size;
}
for (a = 0; a < G_mb.totelem; a++) {
G_mb.thresh += densfunc(G_mb.mainb[a], 2.0f * totsize, 2.0f * totsize, 2.0f * totsize);
}
return totsize;
}
/* if MetaElem lies in node, then node includes MetaElem pointer (ml_p)
* pointing at MetaElem (ml)
*/
static void fill_metaball_octal_node(octal_node *node, MetaElem *ml, short i)
{
ml_pointer *ml_p;
ml_p = MEM_mallocN(sizeof(ml_pointer), "ml_pointer");
ml_p->ml = ml;
BLI_addtail(&(node->nodes[i]->elems), ml_p);
node->count++;
if ((ml->flag & MB_NEGATIVE) == 0) {
node->nodes[i]->pos++;
}
else {
node->nodes[i]->neg++;
}
}
/* Node is subdivided as is illustrated on the following figure:
*
* +------+------+
* / / /|
* +------+------+ |
* / / /| +
* +------+------+ |/|
* | | | + |
* | | |/| +
* +------+------+ |/
* | | | +
* | | |/
* +------+------+
*
*/
static void subdivide_metaball_octal_node(octal_node *node, float size_x, float size_y, float size_z, short depth)
{
MetaElem *ml;
ml_pointer *ml_p;
float x, y, z;
int a, i;
/* create new nodes */
for (a = 0; a < 8; a++) {
node->nodes[a] = MEM_mallocN(sizeof(octal_node), "octal_node");
for (i = 0; i < 8; i++)
node->nodes[a]->nodes[i] = NULL;
node->nodes[a]->parent = node;
node->nodes[a]->elems.first = NULL;
node->nodes[a]->elems.last = NULL;
node->nodes[a]->count = 0;
node->nodes[a]->neg = 0;
node->nodes[a]->pos = 0;
}
size_x /= 2;
size_y /= 2;
size_z /= 2;
/* center of node */
node->x = x = node->x_min + size_x;
node->y = y = node->y_min + size_y;
node->z = z = node->z_min + size_z;
/* setting up of border points of new nodes */
node->nodes[0]->x_min = node->x_min;
node->nodes[0]->y_min = node->y_min;
node->nodes[0]->z_min = node->z_min;
node->nodes[0]->x = node->nodes[0]->x_min + size_x / 2;
node->nodes[0]->y = node->nodes[0]->y_min + size_y / 2;
node->nodes[0]->z = node->nodes[0]->z_min + size_z / 2;
node->nodes[1]->x_min = x;
node->nodes[1]->y_min = node->y_min;
node->nodes[1]->z_min = node->z_min;
node->nodes[1]->x = node->nodes[1]->x_min + size_x / 2;
node->nodes[1]->y = node->nodes[1]->y_min + size_y / 2;
node->nodes[1]->z = node->nodes[1]->z_min + size_z / 2;
node->nodes[2]->x_min = x;
node->nodes[2]->y_min = y;
node->nodes[2]->z_min = node->z_min;
node->nodes[2]->x = node->nodes[2]->x_min + size_x / 2;
node->nodes[2]->y = node->nodes[2]->y_min + size_y / 2;
node->nodes[2]->z = node->nodes[2]->z_min + size_z / 2;
node->nodes[3]->x_min = node->x_min;
node->nodes[3]->y_min = y;
node->nodes[3]->z_min = node->z_min;
node->nodes[3]->x = node->nodes[3]->x_min + size_x / 2;
node->nodes[3]->y = node->nodes[3]->y_min + size_y / 2;
node->nodes[3]->z = node->nodes[3]->z_min + size_z / 2;
node->nodes[4]->x_min = node->x_min;
node->nodes[4]->y_min = node->y_min;
node->nodes[4]->z_min = z;
node->nodes[4]->x = node->nodes[4]->x_min + size_x / 2;
node->nodes[4]->y = node->nodes[4]->y_min + size_y / 2;
node->nodes[4]->z = node->nodes[4]->z_min + size_z / 2;
node->nodes[5]->x_min = x;
node->nodes[5]->y_min = node->y_min;
node->nodes[5]->z_min = z;
node->nodes[5]->x = node->nodes[5]->x_min + size_x / 2;
node->nodes[5]->y = node->nodes[5]->y_min + size_y / 2;
node->nodes[5]->z = node->nodes[5]->z_min + size_z / 2;
node->nodes[6]->x_min = x;
node->nodes[6]->y_min = y;
node->nodes[6]->z_min = z;
node->nodes[6]->x = node->nodes[6]->x_min + size_x / 2;
node->nodes[6]->y = node->nodes[6]->y_min + size_y / 2;
node->nodes[6]->z = node->nodes[6]->z_min + size_z / 2;
node->nodes[7]->x_min = node->x_min;
node->nodes[7]->y_min = y;
node->nodes[7]->z_min = z;
node->nodes[7]->x = node->nodes[7]->x_min + size_x / 2;
node->nodes[7]->y = node->nodes[7]->y_min + size_y / 2;
node->nodes[7]->z = node->nodes[7]->z_min + size_z / 2;
ml_p = node->elems.first;
/* setting up references of MetaElems for new nodes */
while (ml_p) {
ml = ml_p->ml;
if (ml->bb->vec[0][2] < z) {
if (ml->bb->vec[0][1] < y) {
/* vec[0][0] lies in first octant */
if (ml->bb->vec[0][0] < x) {
/* ml belongs to the (0)1st node */
fill_metaball_octal_node(node, ml, 0);
/* ml belongs to the (3)4th node */
if (ml->bb->vec[6][1] >= y) {
fill_metaball_octal_node(node, ml, 3);
/* ml belongs to the (7)8th node */
if (ml->bb->vec[6][2] >= z) {
fill_metaball_octal_node(node, ml, 7);
}
}
/* ml belongs to the (1)2nd node */
if (ml->bb->vec[6][0] >= x) {
fill_metaball_octal_node(node, ml, 1);
/* ml belongs to the (5)6th node */
if (ml->bb->vec[6][2] >= z) {
fill_metaball_octal_node(node, ml, 5);
}
}
/* ml belongs to the (2)3th node */
if ((ml->bb->vec[6][0] >= x) && (ml->bb->vec[6][1] >= y)) {
fill_metaball_octal_node(node, ml, 2);
/* ml belong to the (6)7th node */
if (ml->bb->vec[6][2] >= z) {
fill_metaball_octal_node(node, ml, 6);
}
}
/* ml belongs to the (4)5th node too */
if (ml->bb->vec[6][2] >= z) {
fill_metaball_octal_node(node, ml, 4);
}
}
/* vec[0][0] is in the (1)second octant */
else {
/* ml belong to the (1)2nd node */
fill_metaball_octal_node(node, ml, 1);
/* ml belongs to the (2)3th node */
if (ml->bb->vec[6][1] >= y) {
fill_metaball_octal_node(node, ml, 2);
/* ml belongs to the (6)7th node */
if (ml->bb->vec[6][2] >= z) {
fill_metaball_octal_node(node, ml, 6);
}
}
/* ml belongs to the (5)6th node */
if (ml->bb->vec[6][2] >= z) {
fill_metaball_octal_node(node, ml, 5);
}
}
}
else {
/* vec[0][0] is in the (3)4th octant */
if (ml->bb->vec[0][0] < x) {
/* ml belongs to the (3)4nd node */
fill_metaball_octal_node(node, ml, 3);
/* ml belongs to the (7)8th node */
if (ml->bb->vec[6][2] >= z) {
fill_metaball_octal_node(node, ml, 7);
}
/* ml belongs to the (2)3th node */
if (ml->bb->vec[6][0] >= x) {
fill_metaball_octal_node(node, ml, 2);
/* ml belongs to the (6)7th node */
if (ml->bb->vec[6][2] >= z) {
fill_metaball_octal_node(node, ml, 6);
}
}
}
}
/* vec[0][0] is in the (2)3th octant */
if ((ml->bb->vec[0][0] >= x) && (ml->bb->vec[0][1] >= y)) {
/* ml belongs to the (2)3th node */
fill_metaball_octal_node(node, ml, 2);
/* ml belongs to the (6)7th node */
if (ml->bb->vec[6][2] >= z) {
fill_metaball_octal_node(node, ml, 6);
}
}
}
else {
if (ml->bb->vec[0][1] < y) {
/* vec[0][0] lies in (4)5th octant */
if (ml->bb->vec[0][0] < x) {
/* ml belongs to the (4)5th node */
fill_metaball_octal_node(node, ml, 4);
if (ml->bb->vec[6][0] >= x) {
fill_metaball_octal_node(node, ml, 5);
}
if (ml->bb->vec[6][1] >= y) {
fill_metaball_octal_node(node, ml, 7);
}
if ((ml->bb->vec[6][0] >= x) && (ml->bb->vec[6][1] >= y)) {
fill_metaball_octal_node(node, ml, 6);
}
}
/* vec[0][0] lies in (5)6th octant */
else {
fill_metaball_octal_node(node, ml, 5);
if (ml->bb->vec[6][1] >= y) {
fill_metaball_octal_node(node, ml, 6);
}
}
}
else {
/* vec[0][0] lies in (7)8th octant */
if (ml->bb->vec[0][0] < x) {
fill_metaball_octal_node(node, ml, 7);
if (ml->bb->vec[6][0] >= x) {
fill_metaball_octal_node(node, ml, 6);
}
}
}
/* vec[0][0] lies in (6)7th octant */
if ((ml->bb->vec[0][0] >= x) && (ml->bb->vec[0][1] >= y)) {
fill_metaball_octal_node(node, ml, 6);
}
}
ml_p = ml_p->next;
}
/* free references of MetaElems for curent node (it is not needed anymore) */
BLI_freelistN(&node->elems);
depth--;
if (depth > 0) {
for (a = 0; a < 8; a++) {
if (node->nodes[a]->count > 0) /* if node is not empty, then it is subdivided */
subdivide_metaball_octal_node(node->nodes[a], size_x, size_y, size_z, depth);
}
}
}
/* free all octal nodes recursively */
static void free_metaball_octal_node(octal_node *node)
{
int a;
for (a = 0; a < 8; a++) {
if (node->nodes[a] != NULL) free_metaball_octal_node(node->nodes[a]);
}
BLI_freelistN(&node->elems);
MEM_freeN(node);
}
/* If scene include more then one MetaElem, then octree is used */
static void init_metaball_octal_tree(int depth)
{
struct octal_node *node;
ml_pointer *ml_p;
float size[3];
int a;
G_mb.metaball_tree = MEM_mallocN(sizeof(octal_tree), "metaball_octal_tree");
G_mb.metaball_tree->first = node = MEM_mallocN(sizeof(octal_node), "metaball_octal_node");
/* maximal depth of octree */
G_mb.metaball_tree->depth = depth;
G_mb.metaball_tree->neg = node->neg = 0;
G_mb.metaball_tree->pos = node->pos = 0;
node->elems.first = NULL;
node->elems.last = NULL;
node->count = 0;
for (a = 0; a < 8; a++)
node->nodes[a] = NULL;
node->x_min = node->y_min = node->z_min = FLT_MAX;
node->x_max = node->y_max = node->z_max = -FLT_MAX;
/* size of octal tree scene */
for (a = 0; a < G_mb.totelem; a++) {
if (G_mb.mainb[a]->bb->vec[0][0] < node->x_min) node->x_min = G_mb.mainb[a]->bb->vec[0][0];
if (G_mb.mainb[a]->bb->vec[0][1] < node->y_min) node->y_min = G_mb.mainb[a]->bb->vec[0][1];
if (G_mb.mainb[a]->bb->vec[0][2] < node->z_min) node->z_min = G_mb.mainb[a]->bb->vec[0][2];
if (G_mb.mainb[a]->bb->vec[6][0] > node->x_max) node->x_max = G_mb.mainb[a]->bb->vec[6][0];
if (G_mb.mainb[a]->bb->vec[6][1] > node->y_max) node->y_max = G_mb.mainb[a]->bb->vec[6][1];
if (G_mb.mainb[a]->bb->vec[6][2] > node->z_max) node->z_max = G_mb.mainb[a]->bb->vec[6][2];
ml_p = MEM_mallocN(sizeof(ml_pointer), "ml_pointer");
ml_p->ml = G_mb.mainb[a];
BLI_addtail(&node->elems, ml_p);
if ((G_mb.mainb[a]->flag & MB_NEGATIVE) == 0) {
/* number of positive MetaElem in scene */
G_mb.metaball_tree->pos++;
}
else {
/* number of negative MetaElem in scene */
G_mb.metaball_tree->neg++;
}
}
/* size of first node */
size[0] = node->x_max - node->x_min;
size[1] = node->y_max - node->y_min;
size[2] = node->z_max - node->z_min;
/* first node is subdivided recursively */
subdivide_metaball_octal_node(node, size[0], size[1], size[2], G_mb.metaball_tree->depth);
}
void BKE_mball_polygonize(Scene *scene, Object *ob, ListBase *dispbase)
{
PROCESS mbproc;
MetaBall *mb;
DispList *dl;
int a, nr_cubes;
float *co, *no, totsize, width;
mb = ob->data;
if (G_mb.totelem == 0) return;
if ((G.is_rendering == FALSE) && (mb->flag == MB_UPDATE_NEVER)) return;
if (G.moving && mb->flag == MB_UPDATE_FAST) return;
curindex = totindex = 0;
indices = NULL;
G_mb.thresh = mb->thresh;
/* total number of MetaElems (totelem) is precomputed in find_basis_mball() function */
G_mb.mainb = MEM_mallocN(sizeof(void *) * G_mb.totelem, "mainb");
/* initialize all mainb (MetaElems) */
totsize = init_meta(scene, ob);
if (G_mb.metaball_tree) {
free_metaball_octal_node(G_mb.metaball_tree->first);
MEM_freeN(G_mb.metaball_tree);
G_mb.metaball_tree = NULL;
}
/* if scene includes more then one MetaElem, then octal tree optimization is used */
if ((G_mb.totelem > 1) && (G_mb.totelem <= 64)) init_metaball_octal_tree(1);
if ((G_mb.totelem > 64) && (G_mb.totelem <= 128)) init_metaball_octal_tree(2);
if ((G_mb.totelem > 128) && (G_mb.totelem <= 512)) init_metaball_octal_tree(3);
if ((G_mb.totelem > 512) && (G_mb.totelem <= 1024)) init_metaball_octal_tree(4);
if (G_mb.totelem > 1024) init_metaball_octal_tree(5);
/* don't polygonize metaballs with too high resolution (base mball to small)
* note: Eps was 0.0001f but this was giving problems for blood animation for durian, using 0.00001f */
if (G_mb.metaball_tree) {
if (ob->size[0] <= 0.00001f * (G_mb.metaball_tree->first->x_max - G_mb.metaball_tree->first->x_min) ||
ob->size[1] <= 0.00001f * (G_mb.metaball_tree->first->y_max - G_mb.metaball_tree->first->y_min) ||
ob->size[2] <= 0.00001f * (G_mb.metaball_tree->first->z_max - G_mb.metaball_tree->first->z_min))
{
new_pgn_element(-1); /* free values created by init_meta */
MEM_freeN(G_mb.mainb);
/* free tree */
free_metaball_octal_node(G_mb.metaball_tree->first);
MEM_freeN(G_mb.metaball_tree);
G_mb.metaball_tree = NULL;
return;
}
}
/* width is size per polygonize cube */
if (G.is_rendering) width = mb->rendersize;
else {
width = mb->wiresize;
if (G.moving && mb->flag == MB_UPDATE_HALFRES) width *= 2;
}
/* nr_cubes is just for safety, minimum is totsize */
nr_cubes = (int)(0.5f + totsize / width);
/* init process */
mbproc.function = metaball;
mbproc.size = width;
mbproc.bounds = nr_cubes;
mbproc.cubes = NULL;
mbproc.delta = width / (float)(RES * RES);
polygonize(&mbproc, mb);
MEM_freeN(G_mb.mainb);
/* free octal tree */
if (G_mb.totelem > 1) {
free_metaball_octal_node(G_mb.metaball_tree->first);
MEM_freeN(G_mb.metaball_tree);
G_mb.metaball_tree = NULL;
}
if (curindex) {
VERTEX *ptr = mbproc.vertices.ptr;
dl = MEM_callocN(sizeof(DispList), "mbaldisp");
BLI_addtail(dispbase, dl);
dl->type = DL_INDEX4;
dl->nr = mbproc.vertices.count;
dl->parts = curindex;
dl->index = indices;
indices = NULL;
a = mbproc.vertices.count;
dl->verts = co = MEM_mallocN(sizeof(float) * 3 * a, "mballverts");
dl->nors = no = MEM_mallocN(sizeof(float) * 3 * a, "mballnors");
for (a = 0; a < mbproc.vertices.count; ptr++, a++, no += 3, co += 3) {
copy_v3_v3(co, ptr->co);
copy_v3_v3(no, ptr->no);
}
}
freepolygonize(&mbproc);
}
/* basic vertex data functions */
int BKE_mball_minmax(MetaBall *mb, float min[3], float max[3])
{
MetaElem *ml;
INIT_MINMAX(min, max);
for (ml = mb->elems.first; ml; ml = ml->next) {
minmax_v3v3_v3(min, max, &ml->x);
}
return (mb->elems.first != NULL);
}
int BKE_mball_center_median(MetaBall *mb, float r_cent[3])
{
MetaElem *ml;
int total = 0;
zero_v3(r_cent);
for (ml = mb->elems.first; ml; ml = ml->next) {
add_v3_v3(r_cent, &ml->x);
}
if (total) {
mul_v3_fl(r_cent, 1.0f / (float)total);
}
return (total != 0);
}
int BKE_mball_center_bounds(MetaBall *mb, float r_cent[3])
{
float min[3], max[3];
if (BKE_mball_minmax(mb, min, max)) {
mid_v3_v3v3(r_cent, min, max);
return 1;
}
return 0;
}
void BKE_mball_translate(MetaBall *mb, float offset[3])
{
MetaElem *ml;
for (ml = mb->elems.first; ml; ml = ml->next) {
add_v3_v3(&ml->x, offset);
}
}