The White Noise node hashes the input and returns a random number in the range [0, 1]. The input can be a 1D, 2D, 3D, or a 4D vector. Reviewers: brecht, JacquesLucke Differential Revision: https://developer.blender.org/D5550
		
			
				
	
	
		
			289 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			289 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2011-2013 Blender Foundation
 | 
						|
 *
 | 
						|
 * Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
 * you may not use this file except in compliance with the License.
 | 
						|
 * You may obtain a copy of the License at
 | 
						|
 *
 | 
						|
 * http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 * Unless required by applicable law or agreed to in writing, software
 | 
						|
 * distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 * See the License for the specific language governing permissions and
 | 
						|
 * limitations under the License.
 | 
						|
 */
 | 
						|
 | 
						|
#include "kernel/kernel_jitter.h"
 | 
						|
#include "util/util_hash.h"
 | 
						|
 | 
						|
CCL_NAMESPACE_BEGIN
 | 
						|
 | 
						|
/* Pseudo random numbers, uncomment this for debugging correlations. Only run
 | 
						|
 * this single threaded on a CPU for repeatable results. */
 | 
						|
//#define __DEBUG_CORRELATION__
 | 
						|
 | 
						|
/* High Dimensional Sobol.
 | 
						|
 *
 | 
						|
 * Multidimensional sobol with generator matrices. Dimension 0 and 1 are equal
 | 
						|
 * to classic Van der Corput and Sobol sequences. */
 | 
						|
 | 
						|
#ifdef __SOBOL__
 | 
						|
 | 
						|
/* Skip initial numbers that for some dimensions have clear patterns that
 | 
						|
 * don't cover the entire sample space. Ideally we would have a better
 | 
						|
 * progressive pattern that doesn't suffer from this problem, because even
 | 
						|
 * with this offset some dimensions are quite poor.
 | 
						|
 */
 | 
						|
#  define SOBOL_SKIP 64
 | 
						|
 | 
						|
ccl_device uint sobol_dimension(KernelGlobals *kg, int index, int dimension)
 | 
						|
{
 | 
						|
  uint result = 0;
 | 
						|
  uint i = index + SOBOL_SKIP;
 | 
						|
  for (uint j = 0; i; i >>= 1, j++) {
 | 
						|
    if (i & 1) {
 | 
						|
      result ^= kernel_tex_fetch(__sobol_directions, 32 * dimension + j);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* __SOBOL__ */
 | 
						|
 | 
						|
ccl_device_forceinline float path_rng_1D(
 | 
						|
    KernelGlobals *kg, uint rng_hash, int sample, int num_samples, int dimension)
 | 
						|
{
 | 
						|
#ifdef __DEBUG_CORRELATION__
 | 
						|
  return (float)drand48();
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __CMJ__
 | 
						|
#  ifdef __SOBOL__
 | 
						|
  if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ)
 | 
						|
#  endif
 | 
						|
  {
 | 
						|
    /* Correlated multi-jitter. */
 | 
						|
    int p = rng_hash + dimension;
 | 
						|
    return cmj_sample_1D(sample, num_samples, p);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __SOBOL__
 | 
						|
  /* Sobol sequence value using direction vectors. */
 | 
						|
  uint result = sobol_dimension(kg, sample, dimension);
 | 
						|
  float r = (float)result * (1.0f / (float)0xFFFFFFFF);
 | 
						|
 | 
						|
  /* Cranly-Patterson rotation using rng seed */
 | 
						|
  float shift;
 | 
						|
 | 
						|
  /* Hash rng with dimension to solve correlation issues.
 | 
						|
   * See T38710, T50116.
 | 
						|
   */
 | 
						|
  uint tmp_rng = cmj_hash_simple(dimension, rng_hash);
 | 
						|
  shift = tmp_rng * (1.0f / (float)0xFFFFFFFF);
 | 
						|
 | 
						|
  return r + shift - floorf(r + shift);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
ccl_device_forceinline void path_rng_2D(KernelGlobals *kg,
 | 
						|
                                        uint rng_hash,
 | 
						|
                                        int sample,
 | 
						|
                                        int num_samples,
 | 
						|
                                        int dimension,
 | 
						|
                                        float *fx,
 | 
						|
                                        float *fy)
 | 
						|
{
 | 
						|
#ifdef __DEBUG_CORRELATION__
 | 
						|
  *fx = (float)drand48();
 | 
						|
  *fy = (float)drand48();
 | 
						|
  return;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __CMJ__
 | 
						|
#  ifdef __SOBOL__
 | 
						|
  if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ)
 | 
						|
#  endif
 | 
						|
  {
 | 
						|
    /* Correlated multi-jitter. */
 | 
						|
    int p = rng_hash + dimension;
 | 
						|
    cmj_sample_2D(sample, num_samples, p, fx, fy);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __SOBOL__
 | 
						|
  /* Sobol. */
 | 
						|
  *fx = path_rng_1D(kg, rng_hash, sample, num_samples, dimension);
 | 
						|
  *fy = path_rng_1D(kg, rng_hash, sample, num_samples, dimension + 1);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
ccl_device_inline void path_rng_init(KernelGlobals *kg,
 | 
						|
                                     int sample,
 | 
						|
                                     int num_samples,
 | 
						|
                                     uint *rng_hash,
 | 
						|
                                     int x,
 | 
						|
                                     int y,
 | 
						|
                                     float *fx,
 | 
						|
                                     float *fy)
 | 
						|
{
 | 
						|
  /* load state */
 | 
						|
  *rng_hash = hash_uint2(x, y);
 | 
						|
  *rng_hash ^= kernel_data.integrator.seed;
 | 
						|
 | 
						|
#ifdef __DEBUG_CORRELATION__
 | 
						|
  srand48(*rng_hash + sample);
 | 
						|
#endif
 | 
						|
 | 
						|
  if (sample == 0) {
 | 
						|
    *fx = 0.5f;
 | 
						|
    *fy = 0.5f;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    path_rng_2D(kg, *rng_hash, sample, num_samples, PRNG_FILTER_U, fx, fy);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Linear Congruential Generator */
 | 
						|
 | 
						|
ccl_device uint lcg_step_uint(uint *rng)
 | 
						|
{
 | 
						|
  /* implicit mod 2^32 */
 | 
						|
  *rng = (1103515245 * (*rng) + 12345);
 | 
						|
  return *rng;
 | 
						|
}
 | 
						|
 | 
						|
ccl_device float lcg_step_float(uint *rng)
 | 
						|
{
 | 
						|
  /* implicit mod 2^32 */
 | 
						|
  *rng = (1103515245 * (*rng) + 12345);
 | 
						|
  return (float)*rng * (1.0f / (float)0xFFFFFFFF);
 | 
						|
}
 | 
						|
 | 
						|
ccl_device uint lcg_init(uint seed)
 | 
						|
{
 | 
						|
  uint rng = seed;
 | 
						|
  lcg_step_uint(&rng);
 | 
						|
  return rng;
 | 
						|
}
 | 
						|
 | 
						|
/* Path Tracing Utility Functions
 | 
						|
 *
 | 
						|
 * For each random number in each step of the path we must have a unique
 | 
						|
 * dimension to avoid using the same sequence twice.
 | 
						|
 *
 | 
						|
 * For branches in the path we must be careful not to reuse the same number
 | 
						|
 * in a sequence and offset accordingly.
 | 
						|
 */
 | 
						|
 | 
						|
ccl_device_inline float path_state_rng_1D(KernelGlobals *kg,
 | 
						|
                                          const ccl_addr_space PathState *state,
 | 
						|
                                          int dimension)
 | 
						|
{
 | 
						|
  return path_rng_1D(
 | 
						|
      kg, state->rng_hash, state->sample, state->num_samples, state->rng_offset + dimension);
 | 
						|
}
 | 
						|
 | 
						|
ccl_device_inline void path_state_rng_2D(
 | 
						|
    KernelGlobals *kg, const ccl_addr_space PathState *state, int dimension, float *fx, float *fy)
 | 
						|
{
 | 
						|
  path_rng_2D(kg,
 | 
						|
              state->rng_hash,
 | 
						|
              state->sample,
 | 
						|
              state->num_samples,
 | 
						|
              state->rng_offset + dimension,
 | 
						|
              fx,
 | 
						|
              fy);
 | 
						|
}
 | 
						|
 | 
						|
ccl_device_inline float path_state_rng_1D_hash(KernelGlobals *kg,
 | 
						|
                                               const ccl_addr_space PathState *state,
 | 
						|
                                               uint hash)
 | 
						|
{
 | 
						|
  /* Use a hash instead of dimension, this is not great but avoids adding
 | 
						|
   * more dimensions to each bounce which reduces quality of dimensions we
 | 
						|
   * are already using. */
 | 
						|
  return path_rng_1D(kg,
 | 
						|
                     cmj_hash_simple(state->rng_hash, hash),
 | 
						|
                     state->sample,
 | 
						|
                     state->num_samples,
 | 
						|
                     state->rng_offset);
 | 
						|
}
 | 
						|
 | 
						|
ccl_device_inline float path_branched_rng_1D(KernelGlobals *kg,
 | 
						|
                                             uint rng_hash,
 | 
						|
                                             const ccl_addr_space PathState *state,
 | 
						|
                                             int branch,
 | 
						|
                                             int num_branches,
 | 
						|
                                             int dimension)
 | 
						|
{
 | 
						|
  return path_rng_1D(kg,
 | 
						|
                     rng_hash,
 | 
						|
                     state->sample * num_branches + branch,
 | 
						|
                     state->num_samples * num_branches,
 | 
						|
                     state->rng_offset + dimension);
 | 
						|
}
 | 
						|
 | 
						|
ccl_device_inline void path_branched_rng_2D(KernelGlobals *kg,
 | 
						|
                                            uint rng_hash,
 | 
						|
                                            const ccl_addr_space PathState *state,
 | 
						|
                                            int branch,
 | 
						|
                                            int num_branches,
 | 
						|
                                            int dimension,
 | 
						|
                                            float *fx,
 | 
						|
                                            float *fy)
 | 
						|
{
 | 
						|
  path_rng_2D(kg,
 | 
						|
              rng_hash,
 | 
						|
              state->sample * num_branches + branch,
 | 
						|
              state->num_samples * num_branches,
 | 
						|
              state->rng_offset + dimension,
 | 
						|
              fx,
 | 
						|
              fy);
 | 
						|
}
 | 
						|
 | 
						|
/* Utility functions to get light termination value,
 | 
						|
 * since it might not be needed in many cases.
 | 
						|
 */
 | 
						|
ccl_device_inline float path_state_rng_light_termination(KernelGlobals *kg,
 | 
						|
                                                         const ccl_addr_space PathState *state)
 | 
						|
{
 | 
						|
  if (kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
 | 
						|
    return path_state_rng_1D(kg, state, PRNG_LIGHT_TERMINATE);
 | 
						|
  }
 | 
						|
  return 0.0f;
 | 
						|
}
 | 
						|
 | 
						|
ccl_device_inline float path_branched_rng_light_termination(KernelGlobals *kg,
 | 
						|
                                                            uint rng_hash,
 | 
						|
                                                            const ccl_addr_space PathState *state,
 | 
						|
                                                            int branch,
 | 
						|
                                                            int num_branches)
 | 
						|
{
 | 
						|
  if (kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
 | 
						|
    return path_branched_rng_1D(kg, rng_hash, state, branch, num_branches, PRNG_LIGHT_TERMINATE);
 | 
						|
  }
 | 
						|
  return 0.0f;
 | 
						|
}
 | 
						|
 | 
						|
ccl_device_inline uint lcg_state_init(PathState *state, uint scramble)
 | 
						|
{
 | 
						|
  return lcg_init(state->rng_hash + state->rng_offset + state->sample * scramble);
 | 
						|
}
 | 
						|
 | 
						|
ccl_device_inline uint lcg_state_init_addrspace(ccl_addr_space PathState *state, uint scramble)
 | 
						|
{
 | 
						|
  return lcg_init(state->rng_hash + state->rng_offset + state->sample * scramble);
 | 
						|
}
 | 
						|
 | 
						|
ccl_device float lcg_step_float_addrspace(ccl_addr_space uint *rng)
 | 
						|
{
 | 
						|
  /* Implicit mod 2^32 */
 | 
						|
  *rng = (1103515245 * (*rng) + 12345);
 | 
						|
  return (float)*rng * (1.0f / (float)0xFFFFFFFF);
 | 
						|
}
 | 
						|
 | 
						|
CCL_NAMESPACE_END
 |