This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/freestyle/intern/python/BPy_Operators.cpp

763 lines
31 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file source/blender/freestyle/intern/python/BPy_Operators.cpp
* \ingroup freestyle
*/
#include "BPy_Operators.h"
#include "BPy_BinaryPredicate1D.h"
#include "BPy_UnaryPredicate0D.h"
#include "BPy_UnaryPredicate1D.h"
#include "UnaryFunction0D/BPy_UnaryFunction0DDouble.h"
#include "UnaryFunction1D/BPy_UnaryFunction1DVoid.h"
#include "Iterator/BPy_ViewEdgeIterator.h"
#include "Iterator/BPy_ChainingIterator.h"
#include "BPy_StrokeShader.h"
#include "BPy_Convert.h"
#ifdef __cplusplus
extern "C" {
#endif
///////////////////////////////////////////////////////////////////////////////////////////
//-------------------MODULE INITIALIZATION--------------------------------
int Operators_Init(PyObject *module)
{
if (module == NULL)
return -1;
if (PyType_Ready(&Operators_Type) < 0)
return -1;
Py_INCREF(&Operators_Type);
PyModule_AddObject(module, "Operators", (PyObject *)&Operators_Type);
return 0;
}
//------------------------INSTANCE METHODS ----------------------------------
PyDoc_STRVAR(Operators_doc,
"Class defining the operators used in a style module. There are five\n"
"types of operators: Selection, chaining, splitting, sorting and\n"
"creation. All these operators are user controlled through functors,\n"
"predicates and shaders that are taken as arguments.");
static void Operators_dealloc(BPy_Operators *self)
{
Py_TYPE(self)->tp_free((PyObject *)self);
}
PyDoc_STRVAR(Operators_select_doc,
".. staticmethod:: select(pred)\n"
"\n"
" Selects the ViewEdges of the ViewMap verifying a specified\n"
" condition.\n"
"\n"
" :arg pred: The predicate expressing this condition.\n"
" :type pred: :class:`UnaryPredicate1D`");
static PyObject *Operators_select(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
static const char *kwlist[] = {"pred", NULL};
PyObject *obj = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!", (char **)kwlist, &UnaryPredicate1D_Type, &obj))
return NULL;
if (!((BPy_UnaryPredicate1D *)obj)->up1D) {
PyErr_SetString(PyExc_TypeError, "Operators.select(): 1st argument: invalid UnaryPredicate1D object");
return NULL;
}
if (Operators::select(*(((BPy_UnaryPredicate1D *)obj)->up1D)) < 0) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_RuntimeError, "Operators.select() failed");
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_chain_doc,
".. staticmethod:: chain(it, pred, modifier)\n"
"\n"
" Builds a set of chains from the current set of ViewEdges. Each\n"
" ViewEdge of the current list starts a new chain. The chaining\n"
" operator then iterates over the ViewEdges of the ViewMap using the\n"
" user specified iterator. This operator only iterates using the\n"
" increment operator and is therefore unidirectional.\n"
"\n"
" :arg it: The iterator on the ViewEdges of the ViewMap. It contains\n"
" the chaining rule.\n"
" :type it: :class:`ViewEdgeIterator`\n"
" :arg pred: The predicate on the ViewEdge that expresses the\n"
" stopping condition.\n"
" :type pred: :class:`UnaryPredicate1D`\n"
" :arg modifier: A function that takes a ViewEdge as argument and\n"
" that is used to modify the processed ViewEdge state (the\n"
" timestamp incrementation is a typical illustration of such a\n"
" modifier).\n"
" :type modifier: :class:`UnaryFunction1DVoid`\n"
"\n"
".. staticmethod:: chain(it, pred)\n"
"\n"
" Builds a set of chains from the current set of ViewEdges. Each\n"
" ViewEdge of the current list starts a new chain. The chaining\n"
" operator then iterates over the ViewEdges of the ViewMap using the\n"
" user specified iterator. This operator only iterates using the\n"
" increment operator and is therefore unidirectional. This chaining\n"
" operator is different from the previous one because it doesn't take\n"
" any modifier as argument. Indeed, the time stamp (insuring that a\n"
" ViewEdge is processed one time) is automatically managed in this\n"
" case.\n"
"\n"
" :arg it: The iterator on the ViewEdges of the ViewMap. It contains\n"
" the chaining rule. \n"
" :type it: :class:`ViewEdgeIterator`\n"
" :arg pred: The predicate on the ViewEdge that expresses the\n"
" stopping condition.\n"
" :type pred: :class:`UnaryPredicate1D`");
static PyObject *Operators_chain(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
static const char *kwlist[] = {"it", "pred", "modifier", NULL};
PyObject *obj1 = 0, *obj2 = 0, *obj3 = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!O!|O!", (char **)kwlist,
&ChainingIterator_Type, &obj1,
&UnaryPredicate1D_Type, &obj2,
&UnaryFunction1DVoid_Type, &obj3))
{
return NULL;
}
if (!((BPy_ChainingIterator *)obj1)->c_it) {
PyErr_SetString(PyExc_TypeError, "Operators.chain(): 1st argument: invalid ChainingIterator object");
return NULL;
}
if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
PyErr_SetString(PyExc_TypeError, "Operators.chain(): 2nd argument: invalid UnaryPredicate1D object");
return NULL;
}
if (!obj3) {
if (Operators::chain(*(((BPy_ChainingIterator *)obj1)->c_it),
*(((BPy_UnaryPredicate1D *)obj2)->up1D)) < 0)
{
if (!PyErr_Occurred())
PyErr_SetString(PyExc_RuntimeError, "Operators.chain() failed");
return NULL;
}
}
else {
if (!((BPy_UnaryFunction1DVoid *)obj3)->uf1D_void) {
PyErr_SetString(PyExc_TypeError, "Operators.chain(): 3rd argument: invalid UnaryFunction1DVoid object");
return NULL;
}
if (Operators::chain(*(((BPy_ChainingIterator *)obj1)->c_it),
*(((BPy_UnaryPredicate1D *)obj2)->up1D),
*(((BPy_UnaryFunction1DVoid *)obj3)->uf1D_void)) < 0)
{
if (!PyErr_Occurred())
PyErr_SetString(PyExc_RuntimeError, "Operators.chain() failed");
return NULL;
}
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_bidirectional_chain_doc,
".. staticmethod:: bidirectional_chain(it, pred)\n"
"\n"
" Builds a set of chains from the current set of ViewEdges. Each\n"
" ViewEdge of the current list potentially starts a new chain. The\n"
" chaining operator then iterates over the ViewEdges of the ViewMap\n"
" using the user specified iterator. This operator iterates both using\n"
" the increment and decrement operators and is therefore bidirectional.\n"
" This operator works with a ChainingIterator which contains the\n"
" chaining rules. It is this last one which can be told to chain only\n"
" edges that belong to the selection or not to process twice a ViewEdge\n"
" during the chaining. Each time a ViewEdge is added to a chain, its\n"
" chaining time stamp is incremented. This allows you to keep track of\n"
" the number of chains to which a ViewEdge belongs to.\n"
"\n"
" :arg it: The ChainingIterator on the ViewEdges of the ViewMap. It\n"
" contains the chaining rule.\n"
" :type it: :class:`ChainingIterator`\n"
" :arg pred: The predicate on the ViewEdge that expresses the\n"
" stopping condition.\n"
" :type pred: :class:`UnaryPredicate1D`\n"
"\n"
".. staticmethod:: bidirectional_chain(it)\n"
"\n"
" The only difference with the above bidirectional chaining algorithm\n"
" is that we don't need to pass a stopping criterion. This might be\n"
" desirable when the stopping criterion is already contained in the\n"
" iterator definition. Builds a set of chains from the current set of\n"
" ViewEdges. Each ViewEdge of the current list potentially starts a new\n"
" chain. The chaining operator then iterates over the ViewEdges of the\n"
" ViewMap using the user specified iterator. This operator iterates\n"
" both using the increment and decrement operators and is therefore\n"
" bidirectional. This operator works with a ChainingIterator which\n"
" contains the chaining rules. It is this last one which can be told to\n"
" chain only edges that belong to the selection or not to process twice\n"
" a ViewEdge during the chaining. Each time a ViewEdge is added to a\n"
" chain, its chaining time stamp is incremented. This allows you to\n"
" keep track of the number of chains to which a ViewEdge belongs to.\n"
"\n"
" :arg it: The ChainingIterator on the ViewEdges of the ViewMap. It\n"
" contains the chaining rule.\n"
" :type it: :class:`ChainingIterator`");
static PyObject *Operators_bidirectional_chain(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
static const char *kwlist[] = {"it", "pred", NULL};
PyObject *obj1 = 0, *obj2 = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!|O!", (char **)kwlist,
&ChainingIterator_Type, &obj1, &UnaryPredicate1D_Type, &obj2))
{
return NULL;
}
if (!((BPy_ChainingIterator *)obj1)->c_it) {
PyErr_SetString(PyExc_TypeError,
"Operators.bidirectional_chain(): 1st argument: invalid ChainingIterator object");
return NULL;
}
if (!obj2) {
if (Operators::bidirectionalChain(*(((BPy_ChainingIterator *)obj1)->c_it)) < 0) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_RuntimeError, "Operators.bidirectional_chain() failed");
return NULL;
}
}
else {
if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
PyErr_SetString(PyExc_TypeError,
"Operators.bidirectional_chain(): 2nd argument: invalid UnaryPredicate1D object");
return NULL;
}
if (Operators::bidirectionalChain(*(((BPy_ChainingIterator *)obj1)->c_it),
*(((BPy_UnaryPredicate1D *)obj2)->up1D)) < 0)
{
if (!PyErr_Occurred())
PyErr_SetString(PyExc_RuntimeError, "Operators.bidirectional_chain() failed");
return NULL;
}
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_sequential_split_doc,
".. staticmethod:: sequential_split(starting_pred, stopping_pred, sampling=0.0)\n"
"\n"
" Splits each chain of the current set of chains in a sequential way.\n"
" The points of each chain are processed (with a specified sampling)\n"
" sequentially. Each time a user specified starting condition is\n"
" verified, a new chain begins and ends as soon as a user-defined\n"
" stopping predicate is verified. This allows chains overlapping rather\n"
" than chains partitioning. The first point of the initial chain is the\n"
" first point of one of the resulting chains. The splitting ends when\n"
" no more chain can start.\n"
"\n"
" :arg starting_pred: The predicate on a point that expresses the\n"
" starting condition.\n"
" :type starting_pred: :class:`UnaryPredicate0D`\n"
" :arg stopping_pred: The predicate on a point that expresses the\n"
" stopping condition.\n"
" :type stopping_pred: :class:`UnaryPredicate0D`\n"
" :arg sampling: The resolution used to sample the chain for the\n"
" predicates evaluation. (The chain is not actually resampled;\n"
" a virtual point only progresses along the curve using this\n"
" resolution.)\n"
" :type sampling: float\n"
"\n"
".. staticmethod:: sequential_split(pred, sampling=0.0)\n"
"\n"
" Splits each chain of the current set of chains in a sequential way.\n"
" The points of each chain are processed (with a specified sampling)\n"
" sequentially and each time a user specified condition is verified,\n"
" the chain is split into two chains. The resulting set of chains is a\n"
" partition of the initial chain\n"
"\n"
" :arg pred: The predicate on a point that expresses the splitting\n"
" condition.\n"
" :type pred: :class:`UnaryPredicate0D`\n"
" :arg sampling: The resolution used to sample the chain for the\n"
" predicate evaluation. (The chain is not actually resampled; a\n"
" virtual point only progresses along the curve using this\n"
" resolution.)\n"
" :type sampling: float");
static PyObject *Operators_sequential_split(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
static const char *kwlist_1[] = {"starting_pred", "stopping_pred", "sampling", NULL};
static const char *kwlist_2[] = {"pred", "sampling", NULL};
PyObject *obj1 = 0, *obj2 = 0;
float f = 0.0f;
if (PyArg_ParseTupleAndKeywords(args, kwds, "O!O!|f", (char **)kwlist_1,
&UnaryPredicate0D_Type, &obj1, &UnaryPredicate0D_Type, &obj2, &f))
{
if (!((BPy_UnaryPredicate0D *)obj1)->up0D) {
PyErr_SetString(PyExc_TypeError,
"Operators.sequential_split(): 1st argument: invalid UnaryPredicate0D object");
return NULL;
}
if (!((BPy_UnaryPredicate0D *)obj2)->up0D) {
PyErr_SetString(PyExc_TypeError,
"Operators.sequential_split(): 2nd argument: invalid UnaryPredicate0D object");
return NULL;
}
if (Operators::sequentialSplit(*(((BPy_UnaryPredicate0D *)obj1)->up0D),
*(((BPy_UnaryPredicate0D *)obj2)->up0D),
f) < 0)
{
if (!PyErr_Occurred())
PyErr_SetString(PyExc_RuntimeError, "Operators.sequential_split() failed");
return NULL;
}
}
else if (PyErr_Clear(), (f = 0.0f),
PyArg_ParseTupleAndKeywords(args, kwds, "O!|f", (char **)kwlist_2,
&UnaryPredicate0D_Type, &obj1, &f))
{
if (!((BPy_UnaryPredicate0D *)obj1)->up0D) {
PyErr_SetString(PyExc_TypeError,
"Operators.sequential_split(): 1st argument: invalid UnaryPredicate0D object");
return NULL;
}
if (Operators::sequentialSplit(*(((BPy_UnaryPredicate0D *)obj1)->up0D), f) < 0) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_RuntimeError, "Operators.sequential_split() failed");
return NULL;
}
}
else {
PyErr_SetString(PyExc_TypeError, "invalid argument(s)");
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_recursive_split_doc,
".. staticmethod:: recursive_split(func, pred_1d, sampling=0.0)\n"
"\n"
" Splits the current set of chains in a recursive way. We process the\n"
" points of each chain (with a specified sampling) to find the point\n"
" minimizing a specified function. The chain is split in two at this\n"
" point and the two new chains are processed in the same way. The\n"
" recursivity level is controlled through a predicate 1D that expresses\n"
" a stopping condition on the chain that is about to be processed.\n"
"\n"
" :arg func: The Unary Function evaluated at each point of the chain.\n"
" The splitting point is the point minimizing this function.\n"
" :type func: :class:`UnaryFunction0DDouble`\n"
" :arg pred_1d: The Unary Predicate expressing the recursivity stopping\n"
" condition. This predicate is evaluated for each curve before it\n"
" actually gets split. If pred_1d(chain) is true, the curve won't be\n"
" split anymore.\n"
" :type pred_1d: :class:`UnaryPredicate1D`\n"
" :arg sampling: The resolution used to sample the chain for the\n"
" predicates evaluation. (The chain is not actually resampled, a\n"
" virtual point only progresses along the curve using this\n"
" resolution.)\n"
" :type sampling: float\n"
"\n"
".. staticmethod:: recursive_split(func, pred_0d, pred_1d, sampling=0.0)\n"
"\n"
" Splits the current set of chains in a recursive way. We process the\n"
" points of each chain (with a specified sampling) to find the point\n"
" minimizing a specified function. The chain is split in two at this\n"
" point and the two new chains are processed in the same way. The user\n"
" can specify a 0D predicate to make a first selection on the points\n"
" that can potentially be split. A point that doesn't verify the 0D\n"
" predicate won't be candidate in realizing the min. The recursivity\n"
" level is controlled through a predicate 1D that expresses a stopping\n"
" condition on the chain that is about to be processed.\n"
"\n"
" :arg func: The Unary Function evaluated at each point of the chain.\n"
" The splitting point is the point minimizing this function.\n"
" :type func: :class:`UnaryFunction0DDouble`\n"
" :arg pred_0d: The Unary Predicate 0D used to select the candidate\n"
" points where the split can occur. For example, it is very likely\n"
" that would rather have your chain splitting around its middle\n"
" point than around one of its extremities. A 0D predicate working\n"
" on the curvilinear abscissa allows to add this kind of constraints.\n"
" :type pred_0d: :class:`UnaryPredicate0D`\n"
" :arg pred_1d: The Unary Predicate expressing the recursivity stopping\n"
" condition. This predicate is evaluated for each curve before it\n"
" actually gets split. If pred_1d(chain) is true, the curve won't be\n"
" split anymore.\n"
" :type pred_1d: :class:`UnaryPredicate1D`\n"
" :arg sampling: The resolution used to sample the chain for the\n"
" predicates evaluation. (The chain is not actually resampled; a\n"
" virtual point only progresses along the curve using this\n"
" resolution.)\n"
" :type sampling: float");
static PyObject *Operators_recursive_split(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
static const char *kwlist_1[] = {"func", "pred_1d", "sampling", NULL};
static const char *kwlist_2[] = {"func", "pred_0d", "pred_1d", "sampling", NULL};
PyObject *obj1 = 0, *obj2 = 0, *obj3 = 0;
float f = 0.0f;
if (PyArg_ParseTupleAndKeywords(args, kwds, "O!O!|f", (char **)kwlist_1,
&UnaryFunction0DDouble_Type, &obj1, &UnaryPredicate1D_Type, &obj2, &f))
{
if (!((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double) {
PyErr_SetString(PyExc_TypeError,
"Operators.recursive_split(): 1st argument: invalid UnaryFunction0DDouble object");
return NULL;
}
if (!((BPy_UnaryPredicate1D *)obj2)->up1D) {
PyErr_SetString(PyExc_TypeError,
"Operators.recursive_split(): 2nd argument: invalid UnaryPredicate1D object");
return NULL;
}
if (Operators::recursiveSplit(*(((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double),
*(((BPy_UnaryPredicate1D *)obj2)->up1D),
f) < 0)
{
if (!PyErr_Occurred())
PyErr_SetString(PyExc_RuntimeError, "Operators.recursive_split() failed");
return NULL;
}
}
else if (PyErr_Clear(), (f = 0.0f),
PyArg_ParseTupleAndKeywords(args, kwds, "O!O!O!|f", (char **)kwlist_2,
&UnaryFunction0DDouble_Type, &obj1, &UnaryPredicate0D_Type, &obj2,
&UnaryPredicate1D_Type, &obj3, &f))
{
if (!((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double) {
PyErr_SetString(PyExc_TypeError,
"Operators.recursive_split(): 1st argument: invalid UnaryFunction0DDouble object");
return NULL;
}
if (!((BPy_UnaryPredicate0D *)obj2)->up0D) {
PyErr_SetString(PyExc_TypeError,
"Operators.recursive_split(): 2nd argument: invalid UnaryPredicate0D object");
return NULL;
}
if (!((BPy_UnaryPredicate1D *)obj3)->up1D) {
PyErr_SetString(PyExc_TypeError,
"Operators.recursive_split(): 3rd argument: invalid UnaryPredicate1D object");
return NULL;
}
if (Operators::recursiveSplit(*(((BPy_UnaryFunction0DDouble *)obj1)->uf0D_double),
*(((BPy_UnaryPredicate0D *)obj2)->up0D),
*(((BPy_UnaryPredicate1D *)obj3)->up1D),
f) < 0)
{
if (!PyErr_Occurred())
PyErr_SetString(PyExc_RuntimeError, "Operators.recursive_split() failed");
return NULL;
}
}
else {
PyErr_SetString(PyExc_TypeError, "invalid argument(s)");
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_sort_doc,
".. staticmethod:: sort(pred)\n"
"\n"
" Sorts the current set of chains (or viewedges) according to the\n"
" comparison predicate given as argument.\n"
"\n"
" :arg pred: The binary predicate used for the comparison.\n"
" :type pred: :class:`BinaryPredicate1D`");
static PyObject *Operators_sort(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
static const char *kwlist[] = {"pred", NULL};
PyObject *obj = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!", (char **)kwlist, &BinaryPredicate1D_Type, &obj))
return NULL;
if (!((BPy_BinaryPredicate1D *)obj)->bp1D) {
PyErr_SetString(PyExc_TypeError, "Operators.sort(): 1st argument: invalid BinaryPredicate1D object");
return NULL;
}
if (Operators::sort(*(((BPy_BinaryPredicate1D *)obj)->bp1D)) < 0) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_RuntimeError, "Operators.sort() failed");
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_create_doc,
".. staticmethod:: create(pred, shaders)\n"
"\n"
" Creates and shades the strokes from the current set of chains. A\n"
" predicate can be specified to make a selection pass on the chains.\n"
"\n"
" :arg pred: The predicate that a chain must verify in order to be\n"
" transform as a stroke.\n"
" :type pred: :class:`UnaryPredicate1D`\n"
" :arg shaders: The list of shaders used to shade the strokes.\n"
" :type shaders: list of :class:`StrokeShader` objects");
static PyObject *Operators_create(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
static const char *kwlist[] = {"pred", "shaders", NULL};
PyObject *obj1 = 0, *obj2 = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O!O!", (char **)kwlist,
&UnaryPredicate1D_Type, &obj1, &PyList_Type, &obj2))
{
return NULL;
}
if (!((BPy_UnaryPredicate1D *)obj1)->up1D) {
PyErr_SetString(PyExc_TypeError, "Operators.create(): 1st argument: invalid UnaryPredicate1D object");
return NULL;
}
vector<StrokeShader *> shaders;
shaders.reserve(PyList_Size(obj2));
for (int i = 0; i < PyList_Size(obj2); i++) {
PyObject *py_ss = PyList_GET_ITEM(obj2, i);
if (!BPy_StrokeShader_Check(py_ss)) {
PyErr_SetString(PyExc_TypeError, "Operators.create(): 2nd argument must be a list of StrokeShader objects");
return NULL;
}
shaders.push_back(((BPy_StrokeShader *)py_ss)->ss);
}
if (Operators::create(*(((BPy_UnaryPredicate1D *)obj1)->up1D), shaders) < 0) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_RuntimeError, "Operators.create() failed");
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_reset_doc,
".. staticmethod:: reset(delete_strokes=True)\n"
"\n"
" Resets the line stylization process to the initial state. The results of\n"
" stroke creation are accumulated if **delete_strokes** is set to False.\n"
"\n"
" :arg delete_strokes: Delete the strokes that are currently stored.\n"
" :type delete_strokes: bool\n");
static PyObject *Operators_reset(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
static const char *kwlist[] = {"delete_strokes", NULL};
PyObject *obj1 = 0;
if (PyArg_ParseTupleAndKeywords(args, kwds, "|O!", (char **)kwlist, &PyBool_Type, &obj1)) {
// true is the default
Operators::reset(obj1 ? bool_from_PyBool(obj1) : true);
}
else {
PyErr_SetString(PyExc_RuntimeError, "Operators.reset() failed");
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(Operators_get_viewedge_from_index_doc,
".. staticmethod:: get_viewedge_from_index(i)\n"
"\n"
" Returns the ViewEdge at the index in the current set of ViewEdges.\n"
"\n"
" :arg i: index (0 <= i < Operators.get_view_edges_size()).\n"
" :type i: int\n"
" :return: The ViewEdge object.\n"
" :rtype: :class:`ViewEdge`");
static PyObject *Operators_get_viewedge_from_index(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
static const char *kwlist[] = {"i", NULL};
unsigned int i;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i))
return NULL;
if (i >= Operators::getViewEdgesSize()) {
PyErr_SetString(PyExc_IndexError, "index out of range");
return NULL;
}
return BPy_ViewEdge_from_ViewEdge(*(Operators::getViewEdgeFromIndex(i)));
}
PyDoc_STRVAR(Operators_get_chain_from_index_doc,
".. staticmethod:: get_chain_from_index(i)\n"
"\n"
" Returns the Chain at the index in the current set of Chains.\n"
"\n"
" :arg i: index (0 <= i < Operators.get_chains_size()).\n"
" :type i: int\n"
" :return: The Chain object.\n"
" :rtype: :class:`Chain`");
static PyObject *Operators_get_chain_from_index(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
static const char *kwlist[] = {"i", NULL};
unsigned int i;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i))
return NULL;
if (i >= Operators::getChainsSize()) {
PyErr_SetString(PyExc_IndexError, "index out of range");
return NULL;
}
return BPy_Chain_from_Chain(*(Operators::getChainFromIndex(i)));
}
PyDoc_STRVAR(Operators_get_stroke_from_index_doc,
".. staticmethod:: get_stroke_from_index(i)\n"
"\n"
" Returns the Stroke at the index in the current set of Strokes.\n"
"\n"
" :arg i: index (0 <= i < Operators.get_strokes_size()).\n"
" :type i: int\n"
" :return: The Stroke object.\n"
" :rtype: :class:`Stroke`");
static PyObject *Operators_get_stroke_from_index(BPy_Operators * /*self*/, PyObject *args, PyObject *kwds)
{
static const char *kwlist[] = {"i", NULL};
unsigned int i;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "I", (char **)kwlist, &i))
return NULL;
if (i >= Operators::getStrokesSize()) {
PyErr_SetString(PyExc_IndexError, "index out of range");
return NULL;
}
return BPy_Stroke_from_Stroke(*(Operators::getStrokeFromIndex(i)));
}
PyDoc_STRVAR(Operators_get_view_edges_size_doc,
".. staticmethod:: get_view_edges_size()\n"
"\n"
" Returns the number of ViewEdges.\n"
"\n"
" :return: The number of ViewEdges.\n"
" :rtype: int");
static PyObject *Operators_get_view_edges_size(BPy_Operators * /*self*/)
{
return PyLong_FromLong(Operators::getViewEdgesSize());
}
PyDoc_STRVAR(Operators_get_chains_size_doc,
".. staticmethod:: get_chains_size()\n"
"\n"
" Returns the number of Chains.\n"
"\n"
" :return: The number of Chains.\n"
" :rtype: int");
static PyObject *Operators_get_chains_size(BPy_Operators * /*self*/)
{
return PyLong_FromLong(Operators::getChainsSize());
}
PyDoc_STRVAR(Operators_get_strokes_size_doc,
".. staticmethod:: get_strokes_size()\n"
"\n"
" Returns the number of Strokes.\n"
"\n"
" :return: The number of Strokes.\n"
" :rtype: int");
static PyObject *Operators_get_strokes_size(BPy_Operators * /*self*/)
{
return PyLong_FromLong(Operators::getStrokesSize());
}
/*----------------------Operators instance definitions ----------------------------*/
static PyMethodDef BPy_Operators_methods[] = {
{"select", (PyCFunction) Operators_select, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_select_doc},
{"chain", (PyCFunction) Operators_chain, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_chain_doc},
{"bidirectional_chain", (PyCFunction) Operators_bidirectional_chain, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
Operators_bidirectional_chain_doc},
{"sequential_split", (PyCFunction) Operators_sequential_split, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
Operators_sequential_split_doc},
{"recursive_split", (PyCFunction) Operators_recursive_split, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
Operators_recursive_split_doc},
{"sort", (PyCFunction) Operators_sort, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_sort_doc},
{"create", (PyCFunction) Operators_create, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_create_doc},
{"reset", (PyCFunction) Operators_reset, METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_reset_doc},
{"get_viewedge_from_index", (PyCFunction) Operators_get_viewedge_from_index,
METH_VARARGS | METH_KEYWORDS | METH_STATIC, Operators_get_viewedge_from_index_doc},
{"get_chain_from_index", (PyCFunction) Operators_get_chain_from_index, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
Operators_get_chain_from_index_doc},
{"get_stroke_from_index", (PyCFunction) Operators_get_stroke_from_index, METH_VARARGS | METH_KEYWORDS | METH_STATIC,
Operators_get_stroke_from_index_doc},
{"get_view_edges_size", (PyCFunction) Operators_get_view_edges_size, METH_NOARGS | METH_STATIC,
Operators_get_view_edges_size_doc},
{"get_chains_size", (PyCFunction) Operators_get_chains_size, METH_NOARGS | METH_STATIC,
Operators_get_chains_size_doc},
{"get_strokes_size", (PyCFunction) Operators_get_strokes_size, METH_NOARGS | METH_STATIC,
Operators_get_strokes_size_doc},
{NULL, NULL, 0, NULL}
};
/*-----------------------BPy_Operators type definition ------------------------------*/
PyTypeObject Operators_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"Operators", /* tp_name */
sizeof(BPy_Operators), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)Operators_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
Operators_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
BPy_Operators_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
PyType_GenericNew, /* tp_new */
};
///////////////////////////////////////////////////////////////////////////////////////////
#ifdef __cplusplus
}
#endif